D-MAVT Prof. A. Tozzi
D-MATL ETH Ziirich
Analysis 111 Autumn 2024

Serie 6

Topics: Complex Fourier series, Fourier integral and Fourier transform.

1. Let g be the 2L-periodic extensions to R of 2 from [~L, L).
a) Sketch a graph of this function.

b) Prove that the Fourier series of ¢ is
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c) Because g is well-behaved and continuous everywhere, its Fourier series
f converges to it in every point. In particular

Deduce from this equality the value of the Riemann Zeta function ((s)

evaluated at s = 2
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2. For a > 0, consider the function cosh(ax) on the interval [—7, 7) and extend
it on all R to a function of period 2.

a) Compute its complex Fourier series.
b) Use this result to find the value of the following series:
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1 Please turn!



3. The function f(z) = |cos (% )| is periodic of period 2.
a) Compute its Fourier series.
b) Use this result to find the value of the following series:
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4. Compute the Fourier integral of the function f(z) = e ™l and use it to
compute the values of the following integral:
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(for each z € R).

5. Find the Fourier transform f = F (f) of the following functions:

62”‘, —-1<z<1

a) @)= {0, otherwise

T, 0<x<1
b) f(z)=q-2, —-1<2<0
0, otherwise.

Hand in on Moodle by: Wednesday 30 October 2024.




