

D-MAVT, D-MATL

Exam Analysis III

401-0363-10L

Last Name

First Name

Legi-Nr.

000

XX-000-000 *Exam-No.*

Please do not turn the page yet!

Please take note of the information on the answer-booklet.

($F = \mathcal{L}(f)$) ($u = \text{Heaviside function}, \delta = \text{Dirac's delta function}$) Laplace Transforms:

	f(t)	F(s)
1)	1	$\frac{1}{s}$
2)	t	$\frac{1}{s^2}$
3)	t^2	$\frac{2}{s^3}$
4)	$t^n, n \in \mathbb{Z}_{\geq 0}$	$\frac{n!}{s^{n+1}}$

	f(t)	F(s)
5)	$t^a, a > 0$	$\frac{\Gamma(a+1)}{s^{a+1}}$
6)	e^{at}	$\frac{1}{s-a}$
7)	$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$
8)	$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$

	f(t)	F(s)
9)	$\cosh(at)$	$\frac{s}{s^2 - a^2}$
10)	$\sinh(at)$	$\frac{a}{s^2 - a^2}$
11)	u(t-a)g(t-a)	$\mathcal{L}(g)e^{-as}$
12)	$\delta(t-a)$	e^{-as}
12)	O(t-a)	C

Fourier transforms:

	f(x)	$\widehat{f}(\omega)$
1)	e^{-ax^2}	$\frac{1}{\sqrt{2a}}e^{\frac{-\omega^2}{4a}}$

	f(x)	$\widehat{f}(\omega)$
2)	$\begin{cases} e^{-ax}, & x \ge 0, \\ 0, & x < 0. \end{cases}$	$\frac{1}{\sqrt{2\pi}(a+i\omega)}$

$$\begin{array}{c|cccc}
f(x) & \widehat{f}(\omega) \\
\hline
3) & \begin{cases}
1, & |x| < 1, \\
0, & |x| > 1.
\end{cases} & \sqrt{\frac{2}{\pi}} \frac{\sin(\omega)}{\omega}
\end{array}$$

 $(n \in \mathbb{Z}_{>1})$ Indefinite Integrals:

1)
$$\int x \cos\left(\frac{n\pi}{L}x\right) dx = \frac{\cos\left(\frac{n\pi}{L}x\right) + \left(\frac{n\pi}{L}\right) x \sin\left(\frac{n\pi}{L}x\right)}{\left(\frac{n\pi}{L}\right)^2} \quad (+\text{constant})$$

1)
$$\int x \cos\left(\frac{n\pi}{L}x\right) dx = \frac{\cos\left(\frac{n\pi}{L}x\right) + \left(\frac{n\pi}{L}\right)x \sin\left(\frac{n\pi}{L}x\right)}{\left(\frac{n\pi}{L}\right)^2} \quad (+\text{constant})$$
2)
$$\int x^2 \cos\left(\frac{n\pi}{L}x\right) dx = \frac{\left(\left(\frac{n\pi}{L}\right)^2 x^2 - 2\right) \sin\left(\frac{n\pi}{L}x\right) + 2\left(\frac{n\pi}{L}\right)x \cos\left(\frac{n\pi}{L}x\right)}{\left(\frac{n\pi}{L}\right)^3} \quad (+\text{constant})$$

3)
$$\int x \sin\left(\frac{n\pi}{L}x\right) dx = \frac{\sin\left(\frac{n\pi}{L}x\right) - \left(\frac{n\pi}{L}\right)x \cos\left(\frac{n\pi}{L}x\right)}{\left(\frac{n\pi}{L}\right)^2} \qquad (+\text{constant})$$

4)
$$\int x^2 \sin\left(\frac{n\pi}{L}x\right) dx = \frac{\left(2 - \left(\frac{n\pi}{L}\right)^2 x^2\right) \cos\left(\frac{n\pi}{L}x\right) + 2\left(\frac{n\pi}{L}\right) x \sin\left(\frac{n\pi}{L}x\right)}{\left(\frac{n\pi}{L}\right)^3} \quad (+\text{constant})$$

5)
$$\int \frac{1}{1+x^2} dx = \arctan(x) \quad (+\text{constant})$$

You can use these formulas without justification.

Question 1

1.MC1 [3 Points] Consider the following initial value problem:

$$\begin{cases} f'''(t) = \cos(2t) + e^{-3t}, & t > 0, \\ f(0) = 0 & f'(0) = 0, & f''(0) = \pi. \end{cases}$$

Find the Laplace transform $\mathcal{L}(f) = F$ of the function f.

(A)
$$F(s) = \frac{1}{s^2(s^2+2)} + \frac{1}{s^3(s+3)} - \frac{\pi}{s^3}$$
.

(B)
$$F(s) = \frac{1}{s(s^2+2)} + \frac{1}{s^2(s+3)} + \frac{\pi}{s^2}$$
.

(C)
$$F(s) = \frac{1}{s^2(s^2+4)} + \frac{1}{s^3(s+3)} + \frac{\pi}{s^3}$$
.

(D)
$$F(s) = \frac{1}{s^2(s^2+4)} + \frac{1}{s^3(s+3)} - \frac{\pi}{s^3}$$
.

1.MC2 [3 Points] Find the inverse Laplace transform of

$$F(s) = \left(\frac{2}{s^3} + 1\right)e^{-as} + \frac{1}{s^2 - b^2},$$

where a and b are two positive constants.

(A)
$$f(t) = u(t-a)(t-a) + \delta(t-a) + \frac{1}{b}\sinh(bt)$$
.

(B)
$$f(t) = u(t-a)(t-a)^2 + \delta(t-a) + \frac{1}{b}\sinh(bt)$$
.

(C)
$$f(t) = u(t-a)(t-a)^2 + \delta(t+a) + \frac{1}{b^2}\sinh(bt)$$
.

(D)
$$f(t) = u(t-a)(t-a)^2 + \delta(t-a) + \sinh(bt)$$
.

1.MC3 [3 Points] Let f be a continuous function such that $\lim_{x\to\infty} f(x) = 0$. Solve the following differential equation using the Fourier transform

$$f''''(x) + 2f''(x) + f(x) = g(x).$$

where g is a given by

$$g(x) = \begin{cases} 1, & |x| < 1, \\ 0, & |x| > 1. \end{cases}$$

(A)
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\sqrt{2}}{\sqrt{\pi}(\omega^2 + 1)^2} \sin(\omega) e^{i\omega x} d\omega$$
.

(B)
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\sqrt{2}}{\sqrt{\pi}\omega(\omega^4 - \omega^2 + 1)^2} \sin(\omega) e^{i\omega x} d\omega$$
.

(C)
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\sqrt{2}}{\sqrt{\pi}\omega(\omega^4 - \omega^2 + 1)^2} \cos(\omega) e^{i\omega x} d\omega$$
.

(D)
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\sqrt{2}}{\sqrt{\pi}\omega(\omega^2 - 1)^2} \sin(\omega) e^{i\omega x} d\omega$$
.

Exam-No.: 000 XX-XX-XX-000-000 Page 3 of 7

1.MC4 [1 Point] Determine if the following function is even, odd, or neither and if it is periodic or not.

$$\cos(2\pi x + 5) + \frac{e^{ix} + e^{-ix}}{2}$$

- (A) The function is periodic but not even or odd.
- (B) The function is even but not periodic.
- (C) The function is odd but not periodic.
- (D) The function is periodic and even.
- **1.MC5** [3 Points] Let f be a 2π periodic continuous and differentiable function such that $f'(0) = \frac{\pi^6}{945}$. The Fourier series of f on the interval $[-\pi, \pi]$ is given by

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{\pi n^7} \sin(\pi nx)$$

Find the value of the numerical series

$$\sum_{n=1}^{\infty} \frac{1}{n^6}.$$

- (A) $\sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}$.
- (B) $\sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{2\pi^6}{945}$.
- (C) $\sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{n\pi^6}{945}$.
- (D) $\sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945} 1$.
- **1.MC6** [3 Points] Consider the following PDE (partial differential equation) for the function u = u(x, y):

$$u_{xx} + 2\cos(x)u_{xy} + yu_{yy} - u_x + u_y = \sin(x).$$

Is the PDE hyperbolic, parabolic, elliptic or of mixed type?

- (A) hyperbolic.
- (B) parabolic.
- (C) elliptic.
- (D) mixed type.

1.MC7 [3 Points] Wave equation with D'Alembert solution.

Consider the following wave equation:

$$\begin{cases} u_{tt} = c^2 u_{xx}, & x \in \mathbb{R}, \ t \ge 0, \\ u(x,0) = e^{2x}, & x \in \mathbb{R}, \\ u_t(x,0) = 0, & x \in \mathbb{R}. \end{cases}$$

Find the value of the solution u at position x = 0, i.e. u(0, t)

- (A) $u(0,t) = \cos(2ct)$.
- (B) $u(0,t) = \sin(2ct)$.
- (C) $u(0,t) = \sinh(2ct)$.
- (D) $u(0,t) = \cosh(2ct)$.
- **1.MC8** [3 Points] Let $u(x,y) = e^{-((x-1)^2 + (y-1)^2)}$. The maximum value of u in the disk of radius 4 centred at 0, denoted by D_4 , is at the point (x,y) = (1,1). That is

$$\max_{D_4} u(x, y) = u(1, 1).$$

Which of the following statements is true?

- (A) u is not constant in D_4 .
- (B) u is constant in D_4 .
- (C) The minimum of u is at the point (x, y) = (-1, -1)
- (D) We cannot conclude that (A), (B) and (C) are true.
- **1.MC9** [3 Points] Consider the Dirichlet problem for the Heat equation on an infinite bar,

$$\begin{cases} u_t(x,t) = u_{xx}(x,t), & x \in \mathbb{R}, \ t \ge 0, \\ u(x,0) = 0, & x \in \mathbb{R}. \end{cases}$$

- (A) Every constant function is a solution.
- (B) There is no solution.
- (C) The function u(x,t) = 0 is a solution.
- (D) We cannot conclude that (A), (B) and (C) are true.

Exam-No.: 000 XX-XX-XX-000-000 Page 5 of 7

Question 2

2.Q1 [15 Points] Wave Equation with inhomogeneous boundary conditions

Find the solution of the following wave equation (with inhomogeneous boundary conditions) on the interval $[0, \pi]$:

$$\begin{cases} u_{tt} = c^{2}u_{xx}, & t \geq 0, x \in [0, \pi] \\ u(0, t) = 10\pi^{2}, & t \geq 0 \\ u(\pi, t) = 10\pi^{2}, & t \geq 0 \\ u(x, 0) = 2\sin(5x) + \sin(4x) + 10\pi^{2}, & x \in [0, \pi] \\ u_{t}(x, 0) = -4\sin(2x). & x \in [0, \pi] \end{cases}$$

$$(1)$$

You must proceed as follows.

- a) Find the unique function w = w(x) with w''(x) = 0, $w(0) = 10\pi^2$, and $w(\pi) = 10\pi^2$.
- b) Define v(x,t) := u(x,t) w(x). Formulate the corresponding problem for v, equivalent to (17).
- c) (i) Find, using the formula from the script, the solution v(x,t) of the problem you have just formulated.
 - (ii) Write down explicitly the solution u(x,t) of the original problem (17).

Exam-No.: 000 XX-XX-XX-000-000 Page 6 of 7

Question 3

3.Q1 [10 Points] Dirichlet problem for Laplace equation on a rectangle

Find the general solution u = u(x, y) of the following Laplace equation on a rectangle, with nonzero boundary conditions on one edge of the rectangle:

$$\begin{cases} \nabla^2 u = 0, & 0 \le x \le a, 0 \le y \le b \\ u(x,0) = u(0,y) = 0, & 0 \le x \le a, 0 \le y \le b \\ u(x,b) = f(x), & 0 \le x \le a \\ u(a,y) = 0, & 0 \le y \le b \end{cases}$$

where f is given by

$$f(x) = x^2.$$

You can use the general formula directly to obtain the solution. For this exercise, no points will be given for detailing all the steps of the separation of variable.