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Summer 2019

Analysis III
Exam Solutions

(Stefano D’Alesio: stefano.dalesio@math.ethz.ch)

Exercise 1 2 3 4 5 Total
Value 8 10 15 6 8 47

1. Laplace Transform (8 Points)

Find the solution f : [0,+∞)→ R of the following integral equation:

f(t) = t3 +

t∫
0

e−(t−τ)f(τ)dτ. (1)

Solution:

We apply the Laplace transform to both sides. We denote the Laplace transform of f
by F = L(f). The integral on the right-hand side is a convolution:

t∫
0

e−(t−τ)f(τ)dτ =
(
e−t ∗ f

)
(t).

The Laplace transform of a convolution is the product of the Laplace transforms of
the two functions, therefore:

L
(
e−t ∗ f

)
= L(e−t) ·L(f) = 1

s+ 1
· F(s).

Now we can transform the integral equation (1) into the algebraic equation

F(s) =
6
s4 +

1
s+ 1

· F(s)

=⇒
(

1 −
1

s+ 1

)
F(s) =

6
s4

=⇒ s

s+ 1
F(s) =

6
s4

=⇒ F(s) =
6
s4 +

6
s5 .

Finally we transform back to obtain:

f(t) = L−1(F(s)) = L−1
(

6
s4 +

6
s5

)
= t3 +

t4

4
.
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2. Short Questions (10 Points)

Answer the following questions. You can use any formula from the script.

a) (2 Points) The integral

h(x) =
2
π

+∞∫
0

sin(ω) cos(ωx)
ω

dω

is the Fourier integral of the function

f(x) =

{
1, |x| 6 1
0. |x| > 1

Find the explicit values of h(x) for each x ∈ R.

Solution:

The Fourier integral of a function has the same value of the function itself where
the function is continuous.
In a point of discontinuity x0 the value of the Fourier integral is the average of
the left and the right limit of f:

h(x0) =
1
2
(
f(x+0 ) + f(x−0 )

)
.

In this case the points of discontinuity are x0 = ±1, both with average 1/2,
therefore:

h(x) =


1, |x| < 1
1
2

, |x| = 1

0. |x| > 1

b) (2 Points) Consider the following PDE:

xuxx + 2yuxy + xuyy = e−xu+ ux.

In which region of the plane (x,y) ∈ R2 is it elliptic?

Solution:

Writing the PDE in the form

Auxx + 2Buxy +Cuyy = F(x,y,u,ux,uy),

the elliptic condition is AC−B2 > 0. In this case this means

x2 − y2 > 0,

or equivalently
|x| > |y|.
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c) (3 Points) Consider the solution of the following wave equation:
utt = c

2uxx, x ∈ R, t > 0
u(x, 0) = e2x, x ∈ R
ut(x, 0) = 0. x ∈ R

Find the evolution in time of the point x = 0:

u(0, t) = ?

Solution:

We can use D’Alembert’s formula:

u(0, t) =
1
2
(f(ct) + f(−ct)) +

ct∫
−ct

����g(s)ds =
1
2
(
e2ct + e−2ct) = cosh(2ct).

d) (3 Points) Consider the following Laplace equation on the unit disk:{
O2u = 0, in D1

u = x+ 5y2. on ∂D1

Find the value of the solution in the center:

u(0, 0) = ?

Solution 1:

According to the mean value principle, the value in the center is the average of
the function on the boundary. We write this function in polar coordinates

f(ϑ) = cos(ϑ) + 5 sin2(ϑ),

and we integrate it1 to get:

u(0, 0) =
1

2π

2π∫
0

f(ϑ)dθ =
1

2π

2π∫
0

(
cos(ϑ) + 5 sin2(ϑ)

)
dϑ =

=
1

2π

[
sin(ϑ) +

5
2
ϑ−

5
2

sin(ϑ) cos(ϑ)
] ∣∣∣∣∣
ϑ=2π

ϑ=0

=
5
2

.

1We use the indefinite integral
∫

sin2(ϑ)dϑ = 1
2 (ϑ− sin(ϑ) cos(ϑ)) + c, which was given at the beginning

of the exam.
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Solution 2:

We can also directly solve the equation and from the solution we will read the
value u(0, 0). This is not recommended in general because usually solving the
equation is more difficult than computing an integral.
Nevertheless, here the function on the boundary is a polynomial, and the so-
lution will also be a polynomial. One can proceed by using some “similarity
method“ and guessing that it is a polynomial of the form

u(x,y) = a+ bx+ cx2 + dy2,

and then O2u = 0 gives c + d = 0, and the boundary conditions the other
constants:

u(x,y) =
5
2
+ x−

5
2
x2 +

5
2
y2.

From which u(0, 0) = 5/2 as expected.
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3. Wave Equation (15 Points)

Find the solution of following wave equation with homogeneous Neumann conditi-
ons (= the derivative ux on the boundary is zero):

u = u(x, t) s.t.


utt = c

2uxx, x ∈ [0,π], t > 0
ux(0, t) = ux(π, t) = 0, t > 0
u(x, 0) = 1 + cos(4x), x ∈ [0,π]
ut(x, 0) = 3. x ∈ [0,π]

(2)

Use the method of separation of variables, showing all the steps.

Solution:

The separation of variables Ansatz is u(x, t) = F(x)G(t) and the wave equation beco-
mes the system of coupled equations:{

F ′′ = kF,
G̈ = kc2G,

for some k ∈ R.

In order to have nontrivial solutions, the homogeneous Neumann conditions imply:{
ux(0, t) = F ′(0)G(t) = 0, t > 0
ux(π, t) = F ′(π)G(t) = 0, t > 0

=⇒

{
F ′(0) = 0,
F ′(π) = 0.

We have obtained a well-defined initial value problem for F = F(x):{
F ′′ = kF,
F ′(0) = F ′(π) = 0.

The form of the general solution of the differential equation F ′′ = kF depends on the
positivity of k.

k R 0 general solution F(x) derivative F ′(x)

k > 0 Ae
√
kx +Be−

√
kx

√
k
(
Ae

√
kx −Be−

√
kx
)

k = 0 Ax+B B
k < 0 A cos

(√
−k x

)
+B sin

(√
−k x

)
−A
√
−k sin

(√
−k x

)
+B
√
−k cos

(√
−k x

)
The derivatives at the boundary are

k R 0 F ′(0) F ′(π)

k > 0
√
k(A−B)

√
k
(
Ae

√
kπ −Be−

√
kπ
)

k = 0 B B
k < 0 B

√
−k −A

√
−k sin

(√
−kπ

)
+B
√
−k cos

(√
−kπ

)
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By imposing them equal to zero we finally get the following solutions:

k R 0 nontrivial solutions? general solution F(x)
k > 0 no /
k = 0 yes F0(x) = B

k < 0 yes, for k = −n2 Fn(x) = Bn cos(nx)

Now for these values of k (k = 0 and k = −n2) we solve the problem for G = G(t).

k solution G(t)
k = 0 G0(t) = Ct+D

k = −n2 Gn(t) = Cn cos(cnt) +Dn sin(cnt)

By the superposition principle, any function of the form

u(x, t) = F0(x)G0(t) +

+∞∑
n=1

Fn(x)Gn(t)

will be a solution. By renaming the constants differently this is:

u(x, t) = A0t+B0 +

+∞∑
n=1

(An cos(cnt) +Bn sin(cnt)) cos(nx).

The time derivative is

ut(x, t) = A0 +

+∞∑
n=1

cn(−An sin(cnt) +Bn cos(cnt)) cos(nx).

Now we have to find these constants by imposing the initial conditions{
u(x, 0) = 1 + cos(4x),
ut(x, 0) = 3.

In this case they translate into
B0 +

+∞∑
n=1

An cos(nx) = 1 + cos(4x),

A0 +
+∞∑
n=1

cnBn cos(nx) = 3,

which means that the only nonzero coefficients are
B0 = 1,
A4 = 1,
A0 = 3.

Therefore the final solution is:

u(x, t) = 3t+ 1 + cos(4ct) cos(4x).
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4. Laplace Equation and Maximum Principle (6 Points)

Consider the solution of the following Laplace problem on a disk DR centered in the
origin, of radius R > 0:

u = u(x,y) s.t.

{
O2u = 0, in DR
u = eR

2R2

(
x2 − y2

)
. on ∂DR

(3)

Find the unique R > 0 such that the maximum of u on the disk is π:

max
(x,y)∈DR

u(x,y) = π.

Solution:

We find the maximum of u. This will be a function of R, which we are going to
impose equal to π.
By the maximum principle we have to find the maximum of the function on the
boundary

max
(x,y)∈DR

u(x,y) = max
(x,y)∈∂DR

u(x,y) = max
{x2+y2=R2}

eR

2R2

(
x2 − y2) .

In other words we have to find the maximum of x2 − y2 in the region {x2 + y2 = R2}.
To do this we can parametrise the boundary with polar coordinates and find the
maximum of R2(cos2(ϑ) − sin2(ϑ)) = R2 cos(2ϑ) in the interval ϑ ∈ [0, 2π], which is
clearly R2.
An equally valid argument would be to observe that on the boundary

x2 − y2 = 2x2 − R2 =⇒ max (x2 − y2) = R2.

Anyway, the maximum of u will be:

max
(x,y)∈DR

u(x,y) = max
{x2+y2=R2}

eR

2R2

(
x2 − y2) = eR

2��R2
·��R2 =

eR

2
.

This is equal to π if and only if

eR

2
= π ⇔ eR = 2π ⇔ R = ln(2π).
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5. Heat Equation via Fourier Transform (8 Points)

Remember that the solution of the heat equation{
ut = c

2uxx, x ∈ R, t > 0
u(x, 0) = f(x), x ∈ R

has Fourier transform
û(ω, t) = f̂(ω)e−c

2ω2t.

For some particular cases of f, this û can be recognised as the Fourier trans-
form of some function, and the original solution u = u(x, t) can be found.

Find the solution u = u(x, t) of the following:{
ut = c

2uxx, t > 0, x ∈ R
u(x, 0) = e−

1
2x

2
. x ∈ R

(4)

[Hint: The Fourier transform of this gaussian function f(x) = e−
1
2x

2
is recalled at the

beginning of the exam.]

Solution:

The Fourier transform we need is recalled at the beginning of the exam

ê−ax2
=

1√
2a

e−
ω2
4a . (5)

Here a = 1/2 and therefore

ê−
1
2x

2
= e−

ω2
2 .

So the solution has Fourier transform

û(ω, t) = e−
ω2

2 e−c
2ω2t.

We want to recognise it as a Fourier transform of some function. We notice it is still
a gaussian

û(ω, t) = e−(
1
2+c

2t)ω2
,

and, because of (5), we would like to have for some a > 0,

1
2
+ c2t =

1
4a

,

which gives us

a =
1

2 + 4c2t
. (6)

8 See the next page!



We would like to say that û(ω, t) is the Fourier transform of the gaussian with this
a, but we would miss the factor 1/

√
2a appearing in (5).

But then we just need to multiply and divide by it to get2

u(x, t) = F−1 (û(ω, t)) = F−1
(

e−(
1
2+c

2t)ω2
)
=
√

2aF−1
(

1√
2a

e−
ω2
4a

)
(5)
=

(5)
=
√

2a e−ax
2 (6)
=

√
1

1 + 2c2t
e−

x2

2+4c2t =
e−

x2

2+4c2t
√

1 + 2c2t
.

An alternative way of proceeding, starting from

û(ω, t) = e−(
1
2+c

2t)ω2
,

would be to use directly Fourier inversion’s formula:

u(x, t) =
1√
2π

+∞∫
−∞

û(ω, t)eiωx dω =
1√
2π

+∞∫
−∞

e−(
1
2+c

2t)ω2
eiωx dω =

= F
(

e−(
1
2+c

2t)ω2
)
(−x)

(5)
=

1√
2
(1

2 + c
2t
)e

−
(−x)2

4( 1
2 +c2t) =

e−
x2

2+4c2t
√

1 + 2c2t
.

2In what follows F denotes the Fourier transform.
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