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1. Periodicity and Even/Odd functions (8 Points)

Definition : A function is

• even if f(x) = f(−x)

• odd if f(x) = −f(−x)

Determine which of the following functions are even, odd, or neither. And determine
which of the following functions is periodic and which is not. For the periodic ones,
determine their fundamental period1.
Write the answer in the box.

(e.g. sin(x) is a periodic function of period 2π and it’s an odd function.)

a) cos(2πxL ), where L > 0 is a constant.

b) sin(2x) + x3

c) sin(x2)

d) 4 cos(3x) + 16 sin(4x)

[Hint: Recall that every periodic, continuous function is bounded, and that every peri-
odic, differentiable functions has periodic derivative.]

Solution:

a) Periodic of fundamental period L and even because cos(−2πxL ) = cos(2πxL ).

b) Not periodic because of the x3 and odd.

− sin(−2x)− (−x)3 = sin(2x)− (−1)3x3 = sin(2x) + x3

1A periodic function of period P > 0 is a function f such that f(x + P ) = f(x) for all x ∈ R. The
fundamental period of a periodic function is the smallest period P .
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c) Not periodic because the derivative of sin(x2) is not bounded.

d

dx
(sin(x2)) = 2x cos(2x).

Even because sin((−x)2) = sin(x2)

d) It is periodic of fundamental period 2π.
If f(x) is periodic of period P1 and g(x) is periodic of period P2, then their sum
f(x) + g(x) is periodic of period the least common multiple

P = LCM(P1, P2)

of the two periods2. In this case 4 cos(3x) is periodic of fundamental period 2π/3
while 16 sin(4x) is periodic of fundamental period 2π/4, therefore their sum is
periodic of period

P = LCM

(
2π

3
,
π

2

)
= LCM (4, 3) · π

6
=

12

6
π = 2π .

It is easy to see that no smaller number is a period.

The function is neither even nor odd because cosine is an even function and sine
is an odd function.

2By the least common muliple of two real numbers we mean the smallest number P such that there are
positive integer numbers k1, k2 such that P = k1P1 = k2P2. In the case that there is no such number, we
define it to be +∞ and the consequence is that the function is not periodic.
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2. Laplace Transform (10 Points)

Find the solution f(t) of the following initial value problem:{
f ′′(t)− a2f(t) = a, t > 0,

f(0) = 2, f ′(0) = a,

where a > 0 is a positive constant.

[Hint: L−1
(

a
s(s2−a2)

)
= L−1

(
L(1)L(sinh(at))

)
and then use the convolution for La-

place transform.]

Solution:

We apply the Laplace transform to the ODE in the initial value problem. We denote
by F = L(f) the Laplace transform of the function f , and we denote the variable in
the new domain by s as usual (so F = F (s)).

The first term to transform is the second derivative f ′′, for which we use the formula:

L(f ′′) = s2F − sf(0)− f ′(0) = s2F − 2s− a.

The second term gives
L(−a2f) = −a2F.

Using the formula 1) in the Laplace transform table we find the right hand side

L(a) =
a

s
.

In conclusion the ODE becomes the following algebraic equation:

s2F − 2s− a− a2F =
a

s
=⇒ F =

a

s(s2 − a2)
+

2s

s2 − a2
+

a

s2 − a2
.

The last step is to take the inverse Laplace transform of F . For the first term we use
the hint and the convolution property (Property 7 on page 17 in the Lecture Notes):

L−1
(

a

s(s2 − a2)

)
= L−1

(
L(1)L(sinh(at))

)
=

∫ t

0
1 · sinh(at′) dt′

=
cosh(at)

a
− cosh(0)

a

=
cosh(at)

a
− 1

a
.
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For the second and third term, we use the formula 9) and 10) in the Laplace transform
table. Therefore we have,

f(t) = L−1(F ) = L−1
(

a

s(s2 − a2)
+

2s

s2 − a2
+

a

s2 − a2

)
= L−1

(
a

s(s2 − a2)

)
+ 2L−1

(
s

s2 − a2

)
+ L−1

(
a

s2 − a2

)
=

cosh(at)

a
− 1

a
+ 2 cosh(at) + sinh(at)

= (2 +
1

a
) cosh(at) + sinh(at)− 1

a
.

Hence,

f(t) = (2 +
1

a
) cosh(at) + sinh(at)− 1

a
.
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3. Fourier transform (8 Points)

Compute the Fourier transform of the following function (you don’t need to compute
the case w = 0):

f(x) =

{√
2π(1 + x), 0 ≤ x ≤ π,

0, otherwise.

Recall that the Fourier transform of f is given by

F(f)(w) =
1√
2π

∫ ∞
−∞

f(x)e−iwx dx.

Solution:

F(f)(w) =
1√
2π

∫ ∞
−∞

f(x)e−iwx dx

=
1√
2π

∫ π

0

√
2π(1 + x)e−iwx dx

=

∫ π

0
e−iwx dx+

∫ π

0
xe−iwx dx

=
e−iwx

−iw

∣∣∣∣∣
π

0

+

[
x
e−iwx

−iw

]π
0

−
∫ π

0

e−iwx

−iw
dx

=
1

−iw
(e−iwπ − 1) + π

e−iwπ

−iw
− e−iwx

(−iw)2

∣∣∣∣∣
π

0

=
1

−iw
(e−iwπ − 1) + π

e−iwπ

−iw
+
e−iwπ

w2
− 1

w2

=

(
1

−iw
+

π

−iw
+

1

w2

)
e−iwπ +

1

iw
− 1

w2

=

(
i

w
+
iπ

w
+

1

w2

)
e−iwπ − i

w
− 1

w2
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4. Wave Equation with D’Alembert solution (12 Points)

Let c > 0. Consider the following problem:
utt = c2uxx, x ∈ R, t ≥ 0

u(x, 0) = 1
c arctan(x), x ∈ R

ut(x, 0) = 1
1+x2

, x ∈ R.

Find the solution u(x, t). You may use D’Alembert formula.
[Simplify the expression as much as possible: no unsolved integrals].

Solution:

D’Alembert’s formula for the solution of the wave equation is:

u(x, t) =
1

2
(f(x+ ct) + f(x− ct)) +

1

2c

∫ x+ct

x−ct
g(s) ds.

With our given initial conditions we get

u(x, t) =
1

2

(
1

c
arctan(x+ ct) +

1

c
arctan(x− ct)

)
+

1

2c

∫ x+ct

x−ct

1

1 + s2
ds

=
1

2c
(arctan(x+ ct) + arctan(x− ct)) +

1

2c
arctan(s)

∣∣∣∣∣
x+ct

x−ct

=
1

2c
(arctan(x+ ct) + arctan(x− ct)) +

1

2c
(arctan(x+ ct)− arctan(x− ct))

=
1

c
arctan(x+ ct)

Hence, the solution is

u(x, t) =
1

c
arctan(x+ ct).
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5. Wave Equation with inhomogeneous boundary conditions (15 Points)

Find the solution of the following wave equation (with inhomogeneous boundary
conditions) on the interval [0, π]:

utt = c2uxx, t ≥ 0, x ∈ [0, π]

u(0, t) = 3π2, t ≥ 0

u(π, t) = 7π, t ≥ 0

u(x, 0) = 2 sin(5x) + sin(4x) + (7− 3π)x+ 3π2, x ∈ [0, π]

ut(x, 0) = 0. x ∈ [0, π]

(1)

You must proceed as follows.

a) Find the unique function w = w(x) with w′′(x) = 0, w(0) = 3π2, and w(π) = 7π.

Solution:

The only functions with second derivative zero are the linear functions

w(x) = αx+ β, α, β ∈ R.

Imposing the boundary conditions we find the right coefficients{
3π2 = w(0) = α · 0 + β

7π = w(π) = α · π + β
⇔

{
α = 7π−3π2

π

β = 3π3
⇔ w(x) = (7− 3π)x+ 3π2.

b) Define v(x, t) := u(x, t)−w(x). Formulate the corresponding problem for v, equi-
valent to (1).

Solution:

The PDE doesn’t change because w is independent of time and has second deri-
vative in x zero. The boundary conditions become homogeneous (that’s why we
chose this w)

v(0, t) = u(0, t)− w(0) = 3π2 − 3π2 = 0

v(π, t) = u(π, t)− w(π) = 7π − (7− 3π)π − 3π2 = 0.

The initial position of the wave changes in

v(x, 0) = u(x, 0)− w(x) = 2 sin(5x) + sin(4x) + (7− 3π)x+ 3π2 − (7− 3π)x− 3π2

= 2 sin(5x) + sin(4x),

while the initial speed doesn’t change (because, again, w is independent of time).
Finally 

vtt = c2vxx, t ≥ 0, x ∈ [0, π]

v(0, t) = v(π, t) = 0, t ≥ 0

v(x, 0) = 2 sin(5x) + sin(4x), x ∈ [0, π]

vt(x, 0) = 0. x ∈ [0, π]
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c) (i) Find, using the formula from the script, the solution v(x, t) of the problem you
have just formulated.
Solution:
This is a standard homogeneous wave equation with homogeneous boundary
conditions. The formula from the script is

v(x, t) =
+∞∑
n=1

(
Bn cos(λnt) +B∗n sin(λnt)

)
sin
(nπ
L
x
)
, λn =

cnπ

L

(L=π)
=

+∞∑
n=1

(
Bn cos(cnt) +B∗n sin(cnt)

)
sin(nx).

The coefficients B∗n = 0, because the initial speed is zero, while the coefficients
Bn are the Fourier coefficients of the odd, 2π-periodic extension of the initial
position datum v(x, 0) = 2 sin(5x) + sin(4x), that is:

+∞∑
n=1

Bn sin(nx) = 2 sin(5x) + sin(4x).

By identifying the term we have, B4 = 1, B5 = 2 and Bn = 0 otherwise.
Finally we get the following solution

v(x, t) = cos(4ct) sin(4x) + 2 cos(5ct) sin(5x).

(ii) Write down explicitly the solution u(x, t) of the original problem (1).

Solution:

The solution u(x, t) of the inhomogeneous problem is

u(x, t) = cos(4ct) sin(4x) + 2 cos(5ct) sin(5x) + (7− 3π)x+ 3π2.
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6. Separation of variables for the Heat equation (15 Points)

Consider the following time-dependent version of the heat equation on the interval
[0, L]. We also impose boundary conditions and we look for a solution u = u(x, t) such
that: 

ut = (1 + t)uxx, x ∈ [0, L], t ∈ [0,+∞),

u(0, t) = 0, t ∈ [0,+∞),

u(L, t) = 0, t ∈ [0,+∞),

u(x, 0) = f(x), x ∈ [0, L].

Where f is a given function. The Fourier series of the 2L periodic odd extension of f
is given by

f(x) :=
∞∑
n=1

π2

(8 + n)2
sin
(nπ
L
x
)
.

Find the solution u(x, t) using separation of variable. Proceed as in the lecture and
adapt the steps if necessary.

Solution:

We use separation of variable u(x, t) = F (x)G(t). The differential equation becomes:

F (x)Ġ(t) = (1 + t)F ′′(x)G(t),

which is convenient to rewrite as

F ′′(x)

F (x)
=

Ġ(t)

(1 + t)G(t)

because it becomes clear that we are comparing a function of x with a function of t,
and the only way that this equality might be true is that both these functions are equal
and constant:

F ′′(x)

F (x)
=

Ġ(t)

(1 + t)G(t)
= k, k ∈ R.

The boundary conditions are

u(0, t) = F (0)G(t) = 0 and u(L, t) = F (L)G(t) = 0 ∀t ∈ [0,+∞)

which in order to be true, excluding the trivial solution G(t) ≡ 0, become:

F (0) = F (L) = 0.

In other words the initial PDE with boundary conditions becomes the system of coupled
equations {

F ′′(x) = kF (x),

F (0) = F (L) = 0,
and Ġ(t) = k(1 + t)G(t).

We first solve the system for F (x), distinguishing the cases of k positive, zero, or
negative. For k > 0 the general solution of the ODE is

F (x) = C1e
√
kx + C2e

−
√
kx,
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which is, however, not compatible with the boundary conditions, in the sense that the
only solution of this form satisfying the boundary conditions is the trivial solution:
C1 = C2 = 0. In fact

0 = F (0) = C1 + C2 ⇔ C2 = −C1 =⇒ F (x) = C1

(
e
√
kx − e−

√
kx
)

but then imposing the other condition:

0 = F (L) = C1

(
e
√
kL − e−

√
kL
)
⇔ either C1 = 0

or e2
√
kL = 1

which implies C1 = 0 (and consequently C2 = −C1 = 0) because 2
√
kL 6= 0 and

therefore its exponential is not 1.

For k = 0 the general solution is F (x) = C1x + C2 which is also not compatible with
boundary conditions unless C1 = C2 = 0. In fact

0 = F (0) = C2 =⇒ F (x) = C1x

and then
0 = F (L) = C1L ⇔ C1 = 0.

It remains the case k < 0, in which its convenient to write it in the form k = −p2 for
positive real number p, and general solutions of F ′′ = −p2F are:

F (x) = A cos(px) +B sin(px).

We impose the boundary conditions:

0 = F (0) = A =⇒ F (x) = B sin(px)

and

0 = F (L) = B sin(pL)
(if B 6= 0)⇔ pL = nπ, n ∈ Z≥1

Conclusion: we have a nontrivial solution for each n ≥ 1, k = kn = −n2π2

L2 :

Fn(x) = Bn sin
(nπ
L
x
)
.

The corresponding equation for G(t) is

Ġ = −(1 + t)
n2π2

L2
G

which has general solution

Gn(t) = Cne−
n2π2

L2 (t+ t2

2
).

The conclusion is that for every n ≥ 1 we have a solution

un(x, t) = Fn(x)Gn(t) = Ane−
n2π2

L2 (t+ t2

2
) sin

(nπ
L
x
)
, with An = BnCn.
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Then by the Superposition Principle, the function

u(x, t) =
+∞∑
n=1

un(x, t) =
+∞∑
n=1

Ane−
n2π2

L2 (t+ t2

2
) sin

(nπ
L
x
)

is also a solution. By imposing the initial condition u(x, 0) = f(x) , we have

+∞∑
n=1

An sin
(nπ
L
x
)

=
∞∑
n=1

π2

(8 + n)2
sin
(nπ
L
x
)
.

Therefore,

An =
π2

(8 + n)2
.

Hence the final solution is given by,

u(x, t) =
+∞∑
n=1

un(x, t) =
+∞∑
n=1

π2

(8 + n)2
e−

n2π2

L2 (t+ t2

2
) sin

(nπ
L
x
)
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