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Exam Solutions

1. We will use the following properties of the Laplace transform:

L(y') = sL(y) —y(0), (1)
L(f*g) = L()L(g), (2)
L7 (e™L(f)) = ult —a)f(t - a). (3)
Note that .
/ y(7) cos(t — 7)dT = (y * cos)(t). (4)
0
We transform both sides of the equation
S
Ly +y xcos) = sL{y) —y(0) + L(y) 57 (5)
B s(s*+2)
Ok (®
L(O(t—a))=e . (7)
This leads to an algebraic equation
as S2 1
L) =™ o gy ®)
Using the partial fraction decomposition
s+ 1 1/1 s
5(52+2)_2<s+52+2>’ )
and the uniqueness of the Laplace transform, we can invert the transformation and get
1/1 S 1
-1(Lt (1 _ =
c (2 (S + +2)> 5 (1 + cos(V/2t)), (10)
2
-1 —as s+ 1
_ _ 11
R ) (1)
_ %u(t — a)(1 + cos(V2(t — a)). (12)
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2.

a) Since the function is odd, the Fourier coefficients of the cosine terms in the Fourier
expansion of f vanish. The coefficients of the sine terms can be computed as
follows. Let n > 1, then we have with 2L = 27

— /0 " f(2) sin(na) da

_ % </02 zsin(nz) dz — /f (z — ) sin(na) dx) .

Integration by parts leads to

/ab:csin(nw) dx = —% (a; cos(nz)|? — /ab cos(nx) da:) 14)

1 , 1 ,
=—a cos(nx)|, + 3 sin(nx)|,.

Consequently, the Fourier coefficients are given by

by = % sin (n%) . (15)

Finally, the Fourier series reads as

2
nem
n=1

f(z) = i by sin(nz) = i A sin <ng> sin(nx). (16)

b) Yes, the Fourier series converges pointwise to the function f, since the function f
is continuous.

3. The formula for D’Alambert’s solution is given by

(1) = (f(x bot)+ fla—ct) + i/ o) dy> . (17)

2

a) Setting (z,t) = (0, %) gives

0)-

(18)
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. a . 1 1 2a
i (00) =, 5 (V00 £ 00+ [ i)

Since a — oo, we assumed without loss of generality that |2a| > 27.

First we determine the stationary solution v, which fulfils the following boundary
value problem:

ze R

2 _
{ a Vg () +b =0 (20)

v(0) =v(L) =0

The unique solution of this problem is a polynom of second order with zeros 0 und
L,i.e.
b
v(x) = _ﬁ@ — L)x. (21)
Set w(x,t) = u(z,t) — v(z). w is the solution of the following homogeneous PDE
with boundaries:

wy = U = a2 (W + Voz) +b=0a*wye | € R, >0

w(0,t) = w(L,t) = 0 t>0 (22)
w(z,0) = sin (%) — v(z) reR

In order to solve this homogeneous problem we use separation of variables. Inser-
ting the Ansatz w(z,t) = X (z)T(t) in the PDE for w leads to

T'()X (z) = a®*T(t) X" (x) (23)
with the homogeneous boundary conditions

w(0,t) = T(£)X(0)
w(L,t) = T(H)X (L)

(24)

o O

Since we are interested in non trivial solutions we get two differential equations
including the homogeneous boundary conditions

T'(t) = a®CT(t) (25)

3 Please turn!



and

XI/($) =CX(z) | z€(0,1) (26)
X(0)

= X(L) =0

for some constant C' € R. First we solve the differential equation for X with
homogeneous boundary conditions and distinguish the three cases for C:

e (C > 0: In this case the general solution for X is given by
X(z) = A; sinh(VCx) + Az cosh(vVCx). (27)
The boundary condition X (0) = 0 demands
0 = X (0) = A; sinh(VC0) + Az cosh(VC0) = Ay, (28)
i.e. A2 = 0. The other boundary condition X (L) = 0 leads to
0= X(L) = Ay sinh(VCL), (29)

which is only possible for A; = 0. Therefore we get only the trivial solution
X(x)=0.
e In the case C = 0, we have
X" (x) =0, (30)

which leads to linear solutions
X(z) = A1z + As. (31)

The first boundary condition X (0) = 0 demands

Therefore we have X (x) = Ajx. The second boundary condition X (L) = 0,
ie.

0=X(L)= AL, (33)

sets A1 = 0 and hence allows again only the trivial solution X (z) = 0.
e Therefore we are left with the case €' := —\? < 0 and X (z) has the form

X (x) = Ay sin(A\x) + Az cos(Ax). (34)

From the first boundary condition we deduce 0 = X(0) = Az und from the
second X (L) = 0 follows

nm
A= )\n = 7
; (3)
for n € N. The possible nontrivial solutions for X are therefore given by
X, (z) = apsin (%x) . (36)
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Inserting )\, in the differential equation for T'(¢)
7(0) = - (“74) ) (1)
leads to the possible solutions:
To(t) = e (*F)’, (38)

Using the superposition principle for linear PDEs we deduce that the general
solution w(z,t) is of the form

t) = Z anef(nza)zt sin (n%x) . (39)

n>1

The coefficients «,, are determined by the initial condition for w:
nm T
0) = > asin (Sra) =sin (7F) — v(a). 10
) 2 ansin ( sin {7 v(x) (40)

We extend v to an odd 2L-periodic function v : R — R and determine its Fourier
coefficients:

1 L - . nmw
B, = 7 /_L v(x) sin (fx> dx. (41)
Partial integration (see below) leads to
4L% b
B, = — (1 —(=1)"). 42
"= Gz~ ) (42)

By comparing the coefficients we get

412 b

an = —B, = ()? ﬁ((_n” —1) (43)

for n # 1, and
4L% b

Oél—lfBl—l 7'[‘3612

(44)

¢) Combining the two steps the solution of the inhomogeneous heat equation is given
as

u(z,t) = w(z,t) +v(z)
(-2 )

(i

* (nm)3 2a?

M

(45)
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Partial integration:

Let f(z) denote the odd 2L periodic function with f(x) = 22 for x € [0, L].

L L
/ f(x)sin(nrz/L)dx = 2/ 2% sin(nrx/L)dx
.y 0

Furthermore, we have

/.

—L
=22 = L
T - cos(nmx/L)

73 L
Sy |

nm 0

-3 L3
= 2—(—1)” 4

nm (nm

_L3 L3

_ —2L?

(="

nm

L L
- 2/ 2x—— cos(nmx/L)dx
0 0.L nm

2

—L
xsin(nrx/L)dx = T cos(nmz /L)L, — /
T

)

oy 0z (46)
L
L cos(nmx/L) .
(=" =1)
’ ;—L sin(nrz/L)dz
_ nmw (47)

Therefore the Fourriercoefficients of the odd 2L-periodic extension of v are given by

L 3 3 3
. b _—L n L " 2L "
[, P = 5l @ ) A ()" = 1 )
=——4——((-1)"—=1).
e g (1 =)
a) The coefficients are given as a = —1, b =2, c= —1 und d = 1, i.e. for v we get
v(z,y) = —z+2zy—y+1 (49)

b) w = u — v fulfils the following boundary value problem with only one inhomoge-

neous boundary

Aw =0 x
w(z,0) =0 x
w(0,y) =0 y
w(l,y) =0 y
w(z,1) = sind(krz) | z

(50)

In order to determine the solution of this boundary value problem for w we use
the separation of variables Ansatz w(z,y) = X ()Y (y) and insert it in the PDE

X"(2)Y (y) + X ()Y (y) = 0.

(51)
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Therefore we have
X'(z) Yy

X(z)  Y(y)

for some constant C' € R with the homogeneous boundary conditions

—C (52)

s £
o R
s =
I
b
—
2
=
(e}
S~—
I

X(0)Y (y)

Yy (53)
w(l,y) = X(1)Y (y)

=0
= 0.
Since we are interested in nontrivial solutions, this leads to the following differen-
tial equations including the homogeneous boundary conditions:

X" z) = OCX(x z e (0,1
@ = CX(@) | ve (0.1 "
X0)=X(1)=0
and
Y'(y) = =CY(y) | y€ (0.1) (55)
Y (0) = 0.
We determine the possible solutions for X distinguishing three cases for C":
e C > 0: In this case we get
X (x) = Ay sinh(VCz) + Ay cosh(vVCix). (56)
From the boundary condition X (0) = 0 follows
0= X(0) = A; sinh(VC0) + Az cosh(v/C0) = Ay, (57)
i.e. A2 = 0. Furthermore, since X (1) = 0, also
0= X(1) = A; sinh(VC1). (58)

and hence A; = 0. Therefore, in this case we get only the trivial solution
X(z)=0.
e In the case C' = 0 the equation

X"(z) =0 (59)

has linear solutions

From the boundary conditions we deduce
0= X(0) = Ao, (61)

and
0=X(1) = Ay, (62)

which leads again to the trivial solution X (z) = 0.
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e We are left with the case C = —\? < 0 and the general solution
X(x) = Ay sin(Ax) + Az cos(Ax) (63)

as well as
Y (y) = By sinh(\y) + By cosh(Ay). (64)
Using the homogeneous boundary conditions we deduce that X(0) = Ay =0

and Y (0) = By = 0. Furthermore since X (1) = A;sin(Az) = 0 we need
A=\, = nm, with n € N, in order to get non trivial solutions.

Therefore possible nontrivial solutions are given by
w(z,y)y = sinh(nwy) sin(nrz) (65)

for n € N. We still have to fulfil the last inhomogeneous boundary condition for
w:
w(z,1) = sin®(knz) , for z € [0,1] (66)

Since the PDE is linear the superposition principle allows us to take a series of
possible solutions as Ansatz for the inhomogeneous boundary condition:

w(z,y) = Z ay, sinh(nmy) sin(nrz). (67)
n>1

The coefficients are then determined by the inhomogeneous boundary condition

w(z,1) = Z o sinh(nn) sin(nrz) = sin®(krz). (68)

n>1

Since the Ansatz is an expansion in sine terms, we should extend the bounda-
ry function as odd function with period 2 and determine its Fourier series. The
coeflicients of the superposition Ansatz are then obtained by a comparison of co-
efficients. But notice that the boundary function is already a sine function and we
can use the following formula as given in the hint:

1
sin® (krx) = 1(3 sin(kmx) — sin(3kmx)). (69)
Hence ay, =0, if n ¢ {k,3k}. Furthermore, oy = %smhil(im) and oz = %m
Finally, the solution for w is given as

_ 3sinh(kmy) .
w(z,y) = 1 sinh (k) sin(krz) —

1 sinh(3kmy)

1 sinh(3km) sin(3knzx). (70)

¢) Combining the two steps leads us to the solution u of the boundary value problem:

u(z,y) =v(z,y) + w(z,y)
3sinh(kmy)

1sinh(3kmy)
4 sinh(km)

— 4 20y — 1 _ 2 SIORTY)
rhiry—y+ It 4 sinh(3km)

sin(kmx) sin(3kmx).

(71)



