
Informatik
Exercise Session

Informatik
Exercise Session

References Recap

int a = 1;

int b = 2;

int& x = a;

int& y = x;

y = b;

assert(a == b);

std::cout << a << " " << b << std::endl;

std::cout << x << " " << y << std::endl;

1 / 6

Basic Pointers

I Ein Pointer ”zeigt” auf eine Adresse. D.h. ein Pointer ist

nichts weiteres als eine Variable, deren Wert eine Adresse ist.

int a = 5;

int* x = &a;

*x = 6;

2 / 6

Meanings of & and *

The symbol & can disorient many people approaching C++. It is important to
understand that this symbol has 3 di↵erent meanings in C++, depending on the
position:

1. the logical AND operator (e.g. z = x && y;) (there is also bitwise AND which is
however not covered by this course)

2. to declare a variable as a reference (e.g. int& y = x;)

3. to take the address of a variable (address operator) (eg. int *ptr_a = &a;)

Similarly, the symbol * can be used:

1. as the arithmetic multiplication operator (e.g. z = x * y;)

2. to declare a pointer variable (e.g. int *ptr_a = &a;)

3. to take the content of a variable via its pointer (dereference operator) (e.g.
int a = *ptr_a;)

1

Meanings of & and *

The symbol & can disorient many people approaching C++. It is important to
understand that this symbol has 3 di↵erent meanings in C++, depending on the
position:

1. the logical AND operator (e.g. z = x && y;) (there is also bitwise AND which is
however not covered by this course)

2. to declare a variable as a reference (e.g. int& y = x;)

3. to take the address of a variable (address operator) (eg. int *ptr_a = &a;)

Similarly, the symbol * can be used:

1. as the arithmetic multiplication operator (e.g. z = x * y;)

2. to declare a pointer variable (e.g. int *ptr_a = &a;)

3. to take the content of a variable via its pointer (dereference operator) (e.g.
int a = *ptr_a;)

1

Meanings of & and *

The symbol & can disorient many people approaching C++. It is important to
understand that this symbol has 3 di↵erent meanings in C++, depending on the
position:

1. the logical AND operator (e.g. z = x && y;) (there is also bitwise AND which is
however not covered by this course)

2. to declare a variable as a reference (e.g. int& y = x;)

3. to take the address of a variable (address operator) (eg. int *ptr_a = &a;)

Similarly, the symbol * can be used:

1. as the arithmetic multiplication operator (e.g. z = x * y;)

2. to declare a pointer variable (e.g. int *ptr_a = &a;)

3. to take the content of a variable via its pointer (dereference operator) (e.g.
int a = *ptr_a;)

1

Meanings of & and *

The symbol & can disorient many people approaching C++. It is important to
understand that this symbol has 3 di↵erent meanings in C++, depending on the
position:

1. the logical AND operator (e.g. z = x && y;) (there is also bitwise AND which is
however not covered by this course)

2. to declare a variable as a reference (e.g. int& y = x;)

3. to take the address of a variable (address operator) (eg. int *ptr_a = &a;)

Similarly, the symbol * can be used:

1. as the arithmetic multiplication operator (e.g. z = x * y;)

2. to declare a pointer variable (e.g. int *ptr_a = &a;)

3. to take the content of a variable via its pointer (dereference operator) (e.g.
int a = *ptr_a;)

1

Meanings of & and *

The symbol & can disorient many people approaching C++. It is important to
understand that this symbol has 3 di↵erent meanings in C++, depending on the
position:

1. the logical AND operator (e.g. z = x && y;) (there is also bitwise AND which is
however not covered by this course)

2. to declare a variable as a reference (e.g. int& y = x;)

3. to take the address of a variable (address operator) (eg. int *ptr_a = &a;)

Similarly, the symbol * can be used:

1. as the arithmetic multiplication operator (e.g. z = x * y;)

2. to declare a pointer variable (e.g. int *ptr_a = &a;)

3. to take the content of a variable via its pointer (dereference operator) (e.g.
int a = *ptr_a;)

1

Meanings of & and *

The symbol & can disorient many people approaching C++. It is important to
understand that this symbol has 3 di↵erent meanings in C++, depending on the
position:

1. the logical AND operator (e.g. z = x && y;) (there is also bitwise AND which is
however not covered by this course)

2. to declare a variable as a reference (e.g. int& y = x;)

3. to take the address of a variable (address operator) (eg. int *ptr_a = &a;)

Similarly, the symbol * can be used:

1. as the arithmetic multiplication operator (e.g. z = x * y;)

2. to declare a pointer variable (e.g. int *ptr_a = &a;)

3. to take the content of a variable via its pointer (dereference operator) (e.g.
int a = *ptr_a;)

1

Meanings of & and *

The symbol & can disorient many people approaching C++. It is important to
understand that this symbol has 3 di↵erent meanings in C++, depending on the
position:

1. the logical AND operator (e.g. z = x && y;) (there is also bitwise AND which is
however not covered by this course)

2. to declare a variable as a reference (e.g. int& y = x;)

3. to take the address of a variable (address operator) (eg. int *ptr_a = &a;)

Similarly, the symbol * can be used:

1. as the arithmetic multiplication operator (e.g. z = x * y;)

2. to declare a pointer variable (e.g. int *ptr_a = &a;)

3. to take the content of a variable via its pointer (dereference operator) (e.g.
int a = *ptr_a;)

1

Meanings of & and *

The symbol & can disorient many people approaching C++. It is important to
understand that this symbol has 3 di↵erent meanings in C++, depending on the
position:

1. the logical AND operator (e.g. z = x && y;) (there is also bitwise AND which is
however not covered by this course)

2. to declare a variable as a reference (e.g. int& y = x;)

3. to take the address of a variable (address operator) (eg. int *ptr_a = &a;)

Similarly, the symbol * can be used:

1. as the arithmetic multiplication operator (e.g. z = x * y;)

2. to declare a pointer variable (e.g. int *ptr_a = &a;)

3. to take the content of a variable via its pointer (dereference operator) (e.g.
int a = *ptr_a;)

1

Noch mehr const ...

int const * p ...

int * const p ...

3 / 6

Pointer Syntax: (*ptr).member ist ptr->member

I Wir dereferenzieren ptr mittels *-Operator (d.h. wir gehen

dorthin, wo ptr hin zeigt) und greifen dort auf member zu

mittels .-Operator.

struct lnode {

int value;

lnode* next;

};

lnode *node_name = some_lnode_ptr

int lnode_value1 = (*node_name).value

int lnode_value2 = node_name->value

4 / 6

our list

// in our_list.h

class our_list {

struct lnode {

int value;

lnode* next;

};

lnode* head;

public:

// ...

}

5 / 6

this pointer
// in our_list.h
class our_list {

struct lnode {
int value;
lnode* next;

};
lnode* head;

public:
// ...

}

// default constructor in our_list.cpp:
our_list::our_list() {

// this ptr is a hidden argument in all member functions
this->head = nullptr;

}

// in main: make a new list called list_name
our_list list_name = our_list();

6 / 6

Dynamic Memory

Normalerweise werden all unsere Objekte am Ende ihres scopes
”gelöscht”, d.h. der Speicher den sie benutzt haben, wird wieder
freigegeben.

Wir wollen aber unsere Objekte etwas länger benutzen ...

7 / 10

Dynamic Memory Allocation: new

The new operator denotes a request for memory allocation. If
su�cient memory is available, the new operator default-initializes
the memory and returns the address of the newly allocated
memory.

I Heisst: new gibt uns immer einen Pointer zurück!

Weiterführende Links:

Allg. zu new: https://www.geeksforgeeks.org/

new-and-delete-operators-in-cpp-for-dynamic-memory/

Bzgl. Initialisierung des Speichers: https://stackoverflow.com/questions/

7546620/operator-new-initializes-memory-to-zero

8 / 10

Dynamic Memory Allocation: new

Syntax allgemein:

pointer-variable = new data-type;

Syntax Beispiel:

int *p = NULL; // initialize ptr with NULL

p = new int; // request memory for one int

int *p = new int; // request directly

// request and initialize with int_value

int *p = new int(int_value);

9 / 10

Dynamic Memory Allocation: new

// runde Klammern:

// - wir wollen Speicher für einen einzigen Integer

// - p zeigt auf diesen int

int *p = new int(int_value);

// eckige Klammern:

// - wir wollen Speicher für num_ints Integer

// - p zeigt auf den ersten int

int *p = new int[num_ints];

10 / 10

int (10)

-
*

int (3)

p(1) =x(p + 1)
#

https://www.geeksforgeeks.org/data-structures/linked-list/Clinked list :

Lourdist ist eine singly
linked list

