
ETH Zürich Autumn 2021
Prof. Dr. A. Iozzi

Mock Exam Analysis III
D–MAVT, D–MATL

Surname:

First Name:

Student Card Nr.:

Exam Nr.:

This page contains the generalities of the student: surname, first name, student card
(Legi) number and exam number. The exam number is a number that identifies uniquely
the student.

By signing this page the student confirms that the above personal data are correct.

Signature
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ETH Zürich Autumn 2021
Prof. Dr. A. Iozzi

Before the exam:

• Turn off your mobile phone and place it inside your briefcase/backpack.

• Put your bags on the floor. No bags on the desk!

• Place your Student Card (Legi) on the desk.

During the exam, please:

• Start every exercise on a new piece of paper.

• Put your exam number on the top right corner of every page.

• Motivate your answers. Write down calculations and intermediate results.

• Provide at most one solution to each exercise.

• Do not write with pencils. Please avoid using red or green ink pens.

After the exam:

• Make sure that every solutions sheet has your exam number on it.

• Place back the exam sheets, together with your solutions, in the envelope.

Allowed aids:

• 20 pages (= 10 sheets) DIN A4 handwritten or typed personal summary.

• An English (or English-German) dictionary.

• No further aids are allowed. In particular neither communication devices,
nor pocket calculators.

Good Luck!
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Laplace Transforms: ( F = L(f) )

f(t) F (s)

1) 1 1
s

2) t 1
s2

3) t2 2
s3

4) tn, n ∈ Z≥0
n!
sn+1

f(t) F (s)

5) ta, a > 0 Γ(a+1)
sa+1

6) eat 1
s−a

7) cos(ωt) s
s2+ω2

8) sin(ωt) ω
s2+ω2

f(t) F (s)

9) cosh(at) s
s2−a2

10) sinh(at) a
s2−a2

11) u(t− a) 1
s
e−as

12) δ(t− a) e−as

(Γ = Gamma function, u = Heaviside function, δ = Delta function)

Indefinite Integrals:
(
n ∈ Z≥1

)

1)

∫
x cos(nx) dx =

cos(nx) + nx sin(nx)

n2
(+ constant)

2)

∫
x2 cos(nx) dx =

(n2x2 − 2) sin(nx) + 2nx cos(nx)

n3
(+ constant)

3)

∫
x sin(nx) dx =

sin(nx)− nx cos(nx)

n2
(+ constant)

4)

∫
x2 sin(nx) dx =

(2− n2x2) cos(nx) + 2nx sin(nx)

n3
(+ constant)

5)

∫
1

1 + x2
dx = arctan(x) (+ constant)

You can use these formulas without justification.
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1. Classification of PDEs

Consider the following PDEs (in what follows, u = u(x, y) is a function of two
variables x and y). Classify each of them: hyperbolic, parabolic, elliptic, mixed
type. (Write the answer in the box)

a) uxx + uyy + k2u = 0, where k > 0 is a positive constant.

b) yuxx + 2x
3
2uxy + uyy = ux + uy + u.

c) uxx + 2 cos(x)uxy + yuyy = exy.

Periodicity

Determine which of the following functions is periodic and which is not. For the
periodic ones, determine their fundamental period1. (Write the answer in the
box)

d) 4 cosh(x)

e) cos(x3)

1A periodic function of period P > 0 is a function f such that f(x + P ) = f(x) for all x ∈ R.
The fundamental period of a periodic function is the smallest period P .
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f) cos(15x) + 3 sin(6x)

[Hint: Recall that every periodic, continuous function is bounded, and that every
periodic, differentiable functions has periodic derivative.]

2. Laplace Transform

Find the solution f(t) of the following initial value problem:{
f ′′(t) + ω2f(t) = ω δ(t− a), t > 0

f(0) = 1, f ′(0) = ω,

where ω, a > 0 are positive constants.

Write the final answer in the box.

f(t) =

3. Fourier Integral

Compute the Fourier integral of the function f(x) = e−π|x|.

Write the final answer in the box.

f(x) =
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4. Wave Equation with D’Alembert solution

Let c > 0. Consider the following problem:
utt = c2uxx, x ∈ R, t ≥ 0

u(x, 0) = e−x
2

sin2(x) + x, x ∈ R
ut(x, 0) = xe−x

2
. x ∈ R

a) Find the solution u(x, t). You may use D’Alembert formula.
[Simplify the expression as much as possible: no unsolved integrals].

b) For a fixed a ∈ R, determine the asymptotic limit

lim
t→+∞

u(a, t).

5. Wave Equation with inhomogeneous boundary conditions

Find the solution of the following wave equation (with inhomogeneous boun-
dary conditions) on the interval [0, π]:

utt = c2uxx, t ≥ 0, x ∈ [0, π],

u(0, t) = a, t ≥ 0,

u(π, t) = b, t ≥ 0,

u(x, 0) = b−a
π
x+ a, x ∈ [0, π],

ut(x, 0) = x, x ∈ [0, π],

(1)

where a, b > 0 are positive constants. You must proceed as follows.

a) Find the unique function w = w(x) with w′′(x) = 0, w(0) = a, and w(π) = b.

b) Define v(x, t) := u(x, t)−w(x). Formulate the corresponding problem for v,
equivalent to (1).

c) (i) Find, using the formula from the script, the solution v(x, t) of the pro-
blem you have just formulated.

(ii) Write down explicitly the solution u(x, t) of the original problem (1).
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6. Separation of variable

Consider the following time-dependent version of the heat equation on the in-
terval [0, L]. We also impose boundary conditions and we look for a solution
u = u(x, t) such that:

ut = t3uxx, x ∈ [0, L], t ∈ (0,+∞),

u(0, t) = 0, t ∈ [0,+∞),

u(L, t) = 0, t ∈ [0,+∞),

u(x, 0) = sin(3πx
L

) + 2 sin(πx
L

) x ∈ [0, L].

Find the solution u(x, t) using separation of variable. Proceed as in the lecture
and adapt the steps if necessary.

You have more exercises below.

7 Please turn!



The exam will have 6 exercises as above. Here you can find some
additional exercises for you personal training.

7. Fourier Series

Compute the complex Fourier series of the function f(x) = 5ei
4π
L
x + x on the

interval [−L,L].

Write the final answer in the box.

f(x) =

8. Fourier transform

Compute the Fourier transform of the function f(x) = e−axu(x − b), where
a, b > 0 are positive constants and u is the Heaviside function.

Write the final answer in the box.

F(f)(w) =

9. Laplace Equation on a rectangle

Find the solution of the following Laplace equation on the rectangle

R = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
uxx + uyy = 0 , (x, y) ∈ R
u(x, 0) = u(x, 1) = 0 , 0 ≤ x ≤ 1

u(0, y) = 0 , 0 ≤ y ≤ 1

u(1, y) = sin (π(1− y)) . 0 ≤ y ≤ 1

You can manipulate appropriately any formula that can be useful from the lecture
notes (or, alternatively, solve it via separation of variables from scratch).
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10. Heat Equation with inhomogeneous boundary conditions

Consider the following problem:
ut = c2uxx, x ∈ [0, π], t ≥ 0

u(0, t) = 2, t ≥ 0

u(π, t) = 3, t ≥ 0

u(x, 0) = f(x), x ∈ [0, π]

(2)

where

f(x) = sin(x)− 3 sin(3x) +
x

π
+ 2.

The boundary conditions are not homogeneous, therefore one cannot directly
apply the formulas known. You should argue as follows:

a) Construct a function w(x) with w(0) = 2, w(π) = 3 and w′′ = 0.

b) Let u be a solution of the above problem (2). State the corresponding pro-
blem solved by the function v(x, t) := u(x, t)− w(x).

c) Solve the problem for v using the formula of the lecture notes or using the
method of separation of variables from scratch.

d) Find the solution u of the original problem (2) .

11. Laplace equation in an unbounded region

Find the general solution for the following problem:{
uxx + uyy = 0, −∞ ≤ x ≤ ∞, 0 ≤ y,

u(x, 0) = f(x), −∞ ≤ x ≤ ∞,
(3)

where f(x) is any arbitrary function.

You must proceed as follows.

a) Show that you can transform the system (3) into{
−w2û(w, y) + ∂2

∂y2
û(w, y) = 0,

û(w, 0) = f̂(w).
(4)

Where û(w, y) denotes the Fourier transform of u(x, y) with respect to the
x variable. That is:

û(w, y) =
1√
2π

∫ ∞
−∞

u(x, y)e−iwx dx.
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b) Show that û(w, y) = f̂(w)e−|w|y is a solution of the system (4).
(Where |w| is the absolute value of w).

c) Find the solution of the system (3). [Simplify the expression as much as
possible: no more w in your final answer. Use the properties of the
Fourier transform].

[Hint: F−1(e−|w|y) = 1√
2π

2y
y2+x2

.]

[Hint: ĥ(w)ĝ(w) = 1√
2π

(̂h ∗ g)(w).]

12. Wave Equation

Consider the following 1-dimensional wave equation on the interval [0, L]:
utt = c2uxx , x ∈ [0, L], t ≥ 0

u(0, t) = u(L, t) = 0 , t ≥ 0

u(x, 0) = 0 , 0 ≤ x ≤ L

ut(x, 0) = x , 0 ≤ x ≤ L

a) Find the solution in Fourier series. You can use the formula from the lecture
notes.

b) Remember that the solution can also be written as

u(x, t) =
1

2c

x+ct∫
x−ct

g∗(s) ds ,

where g∗ is the odd, 2L-periodic extension of the velocity initial datum
g = ut(·, 0). Use this formula to compute

u

(
L

2
,
3L

2c

)
= ?

c) Compare the result from b) with the formula from a) evaluated in the point
(x, t) = (L/2, 3L/2c) to find the value of the following numerical series:

+∞∑
m=0

1

(2m+ 1)2
= ?
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