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1. We will use the following properties of the Laplace transform:

L(y′) = sL(y)− y(0), (1)

L(f ∗ g) = L(f)L(g), (2)

L−1
(
e−asL(f)

)
= u(t− a)f(t− a). (3)

Note that ∫ t

0
y(τ) cos(t− τ)dτ = (y ∗ cos)(t). (4)

We transform both sides of the equation

L(y′ + y ∗ cos) = sL(y)− y(0) + L(y)
s

s2 + 1
(5)

= L(y)
s(s2 + 2)

s2 + 1
, (6)

L(δ(t− a)) = e−as. (7)

This leads to an algebraic equation

L(y) = e−as
s2 + 1

s(s2 + 2)
. (8)

Using the partial fraction decomposition

s2 + 1

s(s2 + 2)
=

1

2

(
1

s
+

s

s2 + 2

)
, (9)

and the uniqueness of the Laplace transform, we can invert the transformation and get

L−1
(

1

2

(
1

s
+

s

s2 + 2

))
=

1

2
(1 + cos(

√
2t)), (10)

y(t) = L−1
(
e−as

s2 + 1

s(s2 + 2)

)
(11)

=
1

2
u(t− a)(1 + cos(

√
2(t− a))). (12)
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2. a) Since the function is odd, the Fourier coefficients of the cosine terms in the Fourier
expansion of f vanish. The coefficients of the sine terms can be computed as
follows. Let n ≥ 1, then we have with 2L = 2π

bn =
2

π

∫ π

0
f(x) sin(nx) dx

=
2

π

(∫ π
2

0
x sin(nx) dx−

∫ π

π
2

(x− π) sin(nx) dx

)
.

(13)

Integration by parts leads to∫ b

a
x sin(nx) dx = − 1

n

(
x cos(nx)|ba −

∫ b

a
cos(nx) dx

)
= − 1

n
x cos(nx)|ba +

1

n2
sin(nx)|ba.

(14)

Consequently, the Fourier coefficients are given by

bn =
4

n2π
sin
(
n
π

2

)
. (15)

Finally, the Fourier series reads as

f(x) =
∞∑
n=1

bn sin(nx) =
∞∑
n=1

4

n2π
sin
(
n
π

2

)
sin(nx). (16)

b) Yes, the Fourier series converges pointwise to the function f , since the function f
is continuous.

3. The formula for D’Alambert’s solution is given by

u(x, t) =
1

2

(
f(x+ ct) + f(x− ct) +

1

c

∫ x+ct

x−ct
g(y) dy

)
. (17)

a) Setting (x, t) =
(
0, πc

)
gives

u
(

0,
π

c

)
=

1

2

(
f(0 + π) + f(0− π) +

1

c

∫ 0+π

0−π
g(y) dy

)
=

1

2

(
2(2π − π) +

1

c

∫ π

−π
cos2(y) dy

)
=

1

2

(
2π +

1

2c

∫ π

−π
(1 + cos(2y)) dy

)
=

1

2

(
2π +

1

2c
(2π + 0)

)
= π

(
1 +

1

2c

)
.

(18)
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b)

lim
a→∞

u
(
a,
a

c

)
= lim

a→∞,2|a|>2π

1

2

(
f(2a) + f(0) +

1

c

∫ 2a

0
g(y) dy

)
= lim

a→∞,2|a|>2π

1

2

(
0 + 2π +

1

c

∫ 2π

0
cos2(y) dy +

1

c

∫ 2a

2π

1

y2
dy

)
=

1

2

(
2π +

π

c
+

1

c

∫ ∞
2π

1

y2
dy

)
=

1

2

(
2π +

π

c
+

1

2πc

)
= π

(
1 +

1

2c

)
+

1

4πc
.

(19)

Since a→∞, we assumed without loss of generality that |2a| > 2π.

4. a) First we determine the stationary solution v, which fulfils the following boundary
value problem: {

a2vxx(x) + b = 0 x ∈ R

v(0) = v(L) = 0
(20)

The unique solution of this problem is a polynom of second order with zeros 0 und
L, i.e.

v(x) = − b

2a2
(x− L)x. (21)

b) Set w(x, t) = u(x, t)− v(x). w is the solution of the following homogeneous PDE
with boundaries:

wt = ut = a2(wxx + vxx) + b = a2wxx x ∈ R, t > 0

w(0, t) = w(L, t) = 0 t ≥ 0
w(x, 0) = sin

(
πx
L

)
− v(x) x ∈ R

(22)

In order to solve this homogeneous problem we use separation of variables. Inser-
ting the Ansatz w(x, t) = X(x)T (t) in the PDE for w leads to

T ′(t)X(x) = a2T (t)X ′′(x) (23)

with the homogeneous boundary conditions

w(0, t) = T (t)X(0) = 0

w(L, t) = T (t)X(L) = 0
(24)

Since we are interested in non trivial solutions we get two differential equations
including the homogeneous boundary conditions

T ′(t) = a2CT (t) (25)
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and {
X ′′(x) = CX(x) x ∈ (0, 1)

X(0) = X(L) = 0
(26)

for some constant C ∈ R. First we solve the differential equation for X with
homogeneous boundary conditions and distinguish the three cases for C:

• C > 0: In this case the general solution for X is given by

X(x) = A1 sinh(
√
Cx) +A2 cosh(

√
Cx). (27)

The boundary condition X(0) = 0 demands

0 = X(0) = A1 sinh(
√
C0) +A2 cosh(

√
C0) = A2, (28)

i.e. A2 = 0. The other boundary condition X(L) = 0 leads to

0 = X(L) = A1 sinh(
√
CL), (29)

which is only possible for A1 = 0. Therefore we get only the trivial solution
X(x) = 0.

• In the case C = 0, we have
X ′′(x) = 0, (30)

which leads to linear solutions

X(x) = A1x+A2. (31)

The first boundary condition X(0) = 0 demands

0 = X(0) = A2. (32)

Therefore we have X(x) = A1x. The second boundary condition X(L) = 0,
i.e.

0 = X(L) = A1L, (33)

sets A1 = 0 and hence allows again only the trivial solution X(x) = 0.

• Therefore we are left with the case C := −λ2 < 0 and X(x) has the form

X(x) = A1 sin(λx) +A2 cos(λx). (34)

From the first boundary condition we deduce 0 = X(0) = A2 und from the
second X(L) = 0 follows

λ = λn =
nπ

L
, (35)

for n ∈ N. The possible nontrivial solutions for X are therefore given by

Xn(x) = αn sin
(nπ
L
x
)
. (36)
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Inserting λn in the differential equation for T (t)

T ′(t) = −
(nπa
L

)2
T (t) (37)

leads to the possible solutions:

Tn(t) = e−(nπaL )
2
t. (38)

Using the superposition principle for linear PDEs we deduce that the general
solution w(x, t) is of the form

w(x, t) =
∑
n≥1

αne
−(nπaL )

2
t sin

(nπ
L
x
)
. (39)

The coefficients αn are determined by the initial condition for w:

w(x, 0) =
∑
n≥1

αn sin
(nπ
L
x
)

= sin
(πx
L

)
− v(x). (40)

We extend v to an odd 2L-periodic function ṽ : R→ R and determine its Fourier
coefficients:

Bn :=
1

L

∫ L

−L
ṽ(x) sin

(nπ
L
x
)
dx. (41)

Partial integration (see below) leads to

Bn =
4L2

(nπ)3
b

2a2
(1− (−1)n). (42)

By comparing the coefficients we get

αn = −Bn =
4L2

(nπ)3
b

2a2
((−1)n − 1) (43)

for n 6= 1, and

α1 = 1−B1 = 1− 4L2

π3
b

a2
. (44)

c) Combining the two steps the solution of the inhomogeneous heat equation is given
as

u(x, t) = w(x, t) + v(x)

=

((
1− 4L2

(π)3
b

a2

)
e−(

πa
L

)2t +
4L2

(π)3
b

a2

)
sin
(π
L
x
)

+
∑
n>1

4L2

(nπ)3
b

2a2
((−1)n − 1)

(
e−(

nπa
L

)2t − 1
)

sin
(nπ
L
x
)

=

(
1− 4L2

(π)3
b

a2

)
e−(

πa
L

)2t sin
(π
L
x
)

+
∑
n>1

4L2

(nπ)3
b

2a2
((−1)n − 1)e−(

nπa
L

)2t sin
(nπ
L
x
)

+ v(x).

(45)
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Partial integration:
Let f(x) denote the odd 2L periodic function with f(x) = x2 for x ∈ [0, L].∫ L

−L
f(x) sin(nπx/L)dx = 2

∫ L

0
x2 sin(nπx/L)dx

= 2x2
−L
nπ

cos(nπx/L)

∣∣∣∣L
0

− 2

∫
0,L

2x
−L
nπ

cos(nπx/L)dx

= 2
−L3

nπ
(−1)n + 4

∫ L

0

−L2

(nπ)2
sin(

nπx

L
)dx

= 2
−L3

nπ
(−1)n + 4

L3

(nπ)3
cos(nπx/L)

∣∣∣∣L
0

= 2
−L3

nπ
(−1)n + 4

L3

(nπ)3
((−1)n − 1).

(46)

Furthermore, we have∫ L

−L
x sin(nπx/L)dx = x

−L
nπ

cos(nπx/L)|L−L −
∫ L

−L

−L
nπ

sin(nπx/L)dx

=
−2L2

nπ
(−1)n

(47)

Therefore the Fourriercoefficients of the odd 2L-periodic extension of v are given by∫ L

−L
ṽ(x) sin(nπx)dx = − b

2a2
(2
−L3

nπ
(−1)n + 4

L3

(nπ)3
((−1)n − 1) +

2L3

nπ
(−1)n)

= − b

2a2
4
L3

(nπ)3
((−1)n − 1).

(48)

5. a) The coefficients are given as a = −1, b = 2, c = −1 und d = 1, i.e. for v we get

v(x, y) = −x+ 2xy − y + 1. (49)

b) w = u − v fulfils the following boundary value problem with only one inhomoge-
neous boundary

∆w = 0 x ∈ (0, 1)× (0, 1)

w(x, 0) = 0 x ∈ [0, 1]
w(0, y) = 0 y ∈ [0, 1]
w(1, y) = 0 y ∈ [0, 1]
w(x, 1) = sin3(kπx) x ∈ [0, 1].

(50)

In order to determine the solution of this boundary value problem for w we use
the separation of variables Ansatz w(x, y) = X(x)Y (y) and insert it in the PDE

X ′′(x)Y (y) +X(x)Y ′′(y) = 0. (51)
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Therefore we have
X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= C (52)

for some constant C ∈ R with the homogeneous boundary conditions

w(x, 0) = X(x)Y (0) = 0

w(0, y) = X(0)Y (y) = 0

w(1, y) = X(1)Y (y) = 0.

(53)

Since we are interested in nontrivial solutions, this leads to the following differen-
tial equations including the homogeneous boundary conditions:{

X ′′(x) = CX(x) x ∈ (0, 1)

X(0) = X(1) = 0
(54)

and {
Y ′′(y) = −CY (y) y ∈ (0, 1)

Y (0) = 0.
(55)

We determine the possible solutions for X distinguishing three cases for C:

• C > 0: In this case we get

X(x) = A1 sinh(
√
Cx) +A2 cosh(

√
Cx). (56)

From the boundary condition X(0) = 0 follows

0 = X(0) = A1 sinh(
√
C0) +A2 cosh(

√
C0) = A2, (57)

i.e. A2 = 0. Furthermore, since X(1) = 0, also

0 = X(1) = A1 sinh(
√
C1). (58)

and hence A1 = 0. Therefore, in this case we get only the trivial solution
X(x) = 0.

• In the case C = 0 the equation

X ′′(x) = 0 (59)

has linear solutions
X(x) = A1x+A2. (60)

From the boundary conditions we deduce

0 = X(0) = A2, (61)

and
0 = X(1) = A1, (62)

which leads again to the trivial solution X(x) = 0.

7 Please turn!



• We are left with the case C = −λ2 < 0 and the general solution

X(x) = A1 sin(λx) +A2 cos(λx) (63)

as well as
Y (y) = B1 sinh(λy) +B2 cosh(λy). (64)

Using the homogeneous boundary conditions we deduce that X(0) = A2 = 0
and Y (0) = B2 = 0. Furthermore since X(1) = A1 sin(λx) = 0 we need
λ = λn = nπ, with n ∈ N, in order to get non trivial solutions.

Therefore possible nontrivial solutions are given by

w(x, y)n = sinh(nπy) sin(nπx) (65)

for n ∈ N. We still have to fulfil the last inhomogeneous boundary condition for
w:

w(x, 1) = sin3(kπx) , for x ∈ [0, 1] (66)

Since the PDE is linear the superposition principle allows us to take a series of
possible solutions as Ansatz for the inhomogeneous boundary condition:

w(x, y) =
∑
n≥1

αn sinh(nπy) sin(nπx). (67)

The coefficients are then determined by the inhomogeneous boundary condition

w(x, 1) =
∑
n≥1

αn sinh(nπ) sin(nπx) = sin3(kπx). (68)

Since the Ansatz is an expansion in sine terms, we should extend the bounda-
ry function as odd function with period 2 and determine its Fourier series. The
coefficients of the superposition Ansatz are then obtained by a comparison of co-
efficients. But notice that the boundary function is already a sine function and we
can use the following formula as given in the hint:

sin3(kπx) =
1

4
(3 sin(kπx)− sin(3kπx)). (69)

Hence αn = 0, if n /∈ {k, 3k}. Furthermore, αk = 3
4

1
sinh(kπ) and α3k = −1

4
1

sinh(3kπ) .
Finally, the solution for w is given as

w(x, y) =
3

4

sinh(kπy)

sinh(kπ)
sin(kπx)− 1

4

sinh(3kπy)

sinh(3kπ)
sin(3kπx). (70)

c) Combining the two steps leads us to the solution u of the boundary value problem:

u(x, y) = v(x, y) + w(x, y)

= −x+ 2xy − y + 1 +
3

4

sinh(kπy)

sinh(kπ)
sin(kπx)− 1

4

sinh(3kπy)

sinh(3kπ)
sin(3kπx).

(71)
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