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Exam Solutions

1. a) 2. order, non-linear

b) 2. order, linear, inhomogeneous, hyperbolic

AC−B2 = (4xy3)(xy)−(2x
√
y)2 = 4x2y(y3−1) < 0 for {(x, y) ∈ R2 : x > 0, 0 < y < 1}

c) 3. order, linear, inhomogeneous

2. We Laplace transform both sides of the integral equation

F
[
y(t) + 2

∫ t

0
y(τ)e(t−τ)dτ

]
= Y (s) + 2Y (s)

1

s− 1
= Y (s)

s+ 1

s− 1
,

F
[
tet
]

=
1

(s− 1)2
,

where we have used the convolution property on the left side and the s-shift on the
right hand side. Solving for Y (s) leads to

Y (s) =
1

(s+ 1)(s− 1)
=

1

(s2 − 1)
.

We transform back and get
y(t) = sinh(t).

3. a) D’Alembert’s formula for the solution of the wave equation is given by

u(x, t) =
1

2
(f(x+ ct) + f(x− ct)) +

1

2c

∫ x+ct

x−ct
g(y) dy.

With the given initial conditions we get

u(x, t) =
1

2

(
e−(x+ct)

2
sin2(x+ ct) + e−(x−ct)

2
sin2(x− ct) + (x+ ct+ (x− ct))

)
+

1

2c

∫ x+ct

x−ct
ye−y

2
dy

=
1

2

(
e−(x+ct)

2
sin2(x+ ct) + e−(x−ct)

2
sin2(x− ct) + 2x

)
+

1

2c

∫ x+ct

x−ct
−1

2

d

dy
e−y

2
dy

=
1

2

(
e−(x+ct)

2
sin2(x+ ct) + e−(x−ct)

2
sin2(x− ct) + 2x

)
− 1

4c

(
e−(x+ct)

2 − e−(x−ct)2
)

1 Please turn!



b)

lim
t→∞

u(a, t) = lim
t→∞

1

2

(
e−(a+ct)

2
sin2(a+ ct) + e−(a−ct)

2
sin2(a− ct) + 2a

)
− 1

4c

(
e−(a+ct)

2 − e−(a−ct)2
)

= a

4. a) (i) ∫
R

e−ax
2
dx =

√
2πF

[
e−ax

2
]

(0) =

√
π

a

(ii) ∫
R

xe−ax
2
dx =

√
2πi

d

dω
F
[
e−ax

2
]

(0) = i
d

dω

√
π

a
e−

ω2

4a

∣∣∣∣
ω=0

= 0

(iii) ∫
R

x2e−ax
2
dx =

√
2πi2

d2

dω2
F
[
e−ax

2
]

(0)

= − d2

dω2

√
π

a
e−

ω2

4a

∣∣∣∣
ω=0

=

(
d

dω

ω

2a

)√
π

a
e−

ω2

4a

∣∣∣∣
ω=0

=

√
π

4a3

b) With f(x) = x2 and a transformation of variables ynew = x− y we get

u(x, t) =

∫ ∞
−∞

y2K(x−y, t)dy =

∫ ∞
−∞

(x−y)2K(y, t)dy =
1√
4πt

∫ ∞
−∞

(
x2 − 2xy + y2

)
e−

y2

4t dy.

Now we use the results from the first part with a = 1
4t to calculate the integral:

u(x, t) =
1√
4πt

(
x2
√
π

a
+ 0 +

√
π

4a3

)∣∣∣∣
a= 1

4t

= x2 + 2t.

5. a) We determine the Fourier integral:∫ π

0
x2 sin(nx)dx = x2

−1

n
cos(nx)

∣∣∣∣π
0

−
∫ π

0
2x
−1

n
cos(nx)dx

=
−π2

n
(−1)n + 2

∫ π

0

−1

n2
sin(nx)dx

=
−π2

n
(−1)n + 2

1

n3
cos(nx)

∣∣∣∣π
0

=
−π2

n
(−1)n + 2

1

n3
((−1)n − 1).
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Furthermore, we have∫ π

0
x sin(nx)dx = x

−1

n
cos(nx)|π0 −

∫ π

0

−1

n
cos(nx)dx

=
−1π

n
(−1)n.

Therefore the real Fourier series of f is given by

∞∑
n=1

bn sin(nx),

with

bn =
1

π

∫ π

−π
f(x) sin(nx)dx

=
2

π

∫ π

0
x(π − x) sin(nx)dx

= 2
−1π

n
(−1)n − 2

π

(
−π2

n
(−1)n + 2

1

n3
((−1)n − 1)

)
=

4

n3π
(1− (−1)n).

b) Using separation of variables we set u(x, y) = F (x)G(y) and obtain

uxx = F ′′(x)G(y) and uyy = F (x)G′′(y),

which plugged into the PDE gives

F ′′(x)G(y) + F (x)G′′(y) = 0 ⇔ (−1) · G
′′(y)

G(y)
=
F ′′(x)

F (x)
= k, (1)

where k is a constant. The boundary conditions u(0, y) = 0 and u(π, y) = 0 (we
are considering G(y) 6≡ 0 as otherwise u would be trivial) translate into

F (0) = 0 and F (π) = 0.

Consequently we first need to solve the following initial value problem:{
F ′′(x) = kF (x),

F (0) = F (π) = 0.

One has to distinguish the following cases, depending on the sign of k:

k = 0: In this case the general solution is given by F0(x) = Ax + B. Plugging in
the boundary conditions gives the trivial solution A = 0 = B, i.e. F0(x) =
Ax+B = 0.

k > 0: In this case the general solution is given by F (x) = Ae
√
kx+Be−

√
kx. Plugging

in the boundary conditions, gives again the trivial solution A = 0 = B.
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k < 0: In this case the general solution is given by F (x) = A cos(
√
−kx)+B sin(

√
−kx).

From the first boundary condition we obtain the requirement that

F (x) = B sin(px),

and from the second
√
−k = n, n ∈ N, i.e. all the solutions are of the form

Fn(x) = An sin(nx).

Now we solve the second ODE coming from Equation (1), i.e we solve{
Gn(y) = n2G(y)

Gn(0) = 0.

For n = 0, the general solution is given by

G0(y) = Cy +D,

and the boundary condition gives B = 0, thus

G0(y) = Cy.

For n ≥ 1, the solutions are of the form

Gn(y) = Bn sinh(ny).

Consequently for n = 0 we obtain the solution

u0(x, y) = F0(x)G0(y) = 0

and for any n ≥ 1, we obtain the solution

un(x, y) = Fn(x) ·Gn(y) = An sin(nx) ·Bn sinh(ny) =: Cn sin (nx) sinh (ny) .

In oder to fulfil the inhomogeneous boundary condition we use the superposition
principle and get the following ansatz for a general solution

u(x, y) =
∞∑
n=0

un(x, y) =
∞∑
n=1

Cn sin (nx) sinh (ny) .

We are left with the inhomogeneous boundary condition

u(x, π) =

∞∑
n=1

Cn sin (nx) sinh (nπ) =

∞∑
n=1

bn sin(nx) = f(x).

Comparing the coefficients leads to

Cn =
1

sinh (nπ)
bn.

Hence we get the solution

u(x, y) =
∞∑
n=1

bn
sinh (nπ)

sin (nx) sinh (ny) .
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