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1 Definitions

closed loop vs open loop: In an open loop system there are no
interconnections within the system
Feedback: Two or more dynamical systems are connected and
influence each other and their dynamics are strongly coupled.
Feedforward: Corrective Action before the disturbance has in-
fluenced the system.
Positive vs Negative Feedback: Negative feedback decreases the
effects of a disturbance. Positive is the opposite.
Control: Compare desired state with current state, calculate and
execute corrective action
SISO: Single Input/Single Output Systems
Static vs Dynamic: System is static if for all t ∈ T , y(t) is a
function of u(t), Systems represented by ODEs are always dy-
namic!
Causal vs Non-Causal: System is causal if for any t ∈ T the
output only depends on the values of the Input on (−∞, t ] i.e.
future inputs are not possible! Almost all real world systems are
causal.
Time variance: time invariant system map input and output sig-
nals, that are are the same at any point in time. y(t1) = y(t2)
Linearity: A system is linear if for all input signals ua, ub and
scalars α, β ∈ R
Σ(αua + βub) = α(Σua) + β(Σub) = αya + βyb

differential integrators are always linear

2 System Modeling

2.1 Important Equations

f [Hz] =
ω[rad/s]

2π

Systems modeled using ODEs describing physical laws.
Balences

LMB: ΣF = Ṗ = ma = mẍ

AMB: ΣMB = ḢB with HB = IBφ̈

conservation Laws:
d

dt
= Σinflows − Σoutflows

2.2 LTI State Space Model

Oder of the governing ODE defines the dimension of x⃗(t)

ẋ(t) = Ax(t) + bu(t), A ∈ Rx×x
, b ∈ Rn×1

y(t) = cx(t) + du(t) c ∈ Rn×1
, d ∈ R

2.3 Block Diagrams

w = Σ1 · u, y = Σ2 · w

y = Σ2 · Σ1 · u

y = w1 + w2

= (Σ1 + Σ2) · u

Σtot =
Σ1

1 + Σ1Σ2

If sign in diagram switched also
change sign in equation! Posi-
tive feedback leeds to - in the de-
nominator and vice versa

2.4 Linearize Non-Linear System

1. Find equilibrium points: System described by an ODE
ẋ(t) = f(x(t), u(t)) has an equilibrum point (xe, ue) if
f(xe, ue) = 0. Equilibrium Point is always a couple and there
is an infinite number of equilibrium points. Normally look for
u = 0

2. Linearize system around this point:
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3 Analysis

3.1 Solving LTI

x(t) = e
At

x0 +

∫ t

0

e
A(t−τ)

Bu(τ)dτ

y(t) = Ce
At

x0︸ ︷︷ ︸
natural response

+C

∫ t

0

e
A(t−τ)

Bu(τ)dτ︸ ︷︷ ︸
system dynamics

+ Du(t)︸ ︷︷ ︸
feedthrough

system dynamics + feed through lead also called forced response,
natural response also called characteristic response.
Matrix exponential diagonalizable:
eA = eTDT−1

= T · diag(eλ1 , . . . , eλn

Matrix exponential diagonal:

eAt =

[
exp(λ1t) 0

0 exp(λ2t)

]
Matrix exponential Jordan Matrix:

eAt = exp

λ 1 0
0 λ 1
0 0 λ

 t


=

1 t 1
2! t

2

0 1 t
0 0 1

 eλt


3.2 Modal form

Dependence of response of a system on Eigenvalues of A. Form
obtained by applying diagonalizing matrix A.{

˙̃x = (T
−1

AT )x̃ + (T
−1

B)u = Ãx̃ + B̃u

y = (CT )x̃ + Du = C̃x̃ + D̃u

Entries of Matrix Ã are the Eigenvalues λn of A

x(t) =
n∑

i=1

e
λitx̃i(0)vi

3.3 General response dependant on Eigenvalues

3.3.1 Distinct real Eigenvalues (diagonal, real Matrix)

Response is given by linear com-
bination of exponential of the
form exp(λit)

3.3.2 Complex Conjugate Eigenvalues (Diagonal, complex Matrix)

y(t) = C · exp
([

σ + jω 0
0 σ − jω

])
x0

= e
σt

[α1 sin(ωt) + α2 cos(ωt)]

= αe
σt

sin(ωt + ϕ)

Homogeneous response is given
by a sinusoid with frequency ω
and in-/decreasing amplitude of
exp(σt)

3.3.3 Repeated real Eigenvalues (real, Jordan Matrix)

y(t) = C exp(At)x0

= c1exp(λ1)x0,1 + c1t exp(λt)x0,2 + c2t
2
exp(λt)x0,3

Often repeated Eigenvalues occur with λ = 0. In this case the
response is a polynominal. The homogeneous response is a linear
combination of an exponential exp(λt) and term of the form
tpexp(λt)

3.4 Stability

3.4.1 Lyapunov stability

System is Lyapunov stably if for any bounded initial condition
and zero input the state remains bounded.
A system is Lyapunov stable if Re(λi) ≤ 0 for all
i. Also there are no repeated Eigenvalues with 0 real part.

∥x0∥ < ϵ, andu = 0 ⇒ ∥x(t)∥ < δ for all t ≥ 0

3.4.2 Asymptotically stable

A system is asymptotically stable if, for any bounded initial
condition, and zero input the state converges to zero.
A system is asymptotically stable if Re(λi) > 0 for all i.

∥x0∥ < ϵ, andu = 0 ⇒ lim
t→+∞

∥x(t)∥ = 0

3.4.3 BIBO stability

Bounded Input, Bounded Output, for minimal
LTI systems asymptotically stable = BIBO stable

∥u(t)∥ < ϵ∀t ≥ 0, and x0 = 0 ⇒ ∥y(t)∥ < δ∀t ≥ 0

For a non-completely controllable and observable system BIBO
stability doesn’t imply asymptotic stability.

3.5 Controllability

Mathmatically the controlability Matrix R need to have full rank.
R =

[
b A · b A2 · b . . . An−1 · b

]
LTI of form ẋ = Ax+Bu is controllable if for any given initial
state x(0) = xc ∃u so that x(t) = 0 for a finite time t
If det(R) ̸= 0 ⇒ rank(R) = dim(R) = n ⇔
R has full rank

3.6 Observability

Mathematically matrix O need full rank.
OT =

[
c c · A c · A2 . . . c · An−1

]
LTI of form ẋ = Ax + Bu, y = Cx + Du is observable
if any given initial condition x(0) = xo can be reconstructed
based on knowledge of input and output signal only over a finite
time [0, t] -> det(O) ̸= 0

3.7 Intuition based on modal form

A system in diagonal from is controllable if b̃i ̸= 0, i =
1, . . . , n
A system in diagonal form is observable if c̃i = 0, i =
1, . . . , n
A system is stabilizeable if all unstable modes are controllable
A system is detectable if all unstable modes are observable

4 Transfer functions

complex exponentials: All inputs are linear combinations of
complex exponentials.

u(t) =
∑
i

Uie
sit ⇒ y(t) =

∑
i

G(s)Uie
sit s ∈ C

General Solution generic complex exponential as input est:

y(t) = Ce
At
[
x(0) − (sI − A)

−1
B
]

︸ ︷︷ ︸
1

+
[
C(sI − A)

−1
B + D

]
e
st︸ ︷︷ ︸

2

1 = Transient response → 0 if as. stable, 2 = steady-state re-
sponse yss t → ∞
Transfer function can be derived from steady state response:

yss =
[
C(sI − A)

−1
B + D

]
︸ ︷︷ ︸

G(s)

e
st

yss = G(s)e
st

G(s) describes how a system transforms an input into an output

at steady state. G(s) ∈ C

Written in Polar form: G(s) = Me
ϕj , where M is magni-

tude and ϕ is the phase ∠G(s)

z = a + jb = |z|ej∠z
, |z| =

√
a2 + b2 ∠z = arctan(

b

a
)

The behaviour of a system can be completely characterised by its
steady state responds to sinusodial inputs.
Input Output in Frequency Domain:

u and yss have same frequency but different amplitude and
phase.

4.0.1 Inverse of a Matrix

2 x 2: A =

[
a b
c d

]
⇒ A

−1
=

1

ad − bc

[
d −b
−c a

]
3 x 3:

A =

a b c
d e f
g h i

⇒ A
−1

=

ei − fh ch − bi bf − ce
fg − di ai − cg cd − af
dh − eg bg − ah ae − bd



General Formula: A
−1

=
adj(A)

det(A)

Unterdeterminanten in between lines
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4.1 Transfer function via Laplace Transformation

X(s) =

∫ ∞

0

u(t) · e−st
dt

4.2 From Transfer function to State-space

G(s) =
bn−1sn − 1 + bn−2s

n−2 + . . . + b0

sn + an−1sn−1 + . . . + a0

+ d

only possible if there are no common poles/zeros

4.3 Different ways to write transfer functions

4.3.1 strictly proper rational function

G(s) =
bn−1sn − 1 + bn−2s

n−2 + . . . + b0

sn + an−1sn−1 + . . . + a0

+ d

For causal, finite-dimensional SISO LTI systems. Possibly a
direct feed through term.

4.3.2 Partial fraction expansion

G(s) =
r1

s − p1

+
r2

s − p2

+ . . . +
rn

s − pn

+ r0

Useful to compute transient responses and asses how much dif-
ferent modes contribute to response. pi are the poles same as
Eigenvalues of A. ri are the residues.
calculate Residues:
for non-repeated pole pi: ri = lim

s→pi
(s − pi)G(s)

for repeated pole of order m:

ri =
1

(m − 1)!
lim

s→pi

dm−1

dsm−1
((s − pi)

m
G(s)

4.3.3 Root-Locus Form

G(s) =
krl

sq
(s − z1)(s − z2) . . . (s − zm)

(s − p1)(s − p2) . . . (s − pn−q)

zi are the zeros of G(s)

4.3.4 Bode Form

kbode

sq

(
s

−z1
+ 1
)
+
(

s
−z2

+ 1
)
. . .
(

s
−zm

+ 1
)

(
s

−p1
+ 1
)
+
(

s
−p2

+ 1
)
. . .
(

s
−pn−q

+ 1
)

4.4 Steady-state response to a unit step

ONLY FOR STABLE SYSTEMS
Bode Gain can be understood as the steady-state response to a
unit step.
Can be obtained using the final value theorem

lim
t→∞

x(t) = lim
s→0+

s · X(s) lim
s→0

G(s) = yss(t)

4.5 Impulse Response

D = 0, x(0) = 0 and u(t) = δ(t) yimp = CeAtB This is
the same as the response to an initial condition x(0) = B

4.5.1 First Order system

A = a, B = b, C = c, D = 0 The Transfer function is
G(s) = r

s−a with r = bc response to a unit impulse has the

form y(t) = re
at

4.5.2 Higher Order systems

y(t) = r1e
p1t

+ r2e
p2t

+ . . . rne
pnt

4.6 Pole-Zero cancellation

Pole Matches a zero exactly, example:

G(s) =
s + 1

(s + 1)(s + 1 + j)(s + 1 − j)

Therefore the pole and zero cancel out. Therefore :

G(s) =
0

s + 1
+

1/2j

s + 1 + j
+

−1/2j

s + 1 − j

Since ri = 0 input can’t impact output -> controlability issue,
pole cant be reconstructed from output -> observability issue.
Fine as long as pi is stable still should be avoided.

4.7 Step Response

Assume D = 0, x(0) = 0, u(t) = 1 = e0t, fort ≥ 0 and
A is invertible:

ystep(t) =

∫ t

0

Ce
A(t−τ)

Bdτ = −CA
−1

B

first order scalar A ystep(t) = sss(t)(1 − e
at

)

step response is the steady state response minus a scaled impulse
response.

4.8 Recipe

In general compute partial fraction expansion of Y (s) =
G(s)U(s) with U(s) = 1/s -> Laplace of unit step

4.9 Integrator

if u(t) = est then y(t) = 1
s e

st → G(s) =
1

s

4.9.1 Differentiator

if u(t) = est then y(t) = sest → G(s) = s

Note that this is a non causal operator due to definition of numer-
ical differentiation formula.

4.10 Non-minimum-phase zeros

Non-minimum-phase zeros lead to negative derivative action.
Meaning the output will tend to move in the wrong direction ini-
tially -> opposite of an anticipatory effect.

4.11 Open/Closed-Loop transfer function

Open-Loop in Root Locus Form:

kL(s) = k
N(s)

D(s)
= k

(s − z1)(s − z2) . . . (s − zm)

(s − p1)(s − p2) . . . (s − pn)

Closed-Loop transfer function

T (s) =
kL(s)

1 + kL(s)
=

kN(s)

D(s) + kN(s)

Therefore the closed-loop poles are: D(s) + kN(s) = 0

4.12 Standard Feedback Configuaration

(Open-) Loop gain: kL(s) = kP (s)C(s)
Poles and zeros of L(s) include all poles and zeros of plants
transfer function P (s) and all poles of dynamic compensator
transfer-function C(s)
Complementary Sensitivity: (cl) transfer function r to y

T (s) =
kL(s)

1 + kL(s)

Sensitivity: (cl) transfer function from r to e

S(s) =
1

1 + L(s)
=

1

1 + P (s)C(s)

4.13 Dynamic Compensation

Consider a control system, that itself is a dynamic system with
transfer function C(s) -> dynamic compensator.

• PI: C(s) = kp + kI
1

s
= kp

s + ki/kp

s

• PD: C(s) = kp + kDs

• PID: C(s) = kp + kI
1

s
+ kDs

• Lead:
s − z

s − p
with z < p

• Lag:
s − z

s − p
with z < p

FOR INTERNAL STABILITY ALL TRANSFER FUNC-
TIONS BETWEEN TWO SIGNALS MUST BE STA-
BLE!!!

5 Root Locus

Root Locus Rules:

• closed-loop poles are symmetric wrt real axis.

• number of closed-loop poles is equal to number of open-
loop poles.

• closed-loop poles approach open-loop poles as k → 0

• for k → ∞ closed-loop poles approach open-loop ze-
ros, if degree of N(s) = D(s) else "excess" closed-loop
poles "go to infinity". Flow from poles to zeros if more
zeros then poles goes to inf. If more zeros then poles line
comes from inf to zero

Rewrite closed-loop characteristic equation:
N(s)

D(s)
= −

1

k

5.1 Angle Rule

Take argument on both sides:

∠(s − z1) + ∠(s − z2) + . . . + ∠(s − zm)

− ∠(s − p1) − ∠(s − p2) − . . . − ∠(s − pn)

=

{
180◦(±q360◦ if k > 0

0◦(±q360◦) if k < 0

5.2 Magnitude Rule

Take Magnitude on both sides:

|s − z1| · |s − z2| · . . . · |s − zm|
|s − p1| · |s − p2| · . . . · |s − pm|

=
1

|k|

5.3 On Real Axis

• ∠(s − z) = 0 if z ∈ R and s > z

• ∠(s − z) = 180◦ if z ∈ R and s < z

• ∠(s − z) + ∠(s − z∗) = 0 complex conjugate z, z∗

• same holds for pi

• all points on real axis are on root locus

• all points left of odd numbered poles/zeros are positive k
root locus and other way around

• two branches coming together on real axis creates break-
away or break-in points

5.4 Asymptotes

If k → ∞ and more open-loop poles then zeros → identify what
direction goes towards infinity. n = poles, m = zeros

k > 0, ∠s =
180◦ ± q · 360◦

n − m

k < 0, ∠s =
±q · 360◦

n − m

Asymptotes meet in "center of Mass":

scom =

∑n
i=1 pi −

∑m
j=1 zj

n − m

6 Time Domain Specifications

6.1 Steady-state Error to unit step

r(t) = 1 = e0t for t ≥ 0 and L(0) = P (0)C(0)

Ss-Error: ess = lim
t→+∞

e(t) = S(0)e
0t

=
1

1 + L(0)

6.1.1 Effect of Integrators

if L(s) contains an integrator (pole at 0) and closed-loop system
is stable ess = 0

q = {0, 1, 2, 3, . . .} unit
ramps of order q Type 0 etc
corresponds to number of inte-
grators
Larger bode gain means smaller
ess, for ess = 0 at least q + 1
integrators on path from error to
reference input

6.2 Time domain step response of 1st odrder system:

y(t) = 1 − e
−t/τ

, t ≥ 0

time constant τ = −1/p of real pole p time needed to reach
63% of wanted value.
settling time: Td time needed to reach steady-state within error

margin d. Td = τ log(100/d)
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6.3 Step response of a stable second-order system

G(s) =
ω2

n

s2 + 2ζωn + ω2
n

⇔

ẋ =

[
0 1

−ω2
n −2ζωn

]
x +

[
0

ω2
n

]
u

y = x

nomenclature:

p = σ + jω ζ =
|σ|
ωn

= sin(|ϕ|) ϕ = arctan
σ

ω

Time to peak: Tp = π/ω

Peak overshoot: Mp = e
σπ
ω or ζ

2
=

(lnMp)
2

π2 + (lnMp)2

Rise Time: T100% =
π/2 − ϕ

ω
≈

π

2ωn

setting time Ts: σ =
− ln p

Ts

where p= tolerance

6.3.1 under-damped second-order system ζ < 1

y(t) = 1 −
1

cosϕ
e
σt

cos(ωt + ϕ), t ≥ 0

6.4 Dominant Pole Approximation

Approximate higher order systems with 1st or 2nd order to apply
specifications to. Normally dominant poles have least negative
real part. Exception if this pole has small residue. Set s = 0 for
non dominant poles then evaluate for new gain.
Gapprox = G(0) -> factor out the pole and kürzen with the
gain

6.4.1 Time-domain specifications and Root Locus

6.5 Noise and Disturbance Rejection

T (s) + S(s) = 1 noise normally high frequency, disturbances
low frequency. |S(s)| must be small at low ω, |T (s)| small at
high ω. Therefore |L(s)| needs to be large at low ω, small at
high ω

7 PID control

Proportional Control: Control input tries to move system in op-
posite direction to the error, is proportional to error magnitude.
Higher proportional gain means: closed loop remains stable, ess
decreases faster, response becomes faster, sensitivity to noise in-
creases. Can change phase margin

T (s) =
L(s)

1 + kL(s)
=

1

s + 1 + k
ess =

1

1 + k

PI control: Integrating error allows detecting biases. integral
control reduces biases (see 4.13 for formula). With increase in
gain comes: ess = 0 ⇐⇒ kI ̸= 0, more oscillatory
responses, same sensitivity to noise, closed loop poles go from
slow, overdamped to fast with low damping
PID control: Differentiating error allows to predict what error
will do. Avoids overshooting (formula in 4.13). Is non causal
transfer function. With higher derivative gain comes: ess is not
affected, response is less oscillatory but maybe slower, higher
sensitivity to noise. Closed-loop poles are pulled far into left
plane.

7.1 Design Recipe

1. Assume proportional control P

2. Draw Root Locus

3. If RL doesn’t go through good region need D term, back
to 2

4. Choose gain so dominant poles are in good region

5. If ess to large add I back to 2

7.2 PID tuning

C(s) = kRL
(s − z1)(s − z2)

s
·

1

s − pfast

Two zeros one pole at origin with one fast stable pole for proper
transfer function. Decide on where want poles, zeros and on root
locus gain -> calculate kP , kI , kD

8 Frequency Domain Specifications

8.1 Frequency Response

Steady-state response to a sinusoidal input of frequency ω is a
sinusoidal output of the same frequency.

1. Amplitude of Output is
|G(s)| = |G(ωj)|
times amplitude of input.

2. Phase of output lages
the phase of input by
∠G(jω).

8.2 Bode Plot

Bode Plots are composed of two plots: magnitude and phase. On
horizontal axis of both plots is frequency ω on log10 scale. On
vertical axis
1. log10 G(ωj) or equiv. in dB with convention

|G(jω)|[dB] = 20 log10|G(jω)| therefore one "decade"

= 20dB 2. Phase ∠G(jω) usualy in degrees, radians also ok.
Possible to simply add bode plots of transfer functions. Inverted
Transfer function is equal to bode plot reflection about horizontal
axis in both plots.

8.2.1 Integrator in Bode Plots

G(s) = G(jω) = 1
jω = −j 1

ω

|G(jω)| =
1

ω
, ∠G(jω) = −90

◦

8.2.2 Asymptotic Bode plots - single real, stable pole

Consider G(s) = 1
τs+1 , with τ = −1/p > 0. Construct

approximation of Bode plots for ω → 0+ and ω → +∞.
1. For ω → 0+, G(jω) ≈ 1

|G(jω)| ≈ 1 = 0dB ∠G(jω) ≈ 0

2. For ω → +∞, G(jω) ≈ 1
jτω

|G(jω)| ≈
1

τω
∠G(jω) ≈ −90

◦

3. For ω = 1/τ , G(jω) = 1
j+1

|G(jω)| ≈
1
√
2

= −3dB ∠G(jω) ≈ −45
◦

8.2.3 Asymptotic Bode plots - Complex-conjugate, stable poles

G(s) = 1
s2/ω2

n+2ζs/ωn+1
p = −ζωn ± jωn

√
1 − ζ2

1. For ω → 0+, G(jω) ≈ 1

|G(jω)| ≈ 1 = 0dB ∠G(jω) ≈ 0
◦

2. For ω → +∞, G(jω) ≈ ω2
n

−ω2

|G(jω)| ≈
ω2

n

ω2
∠G(jω) ≈ −180

◦

3. For ω = ωn, G(jω) = 1
2ζj

|G(jω)| ≈
1

2ζ
∠G(jω) ≈ −90

◦

8.2.4 single, real minimum-phase zero

G(s) = τs + 1, with τ = −1/z > 0

1. For ω → 0+, G(jω) ≈ 1

|G(jω)| ≈ 1 = 0dB ∠G(jω) ≈ 0
◦

2. For ω → +∞, G(jω) ≈ −jτω

|G(jω)| ≈ τω ∠G(jω) ≈ +90
◦

3. For ω = 1/τ , G(jω) = −j + 1

|G(jω)| =
√
2 ∠G(jω) = +45

◦

8.2.5 single real, non minimum-phase zero

G(s) = −τs + 1, with τ = 1/z > 0

1. For ω → 0+, G(jω) ≈ 1

|G(jω)| ≈ 1 = 0dB ∠G(jω) ≈ 0
◦

2. For ω → +∞, G(jω) ≈ −jτω

|G(jω)| ≈ τω ∠G(jω) ≈ −90
◦

3. For ω = 1/τ , G(jω) = −j + 1

|G(jω)| =
√
2 ∠G(jω) = −45

◦

8.3 Bode’s Law

In Bode plot magnitude slope and phase are not independent. If
slope of magnitude plot is κ · 20db/decade over a range of
more then ≈ 1 decade, phase in that range will be κ · 90◦

8.4 Polar Plot

Frequency response plotted on complex plane as a parametric
function of ω. Convenient to sketch Bode Plot first.
Magnitude: Distance form origin, Phase: Angle from real axis

8.5 Frequency Domain Specifications on Bode Plot

Usually expressed in terms of closed-loop frequency response.
For good disturbance rejection |S(jω)| = |1 + L(jω)|−1

small at low frequencies.
Rewritten as |S(jω)| · |W1(jω)| < 1 for some function
|W1(jω)| large at low frequency (< 10Hz). Approximated

as: |S(jω)| > |W1(jω)| Can be observed as low frequency

obstacle on magnitude Bode plot.

|T (jω)| =
|L(jω)|

|1+L(jω)| small at high frequency (> 100Hz).
Therefor |T (jω)| ≈ |L(jω)| at high frequencies. Typically
written as: |T (jω)| · |W2(jω)| < 1 for some function
|W2(jω)| large at high frequencies. Therefore: |L(jω)| <

|W2(jω)|−1

3



8.5.1 Closed-loop Bandwidth and (open-loop) crossover

Bandwidth of closed-loop system defined as maximum ω for
which |T (jω)| > 1/

√
2 -> tracks within factor of ≈ 0.7.

Open-loop crossover frequency is approximately equal to closed-
loop bandwidth.
|L(jωc)| = 0db = 1 , and ∠L(jωpc) = −180◦

Bode obstacle course:

9 Time Delays

Evaluation of sensory information for deciding course of action
requires a finite computation time.

9.1 Transfer function of time delay

t → u(t) transformed into delayed output y(t) = u(t − T ).
Delayed version of linear combination of signal is equal to linear
combination of delayed signals.
Consider u(t) = est

y(t) = e
s(t−T )

= e
st
e
−sT

= e
−sT

u(t)

Therefore transfer function of delay T is e−sT

NOT A RATIONAL FUNCTION CAN’T APPLY ROOT LO-
CUS

9.2 Frequency response of time delay

In terms of frequency response: |ejωT | = 1, ∠(e−jωT ) =
−ωT

9.2.1 Polar and Bode plots of time delay

Polar Plot of e−jωT corresponds to circle of unit radius. Bode
phase plot, linear in ω is an exponential when plotted against
logω usually wrapped to (2π, 0]

9.3 Effects of time delays on loop transfer function

Effect of time delays on closed-loop stability. L(s) =
C(s)P (s) include time delay T seconds. New transfer func-

tion L
′
(s) = e

−sT
L(s) .

Frequency response of system with time delay obtained from
ideal frequency response, by shifting the phase back by ωT .
Example: Simple plant P (s) = 1

s+1 with proportional con-
trol C(s) = k ⇒ L(s) = k

s+1 stable ∀k > −1.

With time delay T L
′
(s) = e

−sT k

s + 1

Nyquist and Bode take the forms:

Bode Plot of L′(s) = Bode plot of L(s) + Plot of the time delay.

ϕm,T = ϕ0 − ωcT with ϕm,T and ϕ0 as phase margins,

with and without time delays. ωc crossover frequency. Main ef-
fect of time delays is reduction of phase margin. This decreases
as crossover frequency increases.

9.4 Design Procedure feedback control in presence of time delay

1. Design feedback control ignoring time delay
2. Check effective phase margin too small or negative phase

margin implicate closed-loop instability -> redesign con-
troller by either increasing phase at crossover -> lead con-
troller or decrease crossover frequency -> reduce gain or
possibly phase lag controller for command following per-
formance.

3. Iterate until satisfactory

9.5 Time delays and root locus method

For root locus loop transfer function must be rational not the case
due to e−sT . To still use root locus must approximate time delay
with rational transfer function.
9.5.1 Padé Approximation (Time delays for Root Locus)

Represent exponential as ratio of two polynomials (only first or-
der needed in this).

e
−sT ≈ k

2/T − s

2/T + s

Magnitude of frequency response always one. Using Padé, rep-
resent time delay on root locus as pole and zero respectively at
±2/T . Non-minimum-phase zero present! Can’t increase gain
arbitrarily pole converges to n.m.p. zero for large gains.
Only tool that always provide correct answer in all cases when
time delay is present is Nyquist plot

10 Niquist Theorem

10.1 Principle of variation of the Argument

Number of times G(s) encircles the origin/total variation of ar-
gument moving along Γ counts number of poles and zeros of
G(s) in D
Remember: G(s) = (s − z)/(s − p) then ∠G(s) =
∠(s − z) − ∠(s − p)

• no poles/zeros in D net variation across one cycle is 0

• One 0 in D net variation across one cycle is 2π

• One pole in D net variation across one cycle is −2π

Number N of times G(s) encircles origin of complex plane as s
moves along boundary Γ of a bounded simply-connected region

of the plane satisfies: N = Z − P Where P are poles and Z
are zeros.
10.2 Nyquist or D contour

Assess stability of a system using Nyquist:
Construct arbitrarily large but finite D shaped region D on right
half plane. s moving along the boundary of D 1 + kL(s) encir-

cles origin N = Z − P times. Z = N + P
!
= 0

• Z number of unstable closed-loop poles (zeros of 1 +
kL(s) in rhp)

• P = # unstable open-loop poles (poles of 1 + kL(s) in
rhp)

• N = # encirclements, CW = +1, CCW = −1

10.3 Nyquist Plot

Rephrasing Nyquist contour: As s moves along boundary of D
L(s) encircles −1/k point N = Z − P times where:

• Z number of unstable closed-loop poles (zeros of L(s) in
Nyquist Contour)

• P number of unstable open-loop poles (poles of L(s) in
Nyquist Contour)

Symmetry about real axis states:

∠L(−jω) = −∠L(jω) i.e. plot s moving along boundary

of NC just polar plot + symmetric plot about real axis.

10.4 Nyquist Condition

If open-loop system is stable, closed loop system is stable as long
as Nyquist doesn’t encircle −1/k point.
If open-loop system has P unstable poles, closed loop is stable
as long as Nyquist plot of L(s) encircles point −1/k point P
times in clockwise direction.
10.4.1 open-loop poles on imaginary axis

Make indentations in Contour -> leaving imaginary poles on left.

10.5 Nyquist condition and robustness margins

Gain margin and phase margin measure how close the system is
to closed-loop instability. φm from -180, gm from Graph

10.6 Nyquist condition on Bode plots

If open-loop is stable Nyquist should not encircle −1 point for
closed-loop to be stable.

|L(jω)| < 1 whenever ∠L(jω) = 180
◦

On Bode this means magnitude should be below 0dB when
phase plot crosses −180◦ line. Only valid if open-loop is sta-
ble.
Distance form Nyquist plot to −1 Point measure of robustness.
Easily measured on Bode, distance of point from 0 for magnitude
and from −180◦ for phase.

11 Control Synthesis

11.1 Loop Shaping

If we have frequency domain specs like W1, W−1
2 or ωgc steer

open-loop frequency response like Bode obstacle course -> mod-
ify C(s). Mostly done using following elements:

11.1.1 Integrators

Add as many as needed to track nth-Order ramp with ess = 0.
Increases magnitude at low freq. and decreases at high freq. De-
creases phase by #integrators · 90◦ everywhere -> phase
margin.

11.1.2 Gain k, proportional static compensation.

Choose gain so that low freq. asymptote clears command-
tracking/disturbance spec. -> increase/decrease magnitude every-
where. C(s) = k Small enough k yields stable closed loop.

11.1.3 Lead Compensator

Approximates PD control as b → +∞
(s/a) + 1

s/b + 1
=

b

a

s + a

s + b
, (0 < a < b)

Increase phase around
√
ab -> midpoint between a and b on

bode plot by a maximum of 90◦

max phase increase: ϕmax = 2 · arctan
(√

b

a

)
− 90

◦

Magnitude and phase at lower freq not affected. Increase slope
of magnitude at freq between a and b by 20db/dec increase
magnitude at high freq by b/a -> noise sensitivity.

Use case: Increase phase margin:
Pick

√
ab at desired crossover freq. Pick b/a depending on de-

sired phase increase. Adjust k put crossover at desired frequency.
Side effect noise sensitivity

11.1.4 Lag Compensator

Approximates PI control as b → 0

(s/a) + 1

s/b + 1
=

b

a

s + a

s + b
, (0 < b < a)

Decrease slope of magnitude at freq between a and b by
−20db/dec -> Decrease magnitude at high freq by b/a. Mag
at low freq not affected.
Decrease phase around

√
ab -> midpoint between a and b on

bode plot up to 90◦

max phase decrease: ϕmax = 2 · arctan
(√

b

a

)
− 90

◦

Use case: Improve command tracking/disturbance rejection
Pick a/b as desired increase in mag at low freq. Pick a so smaller
than crossover freq. Multiply gain k by a/b

11.1.5 General procedure for open-loop stable

Proceed from left to right.

1. Figure out how many integrators needed in C(s) -> de-
pendant on order of ramp signal

2. Fix gain so low freq. asymptote clears bode obstacle

3. Add terms of form (τs+1) at numerator or denominator
Bode magnitude plot intersects 0dB with ≈ 20dB/s ->
90◦ phase margin. poles steer down and zeros up. Nor-
malizing zero order term to 1 makes it so it doesn’t affect
Bode plot on left of pole/zero.

11.2 PID as Lead/Lag

Implementable PID as proper transfer-function with p as fast pole
p ≫ 1

PID(s) = k
(s/z1 + 1)(s/z2 + 1)

s(s/p + 1)

Can be interpreted as:

PID = k ·
s/z1 + 1

s + 0︸ ︷︷ ︸
Lag

·
s/z2 + 1

s/p + 1︸ ︷︷ ︸
Lead

PID corresponds to extreme lead-lag-compensator one pole at
s = 0 and one pole at −p = p ≫ 1

11.3 Loop shaping for non-minimum-phase/unstable systems

ALWAYS CHECK WITH RL OR NY
P (s) = Pmp(s) · D(s) where pmp(s) obtained by replac-

ing all poles/zeros of P (s) in right half plane with their mirror
image wrt imaginary axis. D(s) contains all poles and zeros of
P (s) in right half plane times inverse all mirror images intro-
duced. |D(jω)| = 1∀ω D(s) is an all-pass filter. Choose sign
D(s) so phase is negative, doesn’t affect magnitude.
Example:

P (s) =
s − z

s − p
with z, p > 0

Pmp(s) =
s + z

s + p
and D(s) =

z − s

s + z
·
s + p

s − p
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11.3.1 Loop shaping non-minimum-phase system

P (s) open-loop stable, has non-minimum-phase system s −

z with z > 0 in D = −
s − z

s + z

Results in phase lag ∠D(jω) = −2 arctan
ω

z

This forces closed-loop system to be slow, slow n.m.p zero is
worse than fast. Also limits gain as large k will lead to unstable
system.

11.3.2 Loop-shaping unstable open-loop system

P (s) has an unstable open-loop pole, no non-minimum-phase
zeros (s − p) with p > 0 all-pass filter has form:

D =
s + p

s − p

Results in phase lag ∠D(jω) = −2 arctan
p

z

For closed-loop stability magnitude as ω → 0+ must be > 0
ONLY BODE WONT SHOW THIS
Forces gain and crossover frequency to be large. Require fast con-
trollers and powerful actuators. Fast unstable poles are worse.

11.4 Bode’s integral

Theorem: S(s) is sensitivity function of an internally stable
close-loop system with loop transfer function L(s) assume
lims→∞ sL(s) = 0. Then:

∫ +∞

0

log|S(jω)|dω = π
∑
p

pk

Sum is over unstable poles pk of L(s)
Impossible to reject e.g. disturbances at all frequencies. If in
some range attenuated, then in some other freq range they must
be amplified -> waterbed effect. Unstable open-loop poles make
amplification higher.

11.5 Choosing sampling time dt

In common implementations commanded value for input main-
tained over sampling period dt -> Zero-Order, Hold having a sim-
ilar effect as time delay by dt/2. Therefor if 2/dt ≫ bandwidth
expect digital implementation to work well. Slow PC wrt system
lead to large decrease in phase margin and possible instability.

11.6 Cascade control

Example Adaptive Cruise Control: Maintain distance and
speed -> one input two outputs (speed and distance). 2 loops
needed:

• inner loop, control speed using throttle

• outer loop, use speed control position

I.e. output of outer controller is reference speed for inner con-
troller -> Cascade control
Bandwidth of inner loop must be much faster then outer loop.
Inner loop is closer to the disturbance therefore better able to
react. Resulting Design in Bode Plot:

12 Nonlinear Systems

Most real systems are nonlinear, therefore principle of superpo-
sition doesn’t hold, since behavior changes depending on initial
conditions, amplitude and shape of input.

General model continuous-time nonlinear system:

d

dt
x(t) = f(t, x(t), u(t))

y(t) = h(t, x(t), u(t))

Time-invariant systems:

d

dt
x(t) = f(x(t), u(t))

y(t) = h(x(t), u(t))

12.1 Analysis of nonlinear systems

12.1.1 Equilibrium points

Nonlinear system
d

dt
x = f(x, u), y = h(x, u)

State x̄ is an equilibrium point if input ū exists so f(x̄, ū) = 0.
Therefore if system is at state x̄ at some time t̄ and control input
ū, then system will remain at x̄∀t ≥ t̄. Also y(x̄, ū) = const.
∀t ≥ t̄

12.1.2 Jacobian Linearization

always possible to change coordinate such that eq point at (0, 0):

ξ = x − x̄ ν = u − ū ⇒
d

dt
ξ = f̄(ξ, ν)

y = h̄(ξ, ν) with f̄(0, 0) = 0 & h̄(0, 0) = h(x̄, ū) = ȳ

If f̄ , h̄ both continuous and differentiable at eq point:

d

dt
ξ = f̄(ξ, ν) ≈ f̄(0, 0)︸ ︷︷ ︸

=0

+
∂f̄(ξ, ν

∂ξ

∣∣∣∣∣
(0,0)︸ ︷︷ ︸

A

ξ +
∂f̄(ξ, ν

∂ν

∣∣∣∣∣
(0,0)︸ ︷︷ ︸

B

ν

With similar calculations for y = h̄(ξ, ν) :

d

dt
ξ ≈ Aξ + Bν , y − ȳ ≈ Cξ + Dν

12.1.3 Validity

Approximation only valid for very small ξ, ν. Hartmann-
Grossman Theorem states if linearized system is closed-loop
BIBO stable so is the non-linear system for very small ν, ξ i.e.
in neighborhood of (0, 0)

12.2 Nonlinear Elements

12.2.1 Saturation

Example of cruise control: throttle cant go below zero or above
100%, reference speed cant exceed cruising speed set by driver.

12.2.2 static non-linearities

12.3 Absolute Stability

Feedback interconnection linear system L(s) with static nonlin-
ear gain element NL : u → y(u) such that y(0) = 0 and
k1 ≤ y(u)/u ≤ k2∀u ̸= 0. I.e. graph of NL must be con-
tained in sector k1 ≤ y(u)/u ≤ k2.
System is absolutely stable if for any NL u = 0 is a globally
asymptotically stable equilibrium point for closed-loop system.
i.e. for any initial condition of dynamic system L(s), u, y → 0
as t → +∞

12.3.1 Necessary conditions: Circle Criterion

Functions in NL include all linear gains k1 ≤ k ≤ k2. neces-
sary condition for absolute stability of feedback is Nyquist plot
encircles segments [−1/k1,−1/k2] counterclockwise equal
times to number of poles of L(s) with positive real part. ->
Nyquist condition with segment instead of point.

12.4 Frequency response of static non-linearity

NL : u → y(u) = u with sinusoidal input: u(t) =
a sin(ωt). Output will be of form y(t) = f(A sin(ωt))

y =


1 if u ≥ 1;

u if − 1 < u < 1;

−N if u ≤ −1

12.5 Output harmonics

y(t) =
a0

2
+

+∞∑
n=1

[ai cos(iωt) + bi sin(iωt)]

ai =
1

π

∫ π

−π

y(t) cos(iωt)d(ωt)

bi =
1

π

∫ π

−π

y(t) sin(iωt)d(ωt)

12.6 Describing function

approximate output of non-linearity by first harmonic

y(t) ≈ b1 sin(ωt) . Amplitude of the first output harmonic

b1 is a function of the amplitude of input. Ratio b1/A id de-
scribing function.

N(A) =
b1(A)

A
=

1

πA

∫ π

−π

y(t) sin(iωt)d(ωt)

With describing function we can approximate non-linearity as an
amplitude-dependant gain.
Reasoning: if non-linearity is in feedback loop with physical
plant, all higher-order harmonics will be attenuated -> physical
systems act as low-pass filters

12.6.1 General Definition of Describing function

Definition above only holds for odd, static non-linearities. In gen-
eral way first harmonic can be written as:

y(t) ≈ c1(A,ω)e
j(ωt+ϕ1(A,ω))

Therefore describing function will be complex number defined as
approximate transfer function:

N(A,ω) =
c1(A,ω)

A
e
ϕ1(A,ω)

12.6.2 Output Harmonics for saturation non-linearity

for odd non-linearity :

N(A) =


2
π

arcsin( 1
A + 1

A

√
1−
(
1
2

)2
 , if A > 1;

1 , if A ≤ 1

Think of saturation as gain decreasing with increasing amplitude
once it exceeds saturation level.

12.7 (Odd) Non-linearities with memory (Schmitt trigger)

Non-linearities with hysteresis often used in applications, not
static since output depends on movement direction of system.

12.7.1 Relay with hysteresis - Schmitt trigger

N(A) =
4

πA

√1 −
(

1

A

)2

− j
1

A


12.8 Stability analysis using describing functions

Approximate new loop transfer function

L
′
(A, s) ≈ N(A)L(s)

Assume input to non-linearity has complex form e(t) = Aejωt.
Oscillation is self-sustained if A = −AN(A)L(jω), i.e. if
− 1

N(A)
= G(jω)

12.8.1 Checking limit cycles

L(jω) =
1

jω(jω + 1)
=

−ω − j

ω(ω2 + 1)
=

1

N(A)

Periodic orbit to which system converges over time.

• sketch polar plot of frequency response L(jω)

• Sketch polar plot of −1/N(A)

• Limit cycles could exist at intersections between these
curves

• Intersection gives estimate of freq and amp.

12.8.2 Stability of limit cycles

Use −1/N(A) as the −1 or −1/K point for Nyquist. If this
point is in unstable region amplitude of oscillations will increase.
If in stable region amplitude will decrease.
If small amplitude decreases make amplitude increase and vice
verso limit cycle is stable otherwise unstable.
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13 Robustness

13.1 Anti Wind-up

Once input saturates integral error keeps increasing. When error
decreases large integral prevents resuming normal operations

13.2 Anti-windup logic

Logic for integral gain: K′
I

{
KI if input deosn’t saturate
0 if input saturates

Anti wind-up guarantees stability of compensator when feedback
loop is opened by saturation. Maintain "small" integral error.

13.3 System uncertainty and uncertainty models

To take uncertainty into account first create uncertainty model.
Made of nominal model and set of models guaranteed to contain
systems uncertainty.
Design control system that meets stability and performance specs
for all possible models in uncertainty model.

13.4 Uncertainty models for SISO linear systems

All methods aim at writing transfer function of real system in
terms of transfer function of nominal system and unknown trans-
fer function ∆ representing uncertainty as perturbation of nomi-
nal system. Perturbation ∆ assumed to be stable minimum-phase
transfer function so it doesn’t cancel e any unstable poles of nom-
inal system.

13.5 SISO with multiplicative uncertainty

True but unknown loop transfer function is:

L̃(s) = (1 + W2(s)∆(s))P (s)C(s)

Nominal loop transfer function for ∆ = 0

L(s) = P (s)C(s)

Such that closed-loop system is stable.

13.6 Nyquist condition for robust stability

L̃(jω) = L(jω) + W2(jω)∆(jω)L(jω)

Although not known what ∆(jω) magnitude must be bounded
by 1

L̃(jω) − L(jω) = |W2(jω)∆(jω)L(jω)| ≤ |W2(jω)L(jω)|
For Nyquist not to encircle −1 point loop transfer function
should never get closer than |W2(jω)L(jω)| from −1 point.

14 Appendix

14.1 system types

14.2 Trigonometrische Werte 97

Bogenmass 0 π
6

π
4

π
3

π
2 π

Gradmass 0° 30° 45° 60° 90° 180°
sin(α) 0 1

2
1√
2

√
3

2 1 0

cos(α) 1
√

3
2

1√
2

1
2 0 -1

tan(α) 0 1√
3

1
√
3 ∞ 0
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