Exam Analysis III d-mavt, d-matl

Exam Nr.:

Please do not fill!

Exercise	Value	Points	Control
1	8		
2	8		
3	11		
4	14		
5	8		
Total	49		

Please do not fill!
Completeness

Before the exam:

- Turn off your mobile phone and place it inside your briefcase/backpack.
- Put your bags on the floor. No bags on the desk!
- Place your Student Card (Legi) on the desk.

During the exam, please:

- Start every exercise on a new piece of paper.
- Put your **exam number** on the top right corner of every page.
- Motivate your answers. Write down calculations and intermediate results.
- Provide at most **one** solution to each exercise.
- **Do not** write with pencils. Please avoid using **red** or **green** ink pens.

After the exam:

- Make sure that every solutions sheet has your exam number on it.
- Place back the exam sheets, together with your solutions, in the envelope.

Allowed aids:

- 20 pages (= 10 sheets) DIN A4 handwritten or typed personal summary.
- An English (or English-German) dictionary.
- No further aids are allowed. In particular neither communication devices, nor pocket calculators.

Good Luck!

Laplace Transforms: ($F = \mathcal{L}(f)$)

	f(t)	F(s)		f(t)	F(s)		f(t)	F(s)
1)	1	$\frac{1}{s}$	5)	t ^a , a > 0	$\frac{\Gamma(a+1)}{s^{a+1}}$	9)	$\cosh(at)$	$\frac{s}{s^2-a^2}$
2)	t	$\frac{1}{s^2}$	6)	e ^{at}	$\frac{1}{s-a}$	10)	sinh(at)	$\frac{a}{s^2-a^2}$
3)	t ²	$\frac{2}{s^3}$	7)	$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$	11)	u(t-a)	$\frac{1}{s}e^{-as}$
4)	t^n , $n \in \mathbb{Z}_{\geqslant 0}$	$\frac{n!}{s^{n+1}}$	8)	$sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$	12)	$\delta(t-\alpha)$	e ^{-as}

(Γ = Gamma function, u = Heaviside function, δ = Delta function)

1. Periodicity (8 Points)

Determine which of the following functions is periodic and which is not. For the periodic ones, determine their fundamental period¹. For the non-periodic ones, explain/prove why they are not periodic.

- **a)** (2 *Points*) $|\sin(x+2)|$
- **b)** (2 *Points*) $4 \cosh(x)$
- **c)** (2 *Points*) $\cos(x^3)$
- **d)** (2 *Points*) $\cos(15x) + 3\sin(6x)$

[*Hint:* Recall that every periodic, continuous function is bounded, and that every periodic, differentiable functions has periodic derivative.]

¹A periodic function of period P > 0 is a function f such that f(x + P) = f(x) for all $x \in \mathbb{R}$. The *fundamental period* of a periodic function is the smallest period P.

2. Laplace Transform (8 Points)

Find the solution $y : [0, +\infty) \to \mathbb{R}$ of the following integral equation with initial condition:

$$\begin{cases} \int_0^t y'(\tau)(t^2 - 2t\tau + \tau^2) \, d\tau = t^3 \\ y(0) = 1 \end{cases}$$

using the Laplace transform.

[*Hint 1:* Recognize $t^2 - 2t\tau + \tau^2 = g(t - \tau)$ for some function g. <u>*Hint 2:*</u> The integral is then the convolution of y' and g.]

3. Dirichlet problem (11 Points)

a) (7 *Points*) Consider the Dirichlet problem for the wave equation on the interval [0, L]:

$$\begin{cases} u_{tt} = c^2 u_{xx}, & x \in [0, L], t \ge 0 \\ u(0, t) = u(L, t) = 0, & t \ge 0 \end{cases}$$
(1)

Use the method of sepation of variables, showing all the steps, until you find the general solution in Fourier series:

$$u(x,t) = \sum_{n=1}^{\infty} \left(B_n \cos\left(\frac{cn\pi}{L}t\right) + B_n^* \sin\left(\frac{cn\pi}{L}t\right) \right) \sin\left(\frac{n\pi}{L}x\right)$$

b) (4 *Points*) Find the coefficients B_n , B_n^* for the problem (1) with the following initial conditions:

$$\begin{cases} \mathfrak{u}(x,0)=0, & x\in[0,L]\\ \mathfrak{u}_t(x,0)=g(x), & x\in[0,L] \end{cases}$$

where $g(x) = \sum_{n=1}^{100} \frac{n^2}{1+n^2} \sin\left(\frac{n\pi}{L}x\right)$.

4. Wave Equation (14 Points)

Consider the following 1-dimensional wave equation on the interval [0, L]:

$$\begin{cases} u_{tt} = c^2 u_{xx} \,, & x \in [0, L], \, t \geqslant 0 \\ u(0, t) = u(L, t) = 0 \,, & t \geqslant 0 \\ u(x, 0) = -x^2 + Lx \,, & x \in [0, L] \\ u_t(x, 0) = 0 \,, & x \in [0, L] \end{cases}$$

- **a)** (6 *Points*) Find the solution in Fourier series. You can use the formula from the lecture notes.
- **b)** (4 *Points*) Remember that the solution can also be written as

$$u(x,t) = \frac{1}{2} (f^*(x-ct) + f^*(x+ct)),$$

where f^* is the odd, 2L-periodic extension of the initial datum $f = u(\cdot, 0)$. Use this formula to compute

$$u\left(\frac{L}{2},\frac{2L}{c}\right) = ?$$

c) (4 *Points*) Compare the result from b) with the formula from a) evaluated in the point (x, t) = (L/2, 2L/c) to find the value of the following numerical series:

$$\sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+1)^3} = ?$$

5. Fourier Integral (8 Points)

Let

$$f(\mathbf{x}) = \begin{cases} \frac{\pi}{2}\cos(\mathbf{x}), & \mathbf{x} \in \left[-\frac{3}{2}\pi, \frac{3}{2}\pi\right]\\ 0. & \text{otherwise} \end{cases}$$

Sketch the graph of this function, and prove that for every $x \in \mathbb{R}$

$$f(x) = \int_{0}^{\infty} \frac{\cos\left(\frac{3}{2}\pi\omega\right)\cos(\omega x)}{\omega^2 - 1} \, d\omega \,.$$