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Prüfungsmusterlösung

1(a). Sei k ∈ R eine Konstante. Klassifiziere den Differentialoperator

k2

2
(
∂xx + ∂yy

)
+
(
2− k2

)
∂xy + (1 + k)

(
∂x + 2 ∂y

)
+ k .

Using the method (and the notation) encountered1 in class for second-order operators in two
variables, we see that

a =
k2

2
= c , b = 2− k2 , d = 1 + k , e = 2 (1 + k) .

Accordingly, the discriminant is

∆ = b2 − 4 a c =
(
2− k2

)2 − 4
(
k2

2

)2

= 4
(
1− k2

)
.

Therefore :

• if |k| > 1 , the discriminant is negative, and thus the operator is elliptic.

• if |k| < 1 , the discriminant is positive, and thus the operator is hyperbolic.

• if |k| = 1 , the discriminant is zero. To decide whether the operator is parabolic or
degenerate, we need to test further. Using the method explained in the Musterlösung 1,
we find

2 c d − b e = k2 (1 + k) − 2
(
2− k2

)
(1 + k) =

(
3 k2 − 4

)
(1 + k) .

• if k = (−1) , this quantity is zero, and thus the operator is degenerate.

• if k = 1 , this quantity is nonzero (i.e. (−2)), and thus the operator is parabolic.

1cf. Problems 4 and 5 in Serie 1.
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1(b). Sei H die Heaviside Distribution und v(x, t, y) die Lösung von{
vt − vxx = 0 , (x, t, y) ∈ R× R+ × R

v(x, 0, y) = δ(x− y) , (x, y) ∈ R2 .

Zeige, dass
G(x, t, y, s) := v(x, t− s, y)H(t− s)

die Green’sche Funktion vom Operator ∂t − ∂xx ist. D.h.

Gt − Gxx = δ(x− y, t− s) , (x, t, y, s) ∈ R× R+ × R× R+ .

We begin the problem by (distributionally) computing Gt −Gxx . Namely(
∂t − ∂xx

)
G(x, t, y, s) ≡

(
∂t − ∂xx

)
v(x, t− s, y)H(t− s)

=
(
∂(t−s) − ∂xx

)
v(x, t− s, y)H(t− s) from the chain-rule

= H(t− s)
(
vt−s(x, t− s, y) − vxx(x, t− s, y)

)
+ v(x, t− s, y) ∂t−sH(t− s)

= v(x, t− s, y) ∂t−sH(t− s) from the PDE of v

= v(x, t− s, y) δ(t− s) as H ′ = δ from class.

Let now φ(x, t) be an arbitrary test-function. Using the above, we find that∫ ∫
φ(x, t)

(
∂t − ∂xx

)
G(x, t, y, s) dt dx =

∫ ∫
φ(x, t) v(x, t− s, y) δ(t− s) dt dx

=
∫
φ(x, s) v(x, 0, y) dx by definition of δ

=
∫
φ(x, s) δ(x− y) dx as given by the problem

= φ(y, s) by definition of δ

=
∫ ∫

φ(x, t) δ(x− y, t− s) dx dt by definition of δ

Because φ was arbitrary, the above reveals that (in the sense of distributions of course) there
holds (

∂t − ∂xx
)
G(x, t, y, s) = δ(x− y, t− s) .
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2. Sei g : R→ R eine glatte Funktion. Betrachte das Cauchy Problem{
2xuy(x, y) − ux(x, y) = 0 , (x, y) ∈ R2

u
(
x , (p− 1)x2

)
= g

(
x2
)

, x ∈ R ,

wobei p ∈ R eine Konstante ist.

(a) Bestimme die Lösung u(x, y) aus den gegebenen Daten mithilfe der Methode der Charakter-
istiken.

(b) Zeichne die projezierten Charakteristiken in der (x, y)-Ebene für den Fall p = 1.

(c) Erkläre sorgfältig was im Fall p = 0 passiert.

(a) We proceed as usual2 by writing the system of characteristic ODEs along with the
parametrized Cauchy datum

d

dr
x(r, s) = − 1

d

dr
y(r, s) = 2x(r, s)

d

dr
u(r, s) = 0

x(0, s) = s y(0, s) = (p− 1) s2 u(0, s) = g
(
s2
)
.

We first solve the ODE for x(r, s). This is immediate, namely

x(r, s) = − r + A(s) , for some function A(s) .

Using the data at r = 0 shows that A(s) = s. Hence

x(r, s) = s − r . (1)

Now we substitute this in the ODE for y(r, s) to obtain

d

dr
y(r, s) = 2 s − 2 r ,

which is easily integrated to yield

y(r, s) = 2 s r − r2 + B(s) , for some function B(s) .

Bringing the data at r = 0 shows that B(s) = (p− 1)s2 , so that

y(r, s) = 2 s r − r2 + (p− 1) s2 .

Note that
y(r, s) = 2 s r − r2 − s2 + p s2 = p s2 − (s− r)2 .

Using (1), we see now that
y = p s2 − x2 . (2)

2cf. Problems 1 and 2 on Serie 1, and Problems 1, 2, 3, and 4 on Serie 2.
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Finally, solving the ODE for u(r, s) gives immediately

u(r, s) = g
(
s2
)
. (3)

As seen in (2), there holds

s2 =
x2 + y

p
.

Putting this into (3) gives finally the solution

u(x, y) = g

(
x2 + y

p

)
. (4)

(b) The projected characteristics in the (x, y)-plane are described in (2). With p = 1 , it is
the family of parabolas

y = C − x2 , where C ≥ 0 .

A few of them are shown on the following graph.

(c) On the other hand, if p = 0 , then (2) reveals that there is only one characteristic curve,
namely

y = −x2 .

This degenerate case has a simple explanation. Note that when p = 0 , the Cauchy
datum is given along the curve

y = −x2 .

Thus, the Cauchy datum is precisely given along a characteristic curve. Therefore, the
problem is ill-posed. This phenomenon is also reflected in the solution (4), which no
longer makes sense when p = 0.
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3. Betrachte das Problem
utt −

1
4
uxx = 0 , (t, x) ∈ R2 ,

mit den Bedingungen

u(0, x) = 2f(x) , ut(0, x) = 0 , ut

(
y ,
y

2

)
=

1
2
h′(y) , ∀ x, y ∈ R .

Die Funktionen f und h sind glatt und besitzen die Eigenschaften

f(0) = h(0) = h′(0) = 0 und f ′(0) = 1 .

Drücke die Lösung u(t, x) nur in Abhängigkeit von h aus.

This is a one-dimensional wave equation problem. We will thus use the method of d’Alembert3.
Because here c = 1/2 , it states that there exist functions ψ and φ with

u(t, x) = φ

(
x +

t

2

)
+ ψ

(
x − t

2

)
. (5)

Substituting this form in the first two given conditions yields

φ(x) + ψ(x) = 2 f(x) and φ′(x) − ψ′(x) = 0 , ∀ x ∈ R .

This shows immediately that

φ(x) = f(x) + K and ψ(x) = f(x) − K ,

for some constant K. Hence the solution (5) becomes

u(t, x) = f

(
x +

t

2

)
+ f

(
x − t

2

)
. (6)

The remaining condition to match reads

1
2
h′(y) = ut

(
y ,
y

2

)
(6)
=

1
2

[
f ′
(
y

2
+
y

2

)
− f ′

(
y

2
− y

2

)]
=

1
2

[
f ′(y) − 1

]
,

where we have used the given fact that f ′(0) = 1 .
Therefore, we see that

h′(y) = f ′(y) − 1 .

Integrating this simple equation on the interval [0, z] yields

h(z) = f(z) − z , where we have used the given facts h(0) = 0 = f(0) .

Substituting this into (6) produces finally the desired answer

u(t, x) = h

(
x +

t

2

)
+ h

(
x − t

2

)
+ 2x .

3cf. Problem 6 on Serie 2, and Problems 2 and 4 on Serie 3.
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4. Löse mithilfe von Separation der Variablen
∆u(x, y) = u(x, y)

u(x, 0) = 0 , u(x, π) = 0

u(0, y) = sin y , u(π, y) = 0

 wobei (x, y) ∈ [0, π]× [0, π] .

We will proceed as we have often done in the Serien. You are invited to consult the
Musterlösungen for further details.

We begin by searching for a solution in the separated form

u(x, y) = X(x)Y (y) ,

for two nontrivial functions X(x) and Y (y) to be determined. Substituting this Ansatz in
the first set of boundary conditions reveals that

Y (0) = 0 = Y (π) . (7)

Substitution in the PDE gives

X ′′(x)Y (y) + X(x)Y ′′(y) = X(x)Y (y) .

Equivalently,
Y ′′(y)
Y (y)

= 1 − X ′′(x)
X(x)

.

The left-hand side depends only on y, whereas the right-hand side depends only on x. Con-
sequently, there exists some constant λ satisfying

Y ′′λ
Yλ

= −λ and 1 −
X ′′λ
Xλ

= −λ .

We have appended a subscript to indicate the dependence on the parameter λ.
Hence, we will have to solve

Y ′′λ = −λYλ and X ′′λ = (1 + λ)Xλ . (8)

If λ = 0 , we find the solution of the first ODE to be

Y0(y) = A0 y + B0 .

The constants A0 and B0 are easily found to be zero from the condition (7). Thus, when
λ = 0 , we have only produced the uninteresting trivial solution.

If λ 6= 0 , the solution of the first ODE in (8) is

Yλ(y) = Aλ cos
(
y
√
λ
)

+ Bλ sin
(
y
√
λ
)
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for some constants Aλ and Bλ to be determined. Using the boundary condition (7), we find
that

Aλ = 0 and thus sin
(
π
√
λ
)

= 0 .

Accordingly, we see that
√
λ must be an integer. Hence

λ = n2 for n ∈ N∗ . (9)

Finally, the solution may be written

Yn(y) = Bn sin(n y) . (10)

We have appended the index n to indicate the dependence on this parameter.

We now return to the second ODE in (8). Knowing now (9), we see that

X ′′n =
(
1 + n2

)
Xn .

Its general solution is

Xn(x) = Cn cosh
(
x
√

1 + n2
)

+ Dn sinh
(
x
√

1 + n2
)
, (11)

for some constants Cn and Dn .

Combining now (10) and (11) into the superposition principle gives the solution

u(x, y) =
∑
n≥1

Xn(x)Yn(y)

=
∑
n≥1

[
Pn cosh

(
x
√

1 + n2
)

+ Qn sinh
(
x
√

1 + n2
)]

sin(n y) , (12)

where we have set Pn = BnCn and Qn = BnDn for notational convenience.

We have yet to match the second set of boundary data given by the problem, namely

u(0, y) = sin y and u(π, y) = 0 .

Substituting the solution (12) yields first∑
n≥1

Pn sin(n y) = sin y ,

so that
P1 = 1 , and Pn = 0 ∀ n > 1 . (13)

The second condition gives∑
n≥1

[
Pn cosh

(
π
√

1 + n2
)

+ Qn sinh
(
π
√

1 + n2
)]

sin(n y) = 0 ,

so that
Pn cosh

(
π
√

1 + n2
)

+ Qn sinh
(
π
√

1 + n2
)

= 0 .
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Bringing in (13) now shows that

Q1 = −
cosh

(
π
√

1 + 12
)

sinh
(
π
√

1 + 12
) = − coth

(
π
√

2
)

and
Qn = 0 ∀ n > 1 .

Putting altogether the above findings gives finally the solution to the problem :

u(x, y) =
[

cosh
(
x
√

2
)
− coth

(
π
√

2
)

sinh
(
x
√

2
)]

sin y . (14)

Those of you who prefer to express “cosh and sinh” solutions in terms of “e+ and e−” may
not like the way (14) looks. But it can easily be converted using the (defining) identities

cosh s =
es + e−s

2
, sinh s =

es − e−s

2
, and coth s =

e2s + 1
e2s − 1

.

These identity yield

2 cosh z − 2 coth s sinh z = ez + e−z − e2s + 1
e2s − 1

(
ez − e−z

)
=

1
e2s − 1

[(
ez + e−z

) (
e2s − 1

)
−
(
e2s + 1

) (
ez − e−z

)]
=

2
e2s − 1

(
e2s−z − ez

)
.

With z = x
√

2 and s = π
√

2 , the solution (14) can be equivalently expressed in the form

u(x, y) =
sin y

e2π
√

2 − 1

(
e(2π−x)

√
2 − ex

√
2
)
.
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5. Betrachte einen Stab der in 0 ≤ x ≤ 1 liegt. Der Stab besteht aus radioaktivem Material, welches
die Konstante Wärme 1 (in geeigneten Einheiten) abgibt. Zusätzlich ist der Stab an beiden Enden
isoliert. Am Anfang ist die Temperaturverteilung f(x). Mit u(x, t) bezeichnen wir die Temperatur
an der Stelle x ∈ [0, 1] zum Zeitpunkt t ≥ 0. Nimm an, dass u die Wärmeleitungsgleichung mit
spezifischer Wärme 1 erfüllt.

(a) Bestimme das Problem (Gleichung, Rand-/Anfangsbedingung) welches u(x, t) löst.

(b) Löse das Problem mit den gegebenen Daten.

(c) Was passiert mir der Lösung für grosse Zeiten? Rechtfertige dies physikalisch.

This problem is a clone of Problem 5 from Serie 4.

(a) The heat equation (specific heat 1) with the constant generation of heat rate 1 gives the
PDE

ut − uxx = 1 .

The condition that the rod be insulated at its ends tells us that no heat can either enter
or leave the rod (no heat flux). Hence

ux(0, t) = 0 = ux(1, t) .

Finally, we have the initial data

u(x, 0) = f(x) .

Accordingly, we shall solve the problem

ut − uxx = 1 , (x, t) ∈ [0, 1]× [0,∞)

u(x, 0) = f(x) , x ∈ [0, 1]

ux(0, t) = 0 , t ≥ 0

ux(1, t) = 0 , t ≥ 0 .

(15)

(b) Because this is an inhomogeneous problem, we start by solving its homogeneous coun-
terpart 

vt − vxx = 0 , (x, t) ∈ [0, 1]× [0,∞)

vx(0, t) = 0 , t ≥ 0

vx(1, t) = 0 , t ≥ 0 .

(16)

This is handled with the method of separation of variables, as usual. We start with the
Ansatz

v(x, t) = X(x)T (t) , for some functions X and T to be determined.

The boundary conditions read

X ′(0) = 0 = X ′(1) . (17)
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The PDE gives
T ′(t)
T (t)

=
X ′′(x)
X(x)

.

As usual, the left-hand side depends only on t, while the right-hand side depends only
on x. Hence there exists some constant λ (to be determined) such that

T ′λ(t) = −λTλ(t) and X ′′λ(x) = −λXλ(x) . (18)

We have appended the subscript λ to indicate the dependence on λ.

The first ODE is immediately solved, namely

Tλ(t) = Cλ e−λ t ,

for some constant Cλ to be determined later.

We consider next the second ODE in (18) with its boundary conditions (17), namely

X ′′λ(x) = −λXλ(x) with X ′λ(0) = 0 = X ′λ(1) .

If λ = 0, we see that X0(x) = A0 , is the constant solution.

The case λ 6= 0 gives:

Xλ(x) = Aλ cos
(
x
√
λ
)

+ Bλ sin
(
x
√
λ
)
, for some constants Aλ and Bλ.

Matching the boundary conditions (17) requires that

Bλ = 0 and thus
√
λ Aλ sin

(√
λ
)

= 0 .

To avoid the trivial solution, and since λ 6= 0 , we thus need

sin
(√
λ
)

= 0 .

Hence √
λ = π n for some n ∈ Z∗ .

This gives the solution
Xn(x) = An cos (nπ x) .

We can actually restrict our attention to n ∈ N∗. Indeed, changing the sign of n amounts
to changing the sign of An. But because the coefficients An are arbitrary, we see that
n ≥ 1 suffices to encompass all possibilities. Note that we have again appended a
subscript to indicate the dependence on n ∈ N∗.

Combining the above results, we have found the solutions

P0 , and Pn e−n
2π2t cos (nπ x) ∀ n ≥ 1 .

where we have set Pn = CnAn for convenience.
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Using the superposition principle, the solution of the homogeneous problem (16) is

v(x, t) = P0 +
∑
n≥1

Pn e−n
2π2t cos (nπ x) . (19)

To get our hands on the solution of the inhomogeneous problem (15), we vary the
constants by making the Ansatz

u(x, t) = P0(t) +
∑
n≥1

Pn(t) e−n
2π2t cos (nπ x) , (20)

where P0(t) and Pn(t) are now functions to be determined.

Substituting this Ansatz in our PDE (15) yields easily

P ′0(t) +
∑
n≥1

P ′n(t) e−n
2π2t cos (nπ x) = 1 .

Matching both sides is immediate4, and we find

P ′0(t) = 1 , and P ′n(t) = 0 ∀ n > 1 .

Therefore,

P0(t) = t + Q0 , and Pn(t) = Qn ∀ n > 1 , (21)

where Qn are constants to be determined.

Substituting (21) into (20) gives now the solution

u(x, t) = t + Q0 +
∑
n≥1

Qn e−n
2π2t cos (nπ x) . (22)

There only remains to accommodate the initial data. Namely

f(x) = Q0 +
∑
n≥1

Qn cos (nπ x) .

We thus see that Q0 and Qn are the coefficients of the 2-periodic Fourier cosine series
of the function f(x). Hence

Q0 =
∫ 1

0
f(x) dx and Qn = 2

∫ 1

0
f(x) cos (π nx) dx . (23)

Substituting this into (22) gives the desired complete description of the solution in terms
of the data provided by the problem.

4note indeed that the constant 1 is already expressed in a Fourier cosine series !
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Remark. A “faster” method consists in setting in (15)

u(x, t) = t + v(x, t) . (24)

Then v(x, t) is found to satisfy the problem

vt − vxx = 0 , (x, t) ∈ [0, 1]× [0,∞)

vx(0, t) = 0 , t ≥ 0

vx(1, t) = 0 , t ≥ 0

v(x, 0) = f(x) , x ∈ [0, 1] .

This homogeneous problem is then solved by separation of variables as we obtained (19)
to produce

v(x, t) = Q0 +
∑
n≥1

Qn e−n
2π2t cos (nπ x) .

The initial data is used to determine Q0 and Qn just like in (23).

Therefore, from (24), we recover directly

u(x, t) = t + Q0 +
∑
n≥1

Qn e−n
2π2t cos (nπ x) .

(c) As seen in (22), when t is very large, the solution u(x, t) behaves like t. Thus,

lim
t→∞

u(x, t) = ∞ for all values of x .

This mathematical consequence is evident physically. Indeed, because the rod is insu-
lated, no heat can escape from it. Yet, the radioactive reaction taking place inside the
rod produces heat continuously at the positive rate 1. Accordingly, the heat inside the
rod keeps increasing indefinitely.
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