Analysis III

Prof. A. Iozzi ETH Zürich Autumn 2024

Serie 5

Topics: Periodic extension of a function, Fourier series, convergence of Fourier series.

<u>Remark</u>: In the following 'Fourier series' always means the real Fourier series of a function. Otherwise we will always specify 'complex Fourier series'.

- **1.** Determine whether the following functions are even, odd, or neither. Justify your answer.
 - **a)** $f(x) = x^2 + 2$
 - **b)** f(x) = x + 1
 - c) $f(x) = \sinh(x^3 + x)$
 - **d)** $f(x) = \sin(\pi x) + \sin(x^2)$
 - e) $f(x) = \Re(e^{i\sin(x)})$
- **2. a)** Consider the function

$$f(x) = \begin{cases} x, & 0 \le x \le \frac{\pi}{2} \\ \frac{\pi}{2}, & \frac{\pi}{2} \le x \le \pi \end{cases}$$

Extend f to an even function on the interval $[-\pi, \pi]$ and then finally to an even, 2π -periodic function on \mathbb{R} and call this function f_e . Sketch the graph of f_e and find its Fourier series.

b) Consider the function

$$f(x) = \begin{cases} x, & 0 \le x \le \frac{\pi}{2} \\ \frac{\pi}{2}, & \frac{\pi}{2} \le x < \pi \\ 0, & x = \pi \end{cases}$$

Do the same for the odd, 2π -periodic extension¹ of f (call this f_o).

Please turn!

¹We added the condition $f(\pi) = 0$, to avoid problems when we want to extend f to an odd function.

3. a) Sketch the graph of the 2L-periodic extension of

$$f(x) = x, \quad x \in [-L, L)$$

in the interval [-2L, 2L]. In which points this extension is not continuous?

- b) Compute its Fourier series.
- c) Evaluate the Fourier series at an appropriate point x_0 and use the convergence result to calculate the following numerical series

$$\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1} = ?$$

4. Find the complex Fourier series of the same function f(x) considered in Exercise 3. Verify that the coefficients c_n of this series

$$\sum_{n=-\infty}^{+\infty} c_n e^{i\frac{n\pi}{L}x}$$

are related as written in the script to the real coefficients a_n, b_n found in the previous exercise.

Hand in on Moodle by: Wednesday 23 October 2024.