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Solutions Serie 11

1. Find, via Fourier series, the solution of the 1-dimensional heat equation with the fol-
lowing initial condition:

,ut:élum, T € [071]/ t>0
u(0,t) = u(1,t) =0, t>0
u(,0) = /(). e

where
f(z) = sin(mz) + sin(bmzx) + sin(107z).

Use the method of separation of variables from scratch, showing all the steps.

Solution:

With variables separated u(z,t) = F(z)G(t) the differential equation becomes:
F(2)G(t) = 4F"(z)G(t),

which is convenient to rewrite as

F'(x) _ G(t)

F(z)  4G(t)

because it becomes clear that we are comparing a function of x with a function of ¢,

and the only way that this equality might be true is that both these functions are equal

and constant: _
F'(x) _ G(t)
F(z)  4G(t)

The boundary conditions are

=k, keR.

u(0,t) = F(0)G(t) =0 and wu(l,t)=F(1)G(t) =0 Vte[0,+00)

which in order to be true, excluding the trivial solution G(t) = 0, become:

In other words the initial PDE with boundary conditions becomes the system of coupled
equations

{FH(:E) = kF(z), and G(t) = 4kG(t).
F(0)=F(1) =0,
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We first solve the system for F'(x), distinguishing the cases of k positive, zero, or
negative. For k > 0 the general solution of the ODE is

F(z)= CreVhr 4 0267\/%’

which is, however, not compatible with the boundary conditions, in the sense that the
only solution of this form satisfying the boundary conditions is the trivial solution:
C1 =Cy =0. In fact

0= F(O) = Cl + CQ = CQ = —Cl — F(x) = Cl (e‘/Ex — e_\/EI)

but then imposing the other condition:

_ ither C1 =0
Y GO IR il

which implies C; = 0 (and consequently Cy = —C} = 0) because 2v/k # 0 and therefore
its exponential is not 1.

For k = 0 the general solution is F'(xz) = Ciz + Cy which is also not compatible with
boundary conditions unless C7 = Cy = 0. In fact

OZF(O):CQ :>F(.7})2011‘

and then

0=F()=0C.
It remains the case k < 0, in which its convenient to write it in the form k = —p? for
positive real number p, and general solutions of F” = —p?F are:

F(x) = Acos(px) + Bsin(px).

F(0) = 0 if and only if A = 0. F(1) = 0 if and only if Bsin(p) = 0, so if we want
nontrivial solutions B # 0, we need to have

p=nm
for some integer n > 1. Conclusion: we have a nontrivial solution for each n > 1,
k=k,=—n%r2
F,(z) = By sin (nmx)
The corresponding equation for G(t) is
G = —4n’n%G

which has general solution L
Gn(t) = Cpe vt

The conclusion is that for every n > 1 we have a solution

un(2,t) = Fo(2)Gn(t) = By Sin(nwx)e_4n2“2t
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and by the superposition principle:
+oo
2.2
u(x,t) = Z By, sin(nmz)e 4"t
n=1
where the coefficients B,, are determined by the initial condition

+oo
f(z) =u(z,0) = Z By, sin(nmx).
n=1

This case is particularly easy because f(x) is already expressed as a linear combination
of these functions and there is no need to compute any integral to get

1, n=1,5,10
B, =
0, otherwise.

Finally, the solution will be

u(x,t) = sin(mc)e_MZt + sin(57r:v)e_1007r2t + sin(lme)e‘400”2t

2. An aluminium bar of length L = 1(m) has thermal diffusivity of (around)El

2 2
2 = 0.0001 <m> —10~* <m) .
sec sec

It has initial temperature given by u(z,0) = f(z) = 100sin(7x) (°C), and its ends are
kept at a constant 0°C temperature. Find the first time ¢* for which the whole bar will
have temperature < 30°C.

In mathematical terms, solve

U = 10*4um,

uw(0,t) =u(1,t) =0, t>0
u(z,0) = 100sin(rz), 0<z <1.

and find the smallest t* for which

max u(z,t*) < 30.
z€[0,1]

You can use the formula from the lecture notes.
Solution:

The parameters are length L = 1, thermal diffusivity ¢ = 107* and consequently

2,2, 2
cC"n-T
A2 =

"SI

'we are approximating the standard value which would be ¢? ~ 0.000097m? /sec to make computations
easier.

=10"*n%x2.
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The solution is

+oo )
u(zx,t) = Z By, sin(nmz)e”*nt
n=1

and

+oo
f(z) =u(z,0) = Z By, sin(nmx)
n=1

so that the only nontrivial coefficient will be B; = 100. The solution is explicitely given
by 4.2
u(z,t) = 100 sin(rz)e 10 ™,

For each fixed time ¢ > 0, it is a multiple of sin(rz), therefore its maximum will be
reached in z = 1/2 with value

1 - _
M; = max u(z,t) =u | =,t | = 100sin (z) e 107 — 10010 T,
z€[0,1] 2 2

This is a decreasing function of ¢, so that the required value ¢t* for which the bar will

have temperature < 30°C is given by imposing

a2 10°. (1
Mp-=30 & 100e70 7™ =30 & = %m <0>
m 3

( ~ 1219.88 sec = 20 min 19.88 sec)

. Consider the following time-dependent version of the heat equation on the interval
[0, L], in which the constant varies linearly with time. We also impose boundary con-
ditions and we look for solutions:

up = 2t Uy, z € [0,L],t €0, +00)
u=u(z,t) s.t. u(0,t) =0, t €[0,+00)
u(L,t) =0, t € [0, +00)

Find all possible solutions of the specific form u(z,t) = F(x)G(t).
Solution:
The differential equation becomes:
F(x)G(t) =2t F" (2)G(t),
which is convenient to rewrite as

F(x) _ G(t)
F(z)  2tc2G(t)

4 Look at the next page!



because it becomes clear that we are comparing a function of x with a function of ¢,
and the only way that this equality might be true is that both these functions are equal
and constant: _
Fiz) G
F(z)  2tc2G(t)

The boundary conditions are

k e R.

u(0,t) = F(0)G(t) =0 and wu(L,t)=F(L)G(t)=0 Vte|[0,+00)

which in order to be true, excluding the trivial solution G(t) = 0, become:

In other words the initial PDE with boundary conditions becomes the system of coupled
equations

and  G(t) = 2tkc*G(t).

F'(a) = kF(x),
F(0) = F(L) =0,

We first solve the system for F'(x), distinguishing the cases of k positive, zero, or
negative. For k > 0 the general solution of the ODE is

F(x) = CreVhe 4 C’ge_\/h,

which is, however, not compatible with the boundary conditions, in the sense that the
only solution of this form satisfying the boundary conditions is the trivial solution:
C1 =Cy =0. In fact

0= F(O) =C1+Cy & (Cy=-C} - F(l‘) =] <e‘/Ez — e—\/Em)
but then imposing the other condition:

_ _ VEL —VkL either C;1 =0
O—F(L)_Cl(e —e ) & S

which implies C; = 0 (and consequently Cy = —C; = 0) because 2v/kL # 0 and
therefore its exponential is not 1.

For k = 0 the general solution is F'(xz) = Ciz + Cy which is also not compatible with
boundary conditions unless C; = Co = 0. In fact

OZF(O)ZCQ :>F(a:):01x

and then
O:F(L):ClL = 01:0.

It remains the case k < 0, in which its convenient to write it in the form k = —p? for
positive real number p, and general solutions of F” = —p?F are:

F(z) = Acos(pz) + Bsin(pz).
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We impose the boundary conditions:

0=F0)=A = F(z)= Bsin(px)

and
0= F(L) = Bsin(pL) (220 pL=nm, n€Z>
Conclusion: we have a nontrivial solution for each n > 1, k =k, = —%:

F,(z) = By sin (%z‘) .

The corresponding equation for G(t) is

. n?m2c?
which has general solution
n27'r202
Gnl(t) = Cpe 12 ©

The conclusion is that for every n > 1 we have a solution

’n2‘n'262
Un(x,t) = Fp(x)Gp(t) = Ape” 12 ? sin (%x) ) A, €R.

. Adapt the method used to solve the previous Laplace equation in the case in which
the only nontrivial initial boundary condition is on the right vertical segment of the
rectangle

Ay

u(z,b) =0

b

r={@ye®

_xga} ula,y) = 9()

<y< = =L
u(0,y) =0 et 60) =9 =0)
> T

u(z,0) =0 .
Au =0, (z,y) € R
u(z,0) =u(z,b) =0, 0<z<a
u(0,y) =0, 0<y<b
u(a,y) = g(y), 0<y<b

where ¢(y) is any function with prescribed boundary conditions
9(0) =g(b) =0
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Solution:

We just have to make a few changes from the way the equation was solved in the
lecture notes. To solve the differential equation Au = 0 by separation of variables

u(z,y) = F(z)G(y)

we still have to impose for some k € R:
F"=—kF
G" =kG.
We first impose the boundary conditions u(z,0) = w(z,b) = 0, which translate into

G(0) = G(b) = 0. To have nontrivial solutions, we must have k < 0. With this condition
we solve

G" = kG - G(y) = Acos (V—ky) + Bsin (vV—ky)
G0)=G(b) =0 G0)=G(b) =0

{(G(O)ZO) A=0 s Gn(y):anin<%y>, n>1

(G(b) = O) \/jk?b =nm (TL € Zzl)

For these admissible values we found

e ]

we have solutions of the other differential equation F” = —kF
Fp(z) =A%t ™+ Ble™ 57
and imposing the boundary condition «(0,y) = 0 we have F,,(0) = 0, that is
F,(z) = 2A} sinh (%x) .
Renaming the product of the constants A,, := B,, - 24} we get
up(z,y) = Fo(2)Gp(y) = Ay sinh (n%x) sin (n%y) ,

and by the superposition principle

x,y) = io U (z,y) = JffAn sinh (n%x) sin (n%y)
n=1 n=1

is also a solution. We now only have to impose the last boundary condition u(a,y) =
g(y) which translates into

+o0
9(y) = Z [An sinh (n%a)] sin (%y)

so that the expressions in the square brackets must be the coefficients of the odd,
2b-periodic extension of g(y), or equivalently

b
A, = ) dy.
bsmh bsinh (2% q) /g sm Y
0



