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Analysis III
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1. Classification of PDEs

Consider the following PDEs (in what follows, u = u(x, y) is a function of two variables
x and y). Classify each of them: hyperbolic, parabolic, elliptic, mixed type.

a) uxx + uyy + k2u = 0, where k > 0 is a positive constant.

b) yuxx + 2x
3
2uxy + uyy = ux + uy + u.

c) uxx + 2 cos(x)uxy + yuyy = exy.

Solution:

A general second order, linear, PDE has the form:

Auxx + 2Buxy + Cuyy = F (x, y, u, ux, uy) ,

where A,B,C can be themselves functions of the variables (x, y). The PDE is
called hyperbolic, parabolic or elliptic, if the coefficient AC − B2 is, respectively,
smaller, equal or greater than zero. When the sign of the coefficient is not constant
the equation is of mixed type.

a) AC −B2 = 1 > 0 =⇒ elliptic.

b) AC −B2 = y − x3 which changes sign, so the PDE is of mixed type.

c) AC −B2 = y − cos2(x) which also changes sign, so the PDE is of mixed type,

Periodicity

Determine which of the following functions is periodic and which is not. For the periodic
ones, determine their fundamental period1 if it exists.

d) 4 cosh(x)

Solution:

It is not periodic.
Explanation: The function is continuous and not bounded, in fact:

lim
|x|→+∞

cosh(x) = +∞ ,

therefore it is not periodic.

1A periodic function of period P > 0 is a function f such that f(x + P ) = f(x) for all x ∈ R. The
fundamental period of a periodic function is the smallest period P .
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e) cos(x3)

Solution:

It is not periodic.
Explanation: The function is differentiable and its derivative is −3x2 sin(x3). If
cos(x3) were periodic, then also its derivative would be. However, the derivative
is not periodic because it is continuous and not bounded (for example, along the
sequence xn = 3

√
2nπ + π/2 it assumes increasingly bigger values with limit +∞).

f) cos(15x) + 3 sin(6x)

Solution:

It is periodic of fundamental period 2π/3.
Explanation: If f(x) is periodic of period P1 and g(x) is periodic of period P2,
then their sum f(x) + g(x) is periodic of period the least common multiple

P = LCM(P1, P2)

of the two periods2. In this case cos(15x) is periodic of fundamental period 2π/15
while 3 sin(6x) is periodic of fundamental period π/3, therefore their sum is peri-
odic of period

P = LCM

(
2π

15
,
π

3

)
= LCM (2, 5) · π

15
=

10

15
π =

2

3
π .

It is easy to see that no smaller number is a period.

2. Laplace Transform

Find the solution f = f(t) of the following initial value problem:{
f ′′(t) + ω2f(t) = ω δ(t− a), t > 0

f(0) = 1, f ′(0) = ω,

where ω, a > 0 are positive constants.

Solution:

We apply the Laplace transform to the ODE in the initial value problem. We denote
by F = L(f) the Laplace transform of the function f , and we denote the variable in
the new domain by s as usual (so F = F (s)).

The first term to transform is the second derivative f ′′, for which we use the formula:

L(f ′′) = s2F − sf(0)− f ′(0) = s2F − s− ω .
2By the least common muliple of two real numbers we mean the smallest number P such that there are

positive integer numbers k1, k2 such that P = k1P1 = k2P2. In the case that there is no such number, we
define it to be +∞ and the consequence is that the function is not periodic.
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Then we have L(ω2f) = ω2F (by linearity) and finally the term in the right-hand side
becomes:

L(ω δ(t− a)) = ωL(δ(t− a)) = ωe−as .

In conclusion the ODE becomes the following algebraic equation:

s2F − s− ω + ω2F = ωe−as =⇒ F =
s

s2 + ω2
+

ω

s2 + ω2
+ e−as · ω

s2 + ω2

We recognise the first and second term as Laplace transforms of cosine and sine, re-
spectively, while for the third term we can use the t-shifting property, and obtain,
applying the inverse Laplace transform:

f(t) = L−1(F ) = cos(ωt) + sin(ωt) + u(t− a) sin (ω(t− a)) .

3. Fourier Integral

Compute the Fourier integral of the function f(x) = e−π|x|.

Solution:

The function f(x) = e−π|x| is an even and continuous function, so its Fourier integral
contains only the cosine term and it is equal to the function on each point:

e−π|x| =

+∞∫
0

A(ω) cos(ωx) dω , ∀x ∈ R . (1)

We compute the coefficient A(ω):

A(ω) =
1

π

∫
R

f(v) cos(ωv) dv =
2

π

+∞∫
0

e−πv cos(ωv) dv =

2

π

[
e−πv(ω sin(ωv)− π cos(ωv))

ω2 + π2

] ∣∣∣∣∣
v=+∞

v=0

=
2

�π
· �π

ω2 + π2
=

2

ω2 + π2

When we insert this result in (1) we obtain that for each x ∈ R:

e−π|x| = 2

+∞∫
0

cos(ωx)

ω2 + π2
dω .

4. Wave Equation with D’Alembert solution

Let c > 0. Consider the following problem:
utt = c2uxx, x ∈ R, t ≥ 0

u(x, 0) = e−x
2

sin2(x) + x, x ∈ R
ut(x, 0) = xe−x

2
. x ∈ R
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a) Find the solution u(x, t). You may use D’Alembert formula.
[Simplify the expression as much as possible: no unsolved integrals].

Solution:

D’Alembert’s formula for the solution of the wave equation is:

u(x, t) =
1

2
(f(x+ ct) + f(x− ct)) +

1

2c

x+ct∫
x−ct

g(s) ds.

With our given initial conditions we get

u(x, t) =
1

2

(
e−(x+ct)

2
sin2(x+ ct) + x+��ct+ e−(x−ct)

2
sin2(x− ct) + x−��ct

)
+

+
1

2c

x+ct∫
x−ct

se−s
2
ds =

=
1

2

(
e−(x+ct)

2
sin2(x+ ct) + e−(x−ct)

2
sin2(x− ct) + 2x

)
+

+
1

2c

(
−1

2
e−s

2

) ∣∣∣∣∣
x+ct

x−ct

=

=
1

2

(
e−(x+ct)

2
sin2(x+ ct) + e−(x−ct)

2
sin2(x− ct) + 2x

)
− 1

4c

(
e−(x+ct)

2 − e−(x−ct)2
)
.

b) For a fixed a ∈ R, determine the asymptotic limit

lim
t→+∞

u(a, t).

Solution:

Let’s observe first that, for a fixed a ∈ R,

lim
t→+∞

e−(a±ct)
2

= 0,

while clearly the terms sin2(a± ct) are bounded (by 1).
Therefore, between the 5 addends we have in the solution, only the third will
contibute to the limit -with limit a- and we get

lim
t→+∞

u(a, t) = a.

5. Wave Equation with inhomogeneous boundary conditions
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Find the solution of the following wave equation (with inhomogeneous boundary
conditions) on the interval [0, π]:

utt = c2uxx, t ≥ 0, x ∈ [0, π],

u(0, t) = a, t ≥ 0,

u(π, t) = b, t ≥ 0,

u(x, 0) = b−a
π x+ a, x ∈ [0, π],

ut(x, 0) = x, x ∈ [0, π],

(2)

where a, b > 0 are positive constants. You must proceed as follows.

a) Find the unique function w = w(x) with w′′ = 0, w(0) = a, and w(π) = b.

Solution:

The only functions with second derivative zero are the linear functions

w(x) = αx+ β, α, β ∈ R.

Imposing the boundary conditions we find the right coefficients{
a = w(0) = α · 0 + β

b = w(π) = α · π + β
⇔

{
α = b−a

π

β = a
⇔ w(x) =

b− a
π

x+ a.

b) Define v(x, t) := u(x, t)−w(x). Formulate the corresponding problem for v, equi-
valent to (2).

Solution:

The PDE doesn’t change because w is independent of time and has second deri-
vative in x zero. The boundary conditions become homogeneous (that’s why we
chose this w)

v(0, t) = u(0, t)− w(0) = a− a = 0 and v(π, t) = u(π, t)− w(π) = b− b = 0.

The initial position of the wave changes in

v(x, 0) = u(x, 0)− w(x) =
b− a
π

x+ a− b− a
π

x− a = 0,

while the initial speed doesn’t change (because, again, w is independent of time).
Finally 

vtt = c2vxx, t ≥ 0, x ∈ [0, π]

v(0, t) = v(π, t) = 0, t ≥ 0

v(x, 0) = 0, x ∈ [0, π]

vt(x, 0) = x. x ∈ [0, π]
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c) (i) Find, using the formula from the script, the solution v(x, t) of the problem you
have just formulated.
Solution:
This is a standard homogeneous wave equation with homogeneous boundary
conditions. The formula from the script is

v(x, t) =
+∞∑
n=1

(
Bn cos(λnt) +B∗n sin(λnt)

)
sin
(nπ
L
x
)
, λn =

cnπ

L

(L=π)
=

+∞∑
n=1

(
Bn cos(cnt) +B∗n sin(cnt)

)
sin(nx).

The coefficients Bn = 0, because the initial position is zero, while the coeffi-
cients B∗n are the Fourier series coefficients of the odd, 2π-periodic extension
of the initial speed datum vt(x, 0) = x, that is:

B∗n =
2

πλn

∫ π

0
x sin(nx) dx =

2

πcn

∫ π

0
x sin(nx) dx

=
2

πcn

(
sin(nx)− nx cos(nx)

n2

∣∣∣∣∣
π

0

)
=

2

πcn

(
−π(−1)n

n

)
= −2(−1)n

cn2
=

2(−1)(n+1)

cn2

Finally we get the following equivalent expressions

v(x, t) =

+∞∑
n=1

B∗n sin(cnt) sin(nx) =

+∞∑
n=1

2(−1)(n+1)

cn2
sin(cnt) sin(nx).

(ii) Write down explicitly the solution u(x, t) of the original problem (2).
Solution:
We get the following equivalent expressions

u(x, t) = v(x, t) + w(x) =

(
+∞∑
n=1

2(−1)(n+1)

cn2
sin(cnt) sin(nx)

)
+
b− a
π

x+ a.

6. Separation of variable

Consider the following time-dependent version of the heat equation on the interval
[0, L]. We also impose boundary conditions and we look for a solution u = u(x, t) such
that: 

ut = t3uxx, x ∈ [0, L], t ∈ (0,+∞),

u(0, t) = 0, t ∈ [0,+∞),

u(L, t) = 0, t ∈ [0,+∞),

u(x, 0) = sin(3πxL ) + 2 sin(πxL ) x ∈ [0, L].
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Find the solution u(x, t) using separation of variable. Proceed as in the lecture and
adapt the steps if necessary.

Solution:

We use separation of variable u(x, t) = F (x)G(t). The differential equation becomes:

F (x)Ġ(t) = t3F ′′(x)G(t),

which is convenient to rewrite as

F ′′(x)

F (x)
=

Ġ(t)

t3G(t)

because it becomes clear that we are comparing a function of x with a function of t,
and the only way that this equality might be true is that both these functions are equal
and constant:

F ′′(x)

F (x)
=

Ġ(t)

t3G(t)
= k, k ∈ R.

The boundary conditions are

u(0, t) = F (0)G(t) = 0 and u(L, t) = F (L)G(t) = 0 ∀t ∈ [0,+∞)

which in order to be true, excluding the trivial solution G(t) ≡ 0, become:

F (0) = F (L) = 0.

In other words the initial PDE with boundary conditions becomes the system of coupled
equations {

F ′′(x) = kF (x),

F (0) = F (L) = 0,
and Ġ(t) = kt3G(t).

We first solve the system for F (x), distinguishing the cases of k positive, zero, or
negative. For k > 0 the general solution of the ODE is

F (x) = C1e
√
kx + C2e

−
√
kx,

which is, however, not compatible with the boundary conditions, in the sense that the
only solution of this form satisfying the boundary conditions is the trivial solution:
C1 = C2 = 0. In fact

0 = F (0) = C1 + C2 ⇔ C2 = −C1 =⇒ F (x) = C1

(
e
√
kx − e−

√
kx
)

but then imposing the other condition:

0 = F (L) = C1

(
e
√
kL − e−

√
kL
)
⇔ either C1 = 0

or e2
√
kL = 1

which implies C1 = 0 (and consequently C2 = −C1 = 0) because 2
√
kL 6= 0 and

therefore its exponential is not 1.
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For k = 0 the general solution is F (x) = C1x + C2 which is also not compatible with
boundary conditions unless C1 = C2 = 0. In fact

0 = F (0) = C2 =⇒ F (x) = C1x

and then
0 = F (L) = C1L ⇔ C1 = 0.

It remains the case k < 0, in which its convenient to write it in the form k = −p2 for
positive real number p, and general solutions of F ′′ = −p2F are:

F (x) = A cos(px) +B sin(px).

We impose the boundary conditions:

0 = F (0) = A =⇒ F (x) = B sin(px)

and

0 = F (L) = B sin(pL)
(if B 6= 0)⇔ pL = nπ, n ∈ Z≥1

Conclusion: we have a nontrivial solution for each n ≥ 1, k = kn = −n2π2

L2 :

Fn(x) = Bn sin
(nπ
L
x
)
.

The corresponding equation for G(t) is

Ġ = −t3n
2π2

L2
G

which has general solution

Gn(t) = Cne−
n2π2

4L2 t
4

.

The conclusion is that for every n ≥ 1 we have a solution

un(x, t) = Fn(x)Gn(t) = Ane−
n2π2

4L2 t
4

sin
(nπ
L
x
)
, with An = BnCn.

Then by the Superposition Principle, the function

u(x, t) =

+∞∑
n=1

un(x, t) =

+∞∑
n=1

Ane−
n2π2

4L2 t
4

sin
(nπ
L
x
)

is also a solution. By imposing the initial condition u(x, 0) = sin(3πxL ) + 2 sin(πxL ) , we
obtain

+∞∑
n=1

An sin
(nπ
L
x
)

= sin(
3πx

L
) + 2 sin(

πx

L
).

Therefore,

An =


2 if n = 1

1 if n = 3

0 otherwise.
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Hence the final solution is given by,

u(x, t) = 2e−
π2

4L2 t
4

sin
(π
L
x
)

+ 1e−
32π2

4L2 t
4

sin

(
3π

L
x

)

7. Fourier Series

Compute the complex Fourier series of the function f(x) = 5ei
4π
L
x + x on the interval

[−L,L].

Solution:

The complex Fourier coefficients for f are, for n 6= 0,

cn =
1

2L

L∫
−L

(
5ei

4π
L
x+x

)
e−i

nπ
L
x dx =

1

2L

L∫
−L

5ei
4π
L
xe−i

nπ
L
x dx+

1

2L

L∫
−L

xe−i
nπ
L
x dx =: I1+I2.

Then

I1 =
1

2L

L∫
−L

5ei4xe−i
nπ
L
x dx =

{
5 if n = 4

0 otherwise.

And

I2 =
1

2L

L∫
−L

xe−i
nπ
L
x dx =

L

2π2

π∫
−π

ye−iny dy

=
L

2π2

− y

in
e−iny

∣∣∣∣π
−π

+
1

in

π∫
−π

e−iny dy


=

L

2π2

(
− π
in
e−inπ − π

in
einπ +

1

n2
e−iny

∣∣∣∣π
−π

)
=

L

2π2

(
− π
in
e−inπ − π

in
einπ +

1

n2
e−inπ − 1

n2
einπ

)
=

(−1)nL

2π2

(
− π
in
− π

in
+

1

n2
− 1

n2

)
= −(−1)nL

inπ
= i

(−1)nL

nπ
.

Therefore

cn = I1 + I2 =


5 + iL

4π if n = 4

i (−1)nL
nπ otherwise

and for n = 0,

c0 =
1

2L

∫ L

−L

(
5ei

4π
L
x + x

)
dx =

1

2L

(
5L

4πi
ei

4π
L
x +

x2

2

) ∣∣∣∣L
−L

= 0.
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Therefore the complex Fourier series of f is

f(x) =

(
5 +

iL

4π

)
ei

4π
L
x +

∞∑
n=−∞
n6=0
n6=4

i
(−1)nL

nπ
ei
nπ
L
x.

8. Fourier transform

Compute the Fourier transform of the function f(x) = e−axu(x − b), where a, b > 0
are positive constants and u is the Heaviside function.

Solution:

F(f)(w) =
1√
2π

+∞∫
−∞

f(x)e−ixω dx

=
1√
2π

+∞∫
−∞

e−axu(x− b)e−ixω dx

=
1√
2π

+∞∫
b

e−(iω+a)x dx

=
1√
2π

−1

(iω + a)
e−(iω+a)x

∣∣∣∣+∞
b

=
1√
2π

1

(iω + a)
e−(iω+a)b.

9. Laplace Equation on a rectangle

Find the solution od the following Laplace equation on the rectangle

R = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
uxx + uyy = 0 , (x, y) ∈ R
u(x, 0) = u(x, 1) = 0 , 0 ≤ x ≤ 1

u(0, y) = 0 , 0 ≤ y ≤ 1

u(1, y) = sin (π(1− y)) . 0 ≤ y ≤ 1

You can manipulate appropriately any formula that can be useful from the lecture
notes (or, alternatively, solve it via separation of variables from scratch).

Solution 1 (symmetry along the x = y axis):

To solve it we use appropriately a formula learnt in the lecture notes for a similar
problem: the Laplace equation on a rectangle with only nonzero boundary function
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the one on the side of the rectangle parallel to the x axis (while here is the one parallel
to the y axis).

More precisely, let R′ = {(x, y) ∈ R2 | 0 ≤ x ≤ a, 0 ≤ y ≤ b} be a rectangle of sides
lengths (a, b) and consider the problem:

vxx + vyy = 0 , (x, y) ∈ R′

v(0, y) = v(a, y) = 0 , 0 ≤ y ≤ b
v(x, 0) = 0 , 0 ≤ x ≤ a
v(x, b) = f(x) . 0 ≤ x ≤ a

(3)

where f(x) is an arbitrary function with f(0) = f(a) = 0. By applying a symmetry
along the x = y axis (that is: exchanging x and y) we observe that v(x, y) solves (3) if
and only if u(x, y) := v(y, x) solves the problem:

uxx + uyy = 0 , (x, y) ∈ R
u(x, 0) = u(x, a) = 0 , 0 ≤ x ≤ b
u(0, y) = 0 , 0 ≤ y ≤ a
u(b, y) = f(y) . 0 ≤ y ≤ a

on the mirrored rectangle R = {(x, y) ∈ R2 | 0 ≤ x ≤ b, 0 ≤ y ≤ a}. From the lecture
notes we know that the general solution to (3) is

v(x, y) =

+∞∑
n=1

An sin
(nπ
a
x
)

sinh
(nπ
a
y
)

(with coefficient An determined by imposing the only nontrivial boundary condition
with the function f(x), but for the moment we leave it). In our problem we substitute
the values a = b = 1, and apply the reflection along the x = y axis to obtain the
general solution

u(x, y) = v(y, x) =
+∞∑
n=1

An sin (nπy) sinh (nπx) .

Now we find the coefficient An by imposing the boundary condition. It is useful to
observe that the boundary function is nothing but just f(y) = sin(π(1−y)) = sin(πy),
so:

u(1, y) =
+∞∑
n=1

An sin (nπy) sinh (nπ) = sin(πy) .

By uniqueness of the Fourier series representation of a function we obtain that the only
nonzero coefficient is:

A1 =
1

sinh(π)
,

so finally the solution is:

u(x, y) =
sinh(πx) sin(πy)

sinh(π)
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Solution 2 (separation of variables from scratch):

We search for particular solutions of the PDE with separated variables u(x, y) =
F (x)G(y), for which the PDE becomes:

F ′′G+ FG′′ = 0 ⇔ F ′′

F
= −G

′′

G
= k,

for some fixed k ∈ R. The first two boundary conditions u(x, 0) = u(x, 1) = 0 translate
into G(0) = G(1) = 0, so that: {

G′′ = −kG ,
G(0) = G(1) = 0 ,

(4)

while the boundary condition u(0, y) = 0 becomes F (0) = 0, so that{
F ′′ = kF ,

F (0) = 0 .
(5)

We ignore the last boundary condition for the moment, as we are going to use it only
at the end. First we want to solve the system (4), which has nontrivial solutions only
for k > 0. For positive values of k the differential equation has general solution:

G(y) = A cos(
√
ky) +B sin(

√
ky) .

By imposing G(0) = 0 we obtain A = 0, while imposing G(1) = 0 we obtain that√
k = nπ for some integer number n ≥ 1. In conclusion we have one solution for each

n ≥ 1, with constant k = n2π2, of the form:

Gn(y) = Bn sin(nπy) .

The corresponding differential equation for F is F ′′ = n2π2F , which has general solu-
tion:

Fn(x) = A∗nenπx +B∗ne−nπx .

By imposing F (0) = 0 we obtain B∗n = −A∗n, so that Fn(x) = 2A∗n sinh(nπx). Putting
this together with Gn and renaming the constants we obtain a solution of the Laplace
equation on this rectangle, for each n:

un(x, y) = An sinh(nπx) sin(nπy) ,

and by the superposition principle a general solution of the form:

u(x, y) =

+∞∑
n=1

An sinh(nπx) sin(nπy) .

Finally we obtain the coefficients An by imposing the last boundary condition that we
did not yet consider:

u(1, y) =

+∞∑
n=1

An sinh(nπ) sin(nπy) = sin(π(1− y)) =⇒

=⇒

{
A1 = 1/ sinh(π),

An = 0, n ≥ 2

12 See the next page!



which yields to the solution

u(x, y) =
sinh(πx) sin(πy)

sinh(π)

10. Heat Equation with inhomogeneous boundary conditions

Consider the following problem:
ut = c2uxx, x ∈ [0, π], t ≥ 0

u(0, t) = 2, t ≥ 0

u(π, t) = 3, t ≥ 0

u(x, 0) = f(x), x ∈ [0, π]

(6)

where

f(x) = sin(x)− 3 sin(3x) +
x

π
+ 2.

The boundary conditions are not homogeneous, therefore one cannot directly apply
the formulas known. You should argue as follows:

a) Construct a function w(x) with w(0) = 2, w(π) = 3 and w′′ = 0.

Solution:

The only linear (= second derivative zero) function passing through those points
as requested is

w(x) =
x

π
+ 2.

b) Let u be a solution of the above problem (6). State the corresponding problem
solved by the function v(x, t) := u(x, t)− w(x).

Solution:

The boundary value problem for v with homogeneous boundary conditions reads
as 

vt = c2vxx, x ∈ [0, π], t ≥ 0

v(0, t) = 0, t ≥ 0

v(π, t) = 0, t ≥ 0

v(x, 0) = f̃(x), x ∈ [0, π]

where
f̃(x) = f(x)− w(x) = sin(x)− 3 sin(3x).
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c) Solve the problem for v using the method of separation of variables from scratch.
Show all the steps of the method of separation of variables.

Solution:

Using separation of variables we set v(x, t) = F (x)G(t) and obtain

vt = FĠ and vxx = F ′′G

which plugged into the PDE give

FĠ = c2F ′′G ⇔ Ġ

c2G
=
F ′′

F
= k, (7)

where k ∈ R is a constant.
The boundary conditions v(0, t) = v(π, t) = 0, translate into

F (0) = F (π) = 0.

Consequently we first need to solve the following IVP for F = F (x):{
F ′′ = kF,

F (0) = F (π) = 0.

In order to have non trivial solutions we need k < 0. In fact for k = 0 we get a
linear function F (x) = Ax+B which can be zero in two distinct points (0, π) only

if it’s identically zero. While for k > 0 the solution is F (x) = Ae
√
kx + Be−

√
kx

which again can be zero in the two mentioned distinct points if and only if:{
0 = F (0) = A+B

0 = F (π) = Ae
√
kπ +Be−

√
kπ

⇔ A = B = 0

For k < 0 we can set k = −p2 and general solution is F (x) = A cos(px)+B sin(px).
The first homogeneous boundary condition F (0) = 0 forces A = 0 so that

F (x) = B sin(px),

and from the second F (π) = 0:

pn = n, n ≥ 1 integer  Fn(x) = Bn sin(nx).

Now we solve the ODE for G = G(t):

Ġn = −c2n2G =: −λ2nG, where λn = cn.

The solution is given by
Gn(t) = Dne

−λ2nt.

Consequenly for any n ≥ 1, we obtain the solution

vn(x, t) = Fn(x)Gn(t) = Bn sin(nx)Dne
−λ2nt =: Cn sin(nx)e−λ

2
nt.
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and, by the superposition principle, general solution

v(x, t) =
+∞∑
n=1

vn(x, t) =
+∞∑
n=1

Cn sin (nx) e−λ
2
nt.

We now have to impose the initial condition at time t = 0, that is

v(x, 0) =

+∞∑
n=1

Cn sin(nx) = sin(x)− 3 sin(3x).

In general to solve this we need to find some Fourier series, but this case is parti-
cularly simple as the function is already in this form. We obtain

C1 = 1,

C3 = −3,

Cn = 0. n 6= 1, 3

Therefore the solution is

v(x, t) = sin(x)e−λ
2
1t − 3 sin(3x)e−λ

2
3t = sin(x)e−c

2t − 3 sin(3x)e−9c
2t.

d) Find the solution u of the original problem (6) .

Solution:

We get

u(x, t) = v(x, t) + w(x) = sin(x)e−c
2t − 3 sin(3x)e−9c

2t +
x

π
+ 2.

11. Laplace equation in an unbounded region

Find the general solution for the following problem:{
uxx + uyy = 0, −∞ ≤ x ≤ ∞, 0 ≤ y,
u(x, 0) = f(x), −∞ ≤ x ≤ ∞,

(8)

where f(x) is any arbitrary function.

You must proceed as follows.

a) Show that you can transform the system (8) into{
−w2û(w, y) + ∂2

∂y2
û(w, y) = 0,

û(w, 0) = f̂(w).
(9)

15 Please turn!



Where û(w, y) denotes the Fourier transform of u(x, y) with respect to the x
variable. That is:

û(w, y) =
1√
2π

∫ ∞
−∞

u(x, y)e−iwx dx.

Solution:

We take the Fourier transform with respect to the x variable of the first line,
uxx + uyy = 0. The right hand side is of course zero. And the left hand side is

F(uxx + uyy)(w, y) = ûxx(w, y) + ûyy(w, y) = −w2û(w, y) +
∂2

∂y2
û(w, y).

Where we have used the linearity and the Fourier transform of a derivative. (See
properties of the Fourier transform on page 44 in the Lecture notes.)

Then we take the Fourier transform of the second equation, we have

û(w, 0) = f̂(w).

Therefore the system (8) transforms into{
−w2û(w, y) + ∂2

∂y2
û(w, y) = 0,

û(w, 0) = f̂(w).

That’s exactly the system (9).

b) Show that û(w, y) = f̂(w)e−|w|y is a solution of the system (9).
(Where |w| is the absolute value of w).

Solution:

We check by a direct computation that û(w, y) = f̂(w)e−|w|y is a solution of (9).

∂2

∂y2
û(w, y) =

∂2

∂y2

(
f̂(w)e−|w|y

)
= w2f̂(w)e−|w|y = w2û(w, y).

And
û(w, 0) = f̂(w)e−|w|·0 = f̂(w).

Hence, f̂(w)e−|w|y is a solution of (9).

c) Find the solution of the system (8). [Simplify the expression as much as possible:
no more w in your final answer. Use the properties of the Fourier transform].

[Hint: i) F−1(e−|w|y) = 1√
2π

2y
y2+x2

.]

[Hint: ii) ĥ(w)ĝ(w) = 1√
2π

(̂h ∗ g)(w).]

Solution:

To find the solution of (8) we have to take the inverse Fourier transform of the solution
of (9), i.e. the inverse Fourier transform of f̂(w)e−|w|y. So we compute this inverse
Fourier transform using the two hints.
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First, using the first hint we have,

e−|w|y = F
(
F−1(e−|w|y)

)
i)
= F

( 1√
2π

2y

y2 + x2

)
(w). (10)

Then using the second hint,

u(x, y) = F−1(f̂(w)e−|w|y)
(10)
= F−1

(
f̂(w)F

(
1√
2π

2y

y2 + x2

)
(w)

)
ii)
= F−1

(
1√
2π
F
(
f ∗
(

1√
2π

2y

y2 + x2

))
(w)

)
= F−1

(
F
(
f ∗
(

1

2π

2y

y2 + x2

))
(w)

)
= f ∗

(
1

2π

2y

y2 + x2

)
=

1

2π

∫ +∞

−∞
f(x− z) 2y

y2 + z2
dz.

Hence the solution of (8) is

u(x, y) =
1

2π

∫ +∞

−∞
f(x− z) 2y

y2 + z2
dz.

Remark û(w, y) = f̂(w)ewy would be also a solution of the system (9). But it’s not a
bounded solution, that’s why we excluded this solution. Indeed, f̂(w)ewy goes to +∞
when y goes to +∞.

12. Wave Equation

Consider the following 1-dimensional wave equation on the interval [0, L]:
utt = c2uxx , x ∈ [0, L], t ≥ 0

u(0, t) = u(L, t) = 0 , t ≥ 0

u(x, 0) = 0 , 0 ≤ x ≤ L
ut(x, 0) = x , 0 ≤ x ≤ L

a) Find the solution in Fourier series. You can use the formula from the lecture notes.

Solution:

The general solution (via Fourier series) of the wave equation on the interval [0, L]
with initial data u(x, 0) = f(x) and ut(x, 0) = g(x) is:

u(x, t) =

+∞∑
n=1

[Bn cos(λnt) +B∗n sin(λnt)] sin
(nπ
L
x
)
,
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where:
λn =

cnπ

L
,

Bn =
2

L

∫ L

0
f(x) sin

(nπ
L
x
)
dx ,

B∗n =
1

λn

2

L

∫ L

0
g(x) sin

(nπ
L
x
)
dx ,

Here f(x) = 0, so Bn ≡ 0, while g(x) = x, so :

B∗n =
1

λn

2

L

∫ L

0
g(x) sin

(nπ
L
x
)
dx =

1

λn

2

L

∫ L

0
x sin

(nπ
L
x
)
dx =

=
1

λn

2

L
·

[
sin
(
nπ
L x
)
− nπ

L x cos
(
nπ
L x
)

n2π2

L2

] ∣∣∣∣∣
x=L

x=0

=
1

λn

2

L
·
[
−L

2

nπ
cos(nπ)

]
=

=
�L

cnπ
· 2

�L
·
[
L2

nπ
(−1)n+1

]
=

(−1)n+12L2

cπ2n2
.

So the solution is

u(x, t) =
2L2

cπ2

+∞∑
n=1

(−1)n+1

n2
sin
(cnπ
L
t
)

sin
(nπ
L
x
)

b) Remember that the solution can also be written as

u(x, t) =
1

2c

x+ct∫
x−ct

g∗(s) ds ,

where g∗ is the odd, 2L-periodic extension of the velocity initial datum g. Use this
formula to compute

u

(
L

2
,
3L

2c

)
= ?

Solution:

We observe that for x = L/2 and t = 3L/2c the interval over which we need to
integrate is:

[x− ct, x+ ct] = [−L, 2L]

The odd, 2L-periodic extension g∗ of the initial datum is:
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so the desired integral is :

u

(
L

2
,
3L

2c

)
=

1

2c

∫ 2L

−L
g∗(s) ds = −L2/4c .

c) Compare the result from b) with the formula from a) evaluated in the point
(x, t) = (L/2, 3L/2c) to find the value of the following numerical series:

+∞∑
m=0

1

(2m+ 1)2
= ?

Solution:

Computing the same value u(L/2, 3L/2c) from the formula obtained in a) we
obtain:

u

(
L

2
,
3L

2c

)
=

2L2

cπ2

+∞∑
n=1

(−1)n+1

n2
sin

(
3nπ

2

)
sin
(nπ

2

)
,

and we observe that

sin

(
3nπ

2

)
sin
(nπ

2

)
=

{
−1, n odd

0, n even

so we sum only over indices of the form n = 2m+ 1, with m = 0, 1, 2, . . . (starting
at zero because we start from n = 1), for which (−1)n+1 = 1, and we obtain:

−L
2

4c

b)
= u

(
L

2
,
3L

2c

)
= −2L2

cπ2

+∞∑
m=0

1

(2m+ 1)2
,

from which the desired value of the numerical series follows:

+∞∑
m=0

1

(2m+ 1)2
=
π2

8
.
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