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Exam Solutions

1. a) 2. order, non-linear

b) 2. order, linear, inhomogeneous, hyperbolic

AC—B? = (4ay®)(xy)—(22/y)* = 42*y(y*—1) < 0 for {(z,y) ER?: 2 > 0,0 <y < 1}

c) 3. order, linear, inhomogeneous

2. We Laplace transform both sides of the integral equation
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where we have used the convolution property on the left side and the s-shift on the
right hand side. Solving for Y'(s) leads to
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We transform back and get
y(t) = sinh(t).

3. a) D’Alembert’s formula for the solution of the wave equation is given by
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b)
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b) With f(z) = 22 and a transformation of variables ynew = = — y we get
u(z,t) = /OO VK (z—y,t)dy = /OO (z—y)? K (y,t)dy = . /oo (1:2 —2zy + y2) efgdy.
) - ) - ) /747_[_1/_ -

Now we use the results from the first part with a = ﬁ to calculate the integral:
(@,0) = —— (/T 404 ]~
u(x,t) = xo /= —
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a) We determine the Fourier integral:

= z? + 2t.
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Furthermore, we have
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Therefore the real Fourier series of f is given by

Z by, sin(nz),
n=1
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b) Using separation of variables we set u(x,y) = F(z)G(y) and obtain
Uge = F"(2)G(y) and  uy, = F(2)G"(y),

which plugged into the PDE gives

G'(y) _ F'(a)

o)~ Fw W

F'(z)G(y) + F(2)G"(y) =0 < (-1)

where k is a constant. The boundary conditions u(0,y) = 0 and u(m,y) = 0 (we
are considering G(y) # 0 as otherwise u would be trivial) translate into

F0)=0 and F(m)=0.
Consequently we first need to solve the following initial value problem:

F'(z) = kF(x),
F(0) = F(r) = 0.

One has to distinguish the following cases, depending on the sign of k:

k = 0: In this case the general solution is given by Fy(z) = Ax + B. Plugging in
the boundary conditions gives the trivial solution A = 0 = B, i.e. Fy(z) =
Ax+ B =0.

kE > 0: In this case the general solution is given by F(x) = AeVke 4 Be—Vke, Plugging

in the boundary conditions, gives again the trivial solution A =0 = B.
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k < 0: In this case the general solution is given by F'(z) = A cos(v/—kx)+B sin(v/ —kzx).
From the first boundary condition we obtain the requirement that

F(z) = Bsin(px),
and from the second vV—k =n, n €N, i.e. all the solutions are of the form
F,(x) = A, sin(nx).

Now we solve the second ODE coming from Equation (1), i.e we solve

{Gn(y) =n?G(y)

For n = 0, the general solution is given by

and the boundary condition gives B = 0, thus

For n > 1, the solutions are of the form
Gr(y) = By sinh(ny).
Consequently for n = 0 we obtain the solution
uo(z,y) = Fo(z)Go(y) =
and for any n > 1, we obtain the solution
un(z,y) = Fp(x) - Gn(y) = Ay sin(nx) - By, sinh(ny) =: C,, sin (nx) sinh (ny) .

In oder to fulfil the inhomogeneous boundary condition we use the superposition
principle and get the following ansatz for a general solution

— Z un(z,y) = Z C, sin (nx) sinh (ny) .
n=0

n=1

We are left with the inhomogeneous boundary condition

u(z, ZC’ sin (nx) sinh (nm) Zb sin(nz) = f(z).

n=1

Comparing the coefficients leads to

Hence we get the solution

u(z,y) = Z suﬂf?gmr) sin (nz) sinh (ny) .
n=1



