

D-MAVT, D-MATL **Mock Exam Analysis III** 401-0363-10L

Please do not turn the page yet!

Please take note of the information on the answer-booklet.

	Laplace Transforms: $(F = \mathcal{L}(f))$													
	f(t)	F(s)			f(t)	F(s)			f(t)	F(s)				
1)	1	$\frac{1}{s}$		5)	$t^a, a > 0$	$\frac{\Gamma(a+1)}{s^{a+1}}$		9)	$\cosh(at)$	$\frac{s}{s^2-a^2}$				
2)	t	$\frac{1}{s^2}$		6)	e^{at}	$\frac{1}{s-a}$		10)	$\sinh(at)$	$\frac{a}{s^2-a^2}$				
3)	t^2	$\frac{2}{s^3}$		7)	$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$		11)	u(t-a)g(t-a)	$\mathcal{L}(g)e^{-as}$				
4)	$t^n, n \in \mathbb{Z}_{\geq 0}$	$\frac{n!}{s^{n+1}}$		8)	$\sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$		12)	$\delta(t-a)$	e^{-as}				
			ļ											

 $(\Gamma = \text{Gamma function}, u = \text{Heaviside function}, \delta = \text{Dirac's delta function})$

Fourier transforms:

$f(x) = \hat{f}(y)$		f(x)	$\widehat{f}(\omega)$		f(x)	$\widehat{f}(\omega)$
$\begin{array}{c c} f(x) & f(\omega) \\ \hline 1 & e^{-ax^2} & \frac{1}{\sqrt{2a}}e^{\frac{-\omega^2}{4a}} \end{array}$	2)	$\begin{cases} e^{-ax}, & x \ge 0, \\ 0, & x < 0. \end{cases}$	$\frac{1}{\sqrt{2\pi}(a+i\omega)}$	3)	$\begin{cases} 1, & x < 1, \\ 0, & x > 1. \end{cases}$	$\sqrt{\frac{2}{\pi}} \frac{\sin(\omega)}{\omega}$

Indefinite Integrals: $(n \in \mathbb{Z}_{\geq 1})$

1)
$$\int x \cos\left(\frac{n\pi}{L}x\right) dx = \frac{\cos\left(\frac{n\pi}{L}x\right) + \left(\frac{n\pi}{L}\right) x \sin\left(\frac{n\pi}{L}x\right)}{\left(\frac{n\pi}{L}\right)^2} \quad (+\text{constant})$$
2)
$$\int x^2 \cos\left(\frac{n\pi}{L}x\right) dx = \frac{\left(\left(\frac{n\pi}{L}\right)^2 x^2 - 2\right) \sin\left(\frac{n\pi}{L}x\right) + 2\left(\frac{n\pi}{L}\right) x \cos\left(\frac{n\pi}{L}x\right)}{\left(\frac{n\pi}{L}\right)^3} \quad (+\text{constant})$$
3)
$$\int x \sin\left(\frac{n\pi}{L}x\right) dx = \frac{\sin\left(\frac{n\pi}{L}x\right) - \left(\frac{n\pi}{L}\right) x \cos\left(\frac{n\pi}{L}x\right)}{\left(\frac{n\pi}{L}\right)^2} \quad (+\text{constant})$$
4)
$$\int x^2 \sin\left(\frac{n\pi}{L}x\right) dx = \frac{\left(2 - \left(\frac{n\pi}{L}\right)^2 x^2\right) \cos\left(\frac{n\pi}{L}x\right) + 2\left(\frac{n\pi}{L}\right) x \sin\left(\frac{n\pi}{L}x\right)}{\left(\frac{n\pi}{L}\right)^3} \quad (+\text{constant})$$
5)
$$\int \frac{1}{1 + x^2} dx = \arctan(x) \quad (+\text{constant})$$

Question 1

1.MC1 [3 Points] Let f be a solution of the following ordinary differential equation (ODE),

$$\begin{cases} f''(t) + \omega^2 f(t) = 0, \quad t > 0\\ f(0) = 1, \quad f'(0) = 2\omega, \end{cases}$$

where $\omega > 0$ is a positive constant. Find the Laplace transform $\mathcal{L}(f) = F$ of the function f.

(A) $F(s) = \frac{s}{s^2 + \omega^2} + \frac{2\omega}{s^2 + \omega^2}$. (B) $F(s) = \frac{1}{s^2 + \omega^2} + \frac{2s\omega}{s^2 + \omega^2}$. (C) $F(s) = \frac{2\omega}{s + \omega^2}$. (D) $F(s) = \frac{2\omega}{s^2 + \omega}$.

1.MC2 [3 Points] Find the inverse Laplace transform of the following function

$$F(s) = \frac{s+2}{s^2 - 10s + 25}.$$

- (A) $f(t) = e^{-5t}(1+7t)$.
- (B) $f(t) = e^{5t}(1+7t)$.
- (C) $f(t) = e^{5t}(1 7t)$.
- (D) $f(t) = e^{-5t}(1 7t)$.
- **1.MC3** [3 Points] Let f be a continuous function such that $\lim_{x\to\infty} f(x) = 0$. Solve the following differential equation using the Fourier transform

$$f(x) + f'(x) + 4f''(x) = \sqrt{2\pi}e^{-\pi x^2}.$$

(A)
$$f(x) = \int_{-\infty}^{\infty} \frac{1}{1+i\omega-4\omega^2} e^{-\frac{\omega^2}{4\pi}} e^{-i\omega x} d\omega.$$

(B)
$$f(x) = \int_{-\infty}^{\infty} \frac{1}{1+i\omega+4\omega^2} e^{-\frac{\omega^2}{4\pi}} e^{i\omega x} d\omega.$$

(C)
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{1+i\omega-4\omega^2} e^{-\frac{\omega^2}{4\pi}} e^{i\omega x} d\omega.$$

(D)
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{1+i\omega+4\omega^2} e^{-\frac{\omega^2}{4\pi}} e^{-i\omega x} d\omega.$$

1.MC4 [3 Points] The complex Fourier series of the function $\cosh(ax)$ on the interval $[-\pi, \pi)$ is given by

n

$$\sum_{n=-\infty}^{+\infty} \frac{(-1)^n a \sinh(a\pi)}{\pi (n^2 + a^2)} e^{inx}.$$

Find the value of the numerical series

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + a^2}$$

- (A) $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + a^2} = \frac{\pi}{2a\sinh(a\pi)}.$ (B) $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + a^2} = \frac{\pi}{2a\sinh(a\pi)} - \frac{1}{2a^2}.$ (C) $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + a^2} = \frac{2\pi}{a\sinh(a\pi)} - \frac{2}{a^2}.$ (D) $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + a^2} = \frac{2\pi}{a\sinh(a\pi)}.$
- (D) $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + a^2} = \frac{2\pi}{a \sinh(a\pi)}.$
- 1.MC5 [3 Points] Determine if the following function is even, odd, or neither and if it is periodic or not. If the function is periodic, determine the fundamental period.

$$15\cos(3x) + 3\cos(4x).$$

- (A) The function is even and periodic of fundamental period 2π .
- (B) The function is odd and periodic of fundamental period 2π .
- (C) The function is even and periodic of fundamental period π .
- (D) The function is odd and periodic of fundamental period π .
- **1.MC6** [3 Points] Consider the following PDE (partial differential equation) for the function u = u(x, y):

$$4u_{xx} + xu_x + 6u_{xy} - yu_y = -7u_{yy} + u_x.$$

Is the PDE hyperbolic, parabolic, elliptic or of mixed type ?

- (A) hyperbolic.
- (B) elliptic.
- (C) parabolic.
- (D) mixed type.

1.MC7 [3 Points] Wave equation with D'Alembert solution.

Let u(x,t) be the solution of the following problem

$$\begin{cases} u_{tt} = u_{xx}, & x \in \mathbb{R}, \ t > 0, \\ u(x,0) = f(x) = \begin{cases} 2, & |x| \le 14 \\ 0, & |x| > 14 \end{cases} & x \in \mathbb{R}, \\ u_t(x,0) = g(x) = \begin{cases} 1, & 3 \le x \le 4 \\ 0, & x \notin [3,4] \end{cases} & x \in \mathbb{R}. \end{cases}$$

Find the values of u at the point (x, t) = (10, 7), i.e. find u(10, 7)

- (A) u(10,7) = 8.
- (B) u(10,7) = 10.
- (C) $u(10,7) = \frac{3}{2}$.
- (D) $u(10,7) = \frac{5}{2}$.

1.MC8 [3 Points] Let u = u(x, y) be a harmonic function in D_2 the disk of radius 2 centred at 0. The maximum value of u is at $(x, y) = (\sqrt{2}, -\sqrt{2})$, i.e. $\max_{D_2} u(x, y) = u(\sqrt{2}, -\sqrt{2})$. Which of the following statements is true?

- (A) u is not constant in D_2 .
- (B) u is constant in D_2 .
- (C) There exists another point (x', y') in D_2 such that u(x, y) = u(x', y').
- (D) We cannot conclude that (A), (B) and (C) are true for every u.

1.MC9 [3 Points] Consider the Neumann problem for the following PDE,

$$\begin{cases} \nabla^2 u = f, & \text{in } D_2, \\ \frac{\partial u}{\partial n} = g, & \text{on } \partial D_2, \end{cases}$$

with D_2 the disk of radius 2 centred at 0 and f and g are two given functions such that

$$\int_{D_2} f(x) \, dx = 2,$$
 and $\int_{\partial D_2} g(x) \, dx = 2.$

Which of the following is true:

- (A) There are infinitely many solutions.
- (B) There is no solution.
- (C) There are two solutions.
- (D) We cannot conclude that (A), (B), or (C) are true.

Question 2

2.Q1 [15 Points] Separation of variables for the Heat equation

Consider the following time-dependent version of the Heat equation on the interval [0, 1]. We also impose boundary conditions and we look for a solution u = u(x, t) such that:

$$\begin{cases} u_t(x,t) = a(t)u_{xx}(x,t), & x \in [0,1], t \in [0,+\infty), \\ u(0,t) = 0, & t \in [0,+\infty), \\ u(1,t) = 0, & t \in [0,+\infty), \\ u(x,0) = 2\sin(3\pi x) + \sin(7\pi x), & x \in [0,1], \end{cases}$$

where a(t) is a given continuous function. Find the solution u(x,t) using separation of variable. Proceed as in the lecture and adapt the steps if necessary.

Question 3

3.Q1 [10 Points] Dirichlet problem on a region with symmetries

Find the solution $u(r, \theta)$ of the following Dirichlet problem on the disk of radius R in polar coordinates:

$$\begin{cases} \nabla^2 u = 0, & 0 \le r \le R, 0 \le \theta \le 2\pi, \\ u(R, \theta) = \sin^2(\theta) + 8\cos^3(\theta), & 0 \le \theta \le 2\pi. \end{cases}$$

You should give the answer without unsolved integral and you can use the formulas developed in the lecture.

[<u>*Hint:*</u> Don't try to find the solution in the Poisson integral form.]

[<u>*Hint:*</u> Remember the trigonometric formulas

$$\sin^{2}(\theta) = \frac{1}{2} - \frac{1}{2}\cos(2\theta)$$
 and $\cos^{3}(\theta) = \frac{3}{4}\cos(\theta) + \frac{1}{4}\cos(3\theta)$.