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1. Classification of PDEs (8 Points)

Definition : The order of a PDE is the order of the highest derivative in the PDE.

Consider the following PDEs (in what follows, u = u(x, y) is a function of two variables
x and y).

State the order of the PDE and for second order PDE, classify each of them (hyperbolic,
parabolic, elliptic, mixed type (you don’t need to draw the region in this case)).

a) uxx + yuyy = tan(u).

b) ux + auy + u3 = 0, where a > 0 is a positive constant.

c) y2uxxx + (π + 2)uyyuxx + ux = 2uy + u.

d) πuxx + 2euxy + πuyy = 0, where e is the Euler’s number (e ≈ 2.718).

Solution:

A general second order, linear, PDE has the form:

Auxx + 2Buxy + Cuyy = F (x, y, u, ux, uy) ,

where A,B,C can be themselves functions of the variables (x, y). The PDE is called
hyperbolic, parabolic or elliptic, if the coefficient AC−B2 is, respectively, smaller, equal
or greater than zero. When the sign of the coefficient is not constant the equation is
of mixed type.

a) (3 Points) It’s a second order PDE and AC −B2 = y which changes sign, so the
PDE is of mixed type.

b) (1 Point) It’s a first order PDE.

c) (1 Point) It’s a third order PDE.

d) (3 Points) It’s a second order PDE and AC−B2 = π2− e2 > 0 =⇒ elliptic.
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2. Laplace Transform (10 Points)

Find the solution f(t) of the following initial value problem:{
f ′′(t) = 3 + u(t− a)− δ(t− π), t > 0,

f(0) = b, f ′(0) = c,

where a, b, c > 0 are positive constants.

Solution:

We apply the Laplace transform to the ODE in the initial value problem. We denote
by F = L(f) the Laplace transform of the function f , and we denote the variable in
the new domain by s as usual (so F = F (s)).

The first term to transform is the second derivative f ′′, for which we use the formula:

L(f ′′) = s2F − sf(0)− f ′(0) = s2F − sb− c.

The term in the right hand side becomes by linearity and using the table of the Laplace
transform above,

L(3 + u(t− a)− δ(t− π)) = L(3) + L(u(t− a))− L(δ(t− π))

=
3

s
+
e−as

s
− e−πs.

In conclusion the ODE becomes the following algebraic equation:

s2F − sb− c =
3

s
+
e−as

s
− e−πs =⇒ F =

3

s3
+
e−as

s3
− e−πs

s2
+
b

s
+

c

s2
.

The last step is to take the inverse Laplace transform of F . We use the t-shifting
property for the second and third term,

f(t) = L−1(F ) = L−1
(

3

s3
+
e−as

s3
− e−πs

s2
+
b

s
+

c

s2

)
=

3

2
L−1

(
2

s3

)
+

1

2
L−1

(
e−as

2

s3

)
− L−1

(
e−πs

1

s2

)
+ bL−1

(
1

s

)
+ cL−1

(
1

s2

)
=

3

2
t2 +

1

2
u(t− a)(t− a)2 − u(t− π)(t− π) + b+ ct.

Hence,

f(t) =
3

2
t2 +

1

2
u(t− a)(t− a)2 − u(t− π)(t− π) + b+ ct.
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3. Fourier Series (10 Points)

Compute the real Fourier series of the function f(x) = sin(5πxL ) + cos(4πxL ) + |x| on the
interval [−L,L]. Where |x| is the absolute value of x.

|x| =

{
x, 0 ≤ x ≤ L,
−x, −L ≤ x ≤ 0.

Solution 1:

We compute the real Fourier coefficients of f(x). The first two terms have already the
form of a Fourier series, so we don’t need to compute their coefficients.

The function |x| is an even function, therefore the coefficients bn = 0. And we use
the formulas given by Theorem 3.10 on page 30 in the Lecture Notes to compute the
coefficient a0 and an. Then,

a0 =
1

L

∫ L

0
|x| dx =

1

L

∫ L

0
x dx =

1

L

1

2
x2
∣∣∣x=L
x=0

=
1

L

1

2
L2 =

1

2
L.

And for an we have,

an =
2

L

∫ L

0
|x| cos

(nπ
L
x
)
dx =

2

L

∫ L

0
x cos

(nπ
L
x
)
dx

=
2

L

cos
(
nπ
L x
)

+
(
nπ
L

)
x sin

(
nπ
L x
)(

nπ
L

)2
∣∣∣∣∣
x=L

x=0

=
2

L

cos(nπ)(
nπ
L

)2 − 2

L

1(
nπ
L

)2
=

2L

n2π2
((−1)n − 1).

Hence the Fourier series is

f(x) = sin

(
5πx

L

)
+ cos

(
4πx

L

)
+

1

2
L+

∞∑
n=1

2L

n2π2
((−1)n − 1) cos

(nπ
L
x
)
.

If we look at the cases when n is even or odd, we have

an =

{
0, if n is even,
−4L
n2π2 , if n is odd.

Therefore,

f(x) = sin

(
5πx

L

)
+ cos

(
4πx

L

)
+

1

2
L−

∞∑
j=0

4L

(2j + 1)2π2
cos

(
(2j + 1)π

L
x

)
.
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Solution 2 (Longer solution):

We can also compute the real Fourier coefficient of the function f . In this case, the
function f is neither even nor odd. So we can not use the formula given by Theorem
3.10. We use instead the formulas (3.2) and (3.3) on page 26 and 27 in the Lecture
Notes and we get

a0 =
1

2L

∫ L

−L
f(x) dx =

1

2L

∫ L

−L

(
sin

(
5πx

L

)
+ cos

(
4πx

L

)
+ |x|

)
dx

=
1

2L

∫ L

−L
sin

(
5πx

L

)
dx+

1

2L

∫ L

−L
cos

(
4πx

L

)
dx+

1

2L

∫ L

−L
|x| dx

= 0 + 0 +
1

2L

∫ 0

−L
−x dx+

1

2L

∫ L

0
x dx

=
1

2L

(−1)

2
x2
∣∣∣x=0

x=−L
+

1

2L

1

2
x2
∣∣∣x=L
x=0

=
1

2L

1

2
L2 +

1

2L

1

2
L2 =

1

2
L.

For an we have,

an =
1

L

∫ L

−L
f(x) cos

(nπ
L
x
)
dx

=
1

L

∫ L

−L

(
sin

(
5πx

L

)
+ cos

(
4πx

L

)
+ |x|

)
cos
(nπ
L
x
)
dx

=
1

L

∫ L

−L
sin

(
5πx

L

)
cos
(nπ
L
x
)
dx︸ ︷︷ ︸

I1

+
1

L

∫ L

−L
cos

(
4πx

L

)
cos
(nπ
L
x
)
dx︸ ︷︷ ︸

I2

+
1

L

∫ L

−L
|x| cos

(nπ
L
x
)
dx︸ ︷︷ ︸

I3

.

To compute I1 and I2 we use the Properties of Orthogonality of the trigonometric
system on page 24 in the Lecture Notes.

I1 = 0 and I2 =

{
0, if n 6= 4,
1
LL = 1, if n = 4.

For I3 we use that |x| cos
(
nπ
L x
)

is an even function.

I3 =
1

L

∫ L

−L
|x| cos

(nπ
L
x
)
dx =

2

L

∫ L

0
x cos

(nπ
L
x
)
dx

=
2

L

cos
(
nπ
L x
)

+
(
nπ
L

)
x sin

(
nπ
L x
)(

nπ
L

)2
∣∣∣∣∣
x=L

x=0

=
2

L

cos(nπ)(
nπ
L

)2 − 2

L

1(
nπ
L

)2
=

2L

n2π2
((−1)n − 1).
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At the end we have for an,

an =

{
2L
n2π2 ((−1)n − 1), if n 6= 4,

1, if n = 4,

or

an =


0, if n is even and n 6= 4,

1, if n = 4,
−4L
n2π2 , if n is odd.

Finally we compute bn,

bn =
1

L

∫ L

−L
f(x) sin

(nπ
L
x
)
dx

=
1

L

∫ L

−L

(
sin

(
5πx

L

)
+ cos

(
4πx

L

)
+ |x|

)
sin
(nπ
L
x
)
dx

=
1

L

∫ L

−L
sin

(
5πx

L

)
sin
(nπ
L
x
)
dx︸ ︷︷ ︸

J1

+
1

L

∫ L

−L
cos

(
4πx

L

)
sin
(nπ
L
x
)
dx︸ ︷︷ ︸

J2

+
1

L

∫ L

−L
|x| sin

(nπ
L
x
)
dx︸ ︷︷ ︸

J3

.

To compute J1 and J2 we use the Properties of Orthogonality of the trigonometric
system on page 24 in the Lecture Notes.

J1 =

{
0, if n 6= 5,
1
LL = 1, if n = 5,

and J2 = 0.

For I3 we use that |x| is an even function.

I3 =
1

L

∫ L

−L
|x| sin

(nπ
L
x
)
dx = 0.

Therefore

bn =

{
0, if n 6= 5,

1, if n = 5.

Hence the Fourier series is

f(x) =
1

2
L+

∞∑
n=1
n 6=4

2L

n2π2
((−1)n − 1) cos

(nπ
L
x
)

+ cos

(
4πx

L

)
+ sin

(
5πx

L

)
.
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4. Wave Equation with D’Alembert solution (12 Points)

Let c > 0. Consider the following problem:
utt = c2uxx, x ∈ R, t ≥ 0,

u(x, 0) = 1
c

(
(x2 − 2) sin(x) + 2x cos(x)

)
, x ∈ R,

ut(x, 0) = x2 cos(x), x ∈ R.

Find the solution u(x, t). You may use D’Alembert formula.
[Simplify the expression up to the point of solving the integral. No further simplification
is necessary].

Solution:

D’Alembert’s formula for the solution of the wave equation is:

u(x, t) =
1

2
(f(x+ ct) + f(x− ct)) +

1

2c

x+ct∫
x−ct

g(s) ds.

With our given initial conditions we get

u(x, t) =
1

2

(
1

c

(
((x+ ct)2 − 2) sin(x+ ct) + 2(x+ ct) cos(x+ ct)

))
+

1

2

(
1

c

(
((x− ct)2 − 2) sin(x− ct) + 2(x− ct) cos(x− ct)

))
+

1

2c

∫ x+ct

x−ct
s2 cos(s)ds

=
1

2c

(
((x+ ct)2 − 2) sin(x+ ct) + 2(x+ ct) cos(x+ ct)

)
+

1

2c

(
((x− ct)2 − 2) sin(x− ct) + 2(x− ct) cos(x− ct)

)
+

1

2c

(
(s2 − 2) sin(s) + 2s cos(s)

) ∣∣∣∣∣
x+ct

x−ct

=
1

2c

(
((x+ ct)2 − 2) sin(x+ ct) + 2(x+ ct) cos(x+ ct)

)
+

1

2c

(
((x− ct)2 − 2) sin(x− ct) + 2(x− ct) cos(x− ct)

)
+

1

2c

(
((x+ ct)2 − 2) sin(x+ ct) + 2(x+ ct)) cos(x+ ct)

)
− 1

2c

(
((x− ct)2 − 2) sin(x− ct) + 2(x− ct) cos(x− ct)

)
=

1

c

(
((x+ ct)2 − 2) sin(x+ ct) + 2(x+ ct) cos(x+ ct)

)
.

Hence, the solution is

u(x, t) =
1

c

(
((x+ ct)2 − 2) sin(x+ ct) + 2(x+ ct) cos(x+ ct)

)
.
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5. Heat Equation with inhomogeneous boundary conditions (15 Points)

Find the general solution of the Heat equation (with inhomogeneous boundary
conditions) for the following problem:

ut = c2uxx, 0 ≤ x ≤ L, t ≥ 0,

u(0, t) = 0, t ≥ 0,

u(L, t) = L, t ≥ 0,

u(x, 0) = f(x) + x, 0 ≤ x ≤ L,

(1)

where L > 0 is a constant, and f(x) is any (twice differentiable) function such that
f(0) = 0, f(L) = 0.

You must proceed as follows.

a) Find the unique function w = w(x) with w′′ = 0, w(0) = 0, and w(L) = L.

Solution:

The only functions with second derivative zero are the linear functions

w(x) = αx+ β, α, β ∈ R.

Imposing the boundary conditions we find the right coefficients{
0 = w(0) = α · 0 + β

L = w(L) = α · L+ β
⇔

{
α = L

L = 1

β = 0
⇔ w(x) = x.

b) Define v(x, t) := u(x, t)−w(x). Formulate the corresponding problem for v, equi-
valent to (1).

Solution:

The PDE doesn’t change because w is independent of time and has second deri-
vative in x zero. The boundary conditions become homogeneous (that’s why we
chose this w)

v(0, t) = u(0, t)− w(0) = 0− 0 = 0 and v(L, t) = u(L, t)− w(L) = L− L = 0.

The initial condition becomes

v(x, 0) = u(x, 0)− w(x) = f(x) + x− w(x) = f(x) + x− x = f(x).

Finally, the boundary value problem for v with homogeneous boundary conditions
reads as 

vt = c2vxx, 0 ≤ x ≤ L, t ≥ 0,

v(0, t) = 0, t ≥ 0,

v(π, t) = 0, t ≥ 0,

v(x, 0) = f(x), 0 ≤ x ≤ L.
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c) The Fourier series of the 2L periodic odd extension of f is given by

f(x) :=
+∞∑
n=1

(4n+ 2)

(n2 + πn− 1)3
sin
(nπ
L
x
)
.

(i) Find, using the formula from the script, the solution v(x, t) of the problem you
have just formulated.
Solution:
This is a standard homogeneous heat equation with homogeneous boundary
conditions. The formula from the script is

v(x, t) =

+∞∑
n=1

Bn sin
(nπ
L
x
)
e−λ

2
nt,

where λ2n =
(
cnπ
L

)2
. We still need to find the coefficients Bn. Using the initial

condition v(x, 0) = f(x) we find

+∞∑
n=1

Bn sin
(nπ
L
x
)

=

+∞∑
n=1

(4n+ 2)

(n2 + πn− 1)3
sin
(nπ
L
x
)
.

Therefore, by identifying the terms we have,

Bn =
(4n+ 2)

(n2 + πn− 1)3
.

Finally, the solution is

v(x, t) =
+∞∑
n=1

(4n+ 2)

(n2 + πn− 1)3
sin
(nπ
L
x
)
e−λ

2
nt.

(ii) Write down explicitly the solution u(x, t) of the original problem (1).
Solution:
For u we get the following expression

v(x, t) =
+∞∑
n=1

(4n+ 2)

(n2 + πn− 1)3
sin
(nπ
L
x
)
e−λ

2
nt + x.
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6. PDE with Fourier transform (15 Points)

Find the solution u = u(x, t) of the following equation using the Fourier transform:{
ux + ut + u = 0 , x ∈ R, t > 0

u(x, 0) = f(x) , x ∈ R.

[Hint: You can proceed as follow:

a) Take the Fourier transform with respect to the x variable of the PDE and the
initial condition and transform them into an ODE.

b) Solve the ODE.

c) Take the inverse Fourier transform of the solution of the ODE to find the solution
of the PDE.]

Solution:

We take the Fourier transform with respect to the x variable of the two equations. We
use property 1) (linearity) and property 2) (x-derivative) on page 44 of the Lecture
Notes and for the the t-derivative, we have the formula on top of page 67. Therefore
the PDE gives

iwû(w, t) +
∂û

∂t
(w, t) + û(w, t) = 0

and the initial condition gives
û(w, 0) = f̂(w).

That’s an ODE in t, we can write it as

∂û

∂t
(w, t) = (−iw − 1)û(w, t)

and the solution is
û(w, t) = A(w)e(−iw−1)t.

The initial condition above implies A(w) = f̂(w). Therefore

û(w, t) = e−tf̂(w)e−iwt.
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Finally we take the inverse Fourier transform of this last equation,

F−1(û)(x) =
1√
2π

+∞∫
−∞

û(w, t)eixw dw

=
1√
2π

+∞∫
−∞

e−tf̂(w)e−iwteixw dw

=
1√
2π

+∞∫
−∞

e−tf̂(w)ei(x−t)w dw

=
1√
2π

+∞∫
−∞

(
F(e−tf)(w)

)
ei(x−t)w dw

= F−1
(
F(e−tf)

)
(x− t)

= e−tf(x− t).

Hence the solution is given by

u(x, t) = e−tf(x− t).
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