Informatik - Exercise Session Numerical representation

- 1. Perform the following steps:
 - 1.1 Convert the integer numbers a=4 and b=7 into their binary representation.
 - 1.2 Add the binary representations.
 - 1.3 Convert the result into decimal.
- 2. Evaluate the following expressions:
 - 2.1 5 < 4 < 1
 - 2.2 true > false

06 ...

Solutions

```
1.
    1.1 \ 4_{10} = 100_2 \ \text{and} \ 7_{10} = 111_2
    1.2 \ 100_2 + 111_2 = 1011_2
    1.3 \ 1011_2 = 11_{10}
2.
    2.1
           5 < 4 < 1
            (5 < 4) < 1
           false < 1</pre>
           0 < 1
            true
    2.2
            true > false
           true > 0
            1 > 0
            true
```

Binary Representation: floating point numbers

dec.

$$10^{2} 10^{1} 10^{6} 10^{6} 10^{12} 10^{12} 10^{13}$$
 0.1
 $2^{2} 2^{1} 2^{6} 2^{12} 2^{13}$
 $\frac{1}{2} \frac{1}{4} \frac{1}{8}$

1.9 = 1 + 0,9

Converting decimal EPs to binary FPs

Converting decimal is to binary is					
X	bi	X - bi	2 (X-b;		
6.9	G	0.9	1.8		
1.8		0.8	1.6		
1.6		G.6	1-2		
1.2	1	0.2	0.4		
6.4	C	0.4	G. 8		
c.8	C	0.8	1.6		
1.6		0.6	(.2		
1.2	1	0.2	G.L		
		4	c. 11-	1001100.	
		\mathcal{A} +	6.99		
		\mathcal{A}_{\cdot}	1710	3	

Compute the binary expansions of the following decimal numbers.

- 1. 0.25
- 2. 11.1

Solutions:

1. $0.25_{10} = 0.01_2$

X	b_i	$x - b_i$	$2\cdot(x-b_i)$
0.25	0	0.25	0.5
0.5	0	0.5	1
1	1	0	0

2. $11.1_{10} = 1011.0\overline{0011}_2$

 11.1_{10} is first split into $11_{10} + 0.1_{10}$. The binary representation of 0.1_{10} is derived as follows:

X	b_i	$x - b_i$	$2\cdot(x-b_i)$
0.1	0	0.1	0.2
0.2	0	0.2	0.4
0.4	0	0.4	8.0
8.0	0	8.0	1.6
1.6	1	0.6	1.2
1.2	1	0.2	0.4
0.4	0	0.4	8.0

Hence, 11.1_{10} evaluates to $1011_2 + 0.0\overline{0011}_2$.

Normalized FP-systems

Do the following numbers belong to this set and why?

- $1. 0.000 \cdot 2^{1}$
- $\sqrt{2}$. 1.000 · 2¹
- $\sqrt{3}$. 1.001 · 2⁻¹
- \times 4. 1.000 $\underline{1} \cdot 2^{-1}$
- $\sqrt{5}$. 1.111 · 2¹
 - 6. 1.111 · 2⁵

Consider: $F^*(2, 4, -2, 2)$

Do the following numbers belong to this set and why?

- 1. $0.000 \cdot 2^1$
- $2. 1.000 \cdot 2^{1}$
- 3. $1.001 \cdot 2^{-1}$
- 4. $1.0001 \cdot 2^{-1}$
- 5. $1.111 \cdot 2^1$
- 6. $1.111 \cdot 2^5$

State the following numbers in $F^*(2, 4, -2, 2)$:

- 1. the largest number;
- 2. the smallest number;
- 3. the smallest non-negative number.

Compute how many numbers are in the set $F^*(2, 4, -2, 2)$.

Solutions:

- 1. The largest number is $1.111 \cdot 20$ which is 7.5 in decimal.
- The smallest number is -1.111 ⋅ 2² which is -7.5 in decimal.
 The smallest non-negative number is 1.000 ⋅ 2-2 which is 0.25 in decimal.

The set has 80 numbers in it. This can be seen as follows. For a fixed exponent there are three digits we can vary freely, and for each number also the negative number is in the set, thus resulting in $2 \cdot 2^3 = 16$ numbers per exponent. On the other hand, there are 5 possible exponents, thus resulting in $5 \cdot 16 = 80$ numbers. Notice that in normalized number systems we cannot "count some numbers twice" as we've seen in the lecture that the representation of a number is unique.

Adding within a FP-system:

- 1. Bring numbers to same exponent.
- 2. Add the two numbers, remember the decimal point and exponent for result.
- 3. Re-normalize the result.
- 4. Round the result.

Add $1.001 \cdot 2^{-1}$ (i.e. 0.5625) and $1.111 \cdot 2^{-2}$ (i.e. 0.46875) in $F^*(2, 4, -2, 2)$.

Solution:

The two numbers $1.001 \cdot 2^{-1}$ (i.e. 0.5625) and $1.111 \cdot 2^{-2}$ (i.e. 0.46875) are added as follows:

- 1. Bring both to say exponent -1: $1.001 \cdot 2^{-1}$ and $0.1111 \cdot 2^{-1}$
- 2. Add as binary numbers:

$$\begin{array}{r}
1.001 \cdot 2^{-1} \\
+ \quad 0.1111 \cdot 2^{-1} \\
\hline
10.0001 \cdot 2^{-1}
\end{array}$$

- 3. Re-normalize: $[1.00001 \cdot 2^{0}]$
- 4. Round: 1.000 · 2⁰

Notice that this does not coincide with their exact sum 1.03125 as the precision 4 is not high enough to represent this number.

