Analysis III

Serie 7

Topics: Discret Fourier transform DFT, Fast Fourier transform FFT.

1. Discrete Fourier transform (DFT)

Let N = 4 and f be a function whose the following values,

$$f(0) = 2$$
, $f\left(\frac{2\pi}{N}\right) = 0$, $f\left(2\frac{2\pi}{N}\right) = 6$, $f\left(3\frac{2\pi}{N}\right) = 3$.

Find the discrete Fourier transform (DFT) of the function f with the numerical values given above. And write down the finite trigonometric representation of the function f with the coefficients that you found.

Steps:

- 1) Find the value of w_4 .
- 2) Compute the entries of the matrix \mathbf{M}_4^{-1} using the formula

$$\mathbf{M}^{-1} = \frac{1}{N} [w^{-jk}].$$

3) Use the formula

$$\mathbf{C} = \mathbf{M}^{-1}\mathbf{F}.$$

where $\mathbf{F} = \begin{bmatrix} 2 & 0 & 6 & 3 \end{bmatrix}^{\top}$ to find $\mathbf{C} = \begin{bmatrix} c_0 & c_1 & c_2 & c_3 \end{bmatrix}^{\top}$.

4) Use Euler's formula to pass from the finite complex Fourier series

$$f(t) = c_0 + c_1 e^{it} + c_2 e^{2it} + c_3 e^{3it}$$

to the finite trigonometric representation.

2. Write out the matrix \mathbf{M}_8 in terms of w_8 , expressing each entry as the lowest possible positive power of w_8 . You do not need to write w_8 explicitly.

Do the same for the inverse matrix \mathbf{M}_8^{-1} .

3. Fast Fourier Transform (FFT)

Compute the Fast Fourier Transform (FFT) of the same function given in exercise 1. Check that you get the same result.

Steps:

- 1) Find the value of w_M , where $M = \frac{N}{2}$.
- 2) Compute the even and odd coefficients $\mathbf{C}^{(o)}$ and $\mathbf{C}^{(e)}$ using the formula

$$\mathbf{C}^{(o)} = \begin{bmatrix} c_0^{(o)} \\ c_2^{(o)} \end{bmatrix} = \mathbf{M}_2^{-1} \mathbf{f}^{(o)}, \quad \text{and} \quad \mathbf{C}^{(e)} = \begin{bmatrix} c_0^{(e)} \\ c_2^{(e)} \end{bmatrix} = \mathbf{M}_2^{-1} \mathbf{f}^{(e)}$$

- 3) Find the value of w_N .
- 4) Compute the coefficient c_k using the formulas for k < M

$$c_k = \frac{1}{2} \left(c_k^{(o)} + w_N^k c_k^{(e)} \right).$$

And for the coefficient c_k with $k \ge M$,

$$c_k = \frac{1}{2} \left(c_k^{(o)} - w_N^k c_k^{(e)} \right).$$

- **4.** Let $\mathbf{C} = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}^{\top}$.
 - Find \mathbf{F} using $\mathbf{F} = \mathbf{M}_4 \mathbf{C}$.
 - Find **F** using the fast Fourier transform.

5. Fast Fourier Transform (FFT)

Let N = 4 and f be a function whose the following values,

$$f(0) = 0$$
, $f\left(\frac{2\pi}{N}\right) = 1$, $f\left(2\frac{2\pi}{N}\right) = 2$, $f\left(3\frac{2\pi}{N}\right) = 3$.

Compute the Fast Fourier Transform (FFT) of the function f with the numerical values given above. And write down the finite trigonometric representation of the function f with the coefficients that you found.

Hand in by: Wednesday 6 November 2024.