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Solutions Serie 11

1. Find, via Fourier series, the solution of the 1-dimensional heat equation with the fol-
lowing initial condition:

ut = 4uxx, x ∈ [0, 1], t ≥ 0

u(0, t) = u(1, t) = 0, t ≥ 0

u(x, 0) = f(x), x ∈ [0, 1]

where
f(x) = sin(πx) + sin(5πx) + sin(10πx).

Use the method of separation of variables from scratch, showing all the steps.

Solution:

With variables separated u(x, t) = F (x)G(t) the differential equation becomes:

F (x)Ġ(t) = 4F ′′(x)G(t),

which is convenient to rewrite as

F ′′(x)

F (x)
=

Ġ(t)

4G(t)

because it becomes clear that we are comparing a function of x with a function of t,
and the only way that this equality might be true is that both these functions are equal
and constant:

F ′′(x)

F (x)
=

Ġ(t)

4G(t)
= k, k ∈ R.

The boundary conditions are

u(0, t) = F (0)G(t) = 0 and u(1, t) = F (1)G(t) = 0 ∀t ∈ [0,+∞)

which in order to be true, excluding the trivial solution G(t) ≡ 0, become:

F (0) = F (1) = 0.

In other words the initial PDE with boundary conditions becomes the system of coupled
equations {

F ′′(x) = kF (x),

F (0) = F (1) = 0,
and Ġ(t) = 4kG(t).
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We first solve the system for F (x), distinguishing the cases of k positive, zero, or
negative. For k > 0 the general solution of the ODE is

F (x) = C1e
√
kx + C2e

−
√
kx,

which is, however, not compatible with the boundary conditions, in the sense that the
only solution of this form satisfying the boundary conditions is the trivial solution:
C1 = C2 = 0. In fact

0 = F (0) = C1 + C2 ⇔ C2 = −C1 =⇒ F (x) = C1

(
e
√
kx − e−

√
kx
)

but then imposing the other condition:

0 = F (1) = C1

(
e
√
k − e−

√
k
)

⇔ either C1 = 0
or e2

√
k = 1

which implies C1 = 0 (and consequently C2 = −C1 = 0) because 2
√
k ̸= 0 and therefore

its exponential is not 1.

For k = 0 the general solution is F (x) = C1x + C2 which is also not compatible with
boundary conditions unless C1 = C2 = 0. In fact

0 = F (0) = C2 =⇒ F (x) = C1x

and then
0 = F (1) = C1.

It remains the case k < 0, in which its convenient to write it in the form k = −p2 for
positive real number p, and general solutions of F ′′ = −p2F are:

F (x) = A cos(px) +B sin(px).

F (0) = 0 if and only if A = 0. F (1) = 0 if and only if B sin(p) = 0, so if we want
nontrivial solutions B ̸= 0, we need to have

p = nπ

for some integer n ≥ 1. Conclusion: we have a nontrivial solution for each n ≥ 1,
k = kn = −n2π2:

Fn(x) = Bn sin (nπx)

The corresponding equation for G(t) is

Ġ = −4n2π2G

which has general solution
Gn(t) = Cne

−4n2π2t

The conclusion is that for every n ≥ 1 we have a solution

un(x, t) = Fn(x)Gn(t) = Bn sin(nπx)e
−4n2π2t
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and by the superposition principle:

u(x, t) =
+∞∑
n=1

Bn sin(nπx)e
−4n2π2t

where the coefficients Bn are determined by the initial condition

f(x) = u(x, 0) =
+∞∑
n=1

Bn sin(nπx).

This case is particularly easy because f(x) is already expressed as a linear combination
of these functions and there is no need to compute any integral to get

Bn =

{
1, n = 1, 5, 10

0, otherwise.

Finally, the solution will be

u(x, t) = sin(πx)e−4π2t + sin(5πx)e−100π2t + sin(10πx)e−400π2t

2. An aluminium bar of length L = 1(m) has thermal diffusivity of (around)1

c2 = 0.0001

(
m2

sec

)
= 10−4

(
m2

sec

)
.

It has initial temperature given by u(x, 0) = f(x) = 100 sin(πx) (◦C), and its ends are
kept at a constant 0◦C temperature. Find the first time t∗ for which the whole bar will
have temperature ≤ 30◦C.
In mathematical terms, solve

ut = 10−4uxx,

u(0, t) = u(1, t) = 0, t ≥ 0

u(x, 0) = 100 sin(πx), 0 ≤ x ≤ 1.

and find the smallest t∗ for which

max
x∈[0,1]

u(x, t∗) ≤ 30.

You can use the formula from the lecture notes.

Solution:

The parameters are length L = 1, thermal diffusivity c2 = 10−4 and consequently

λ2
n =

c2n2π2

L2
= 10−4n2π2.

1we are approximating the standard value which would be c2 ≈ 0.000097m2/sec to make computations
easier.
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The solution is

u(x, t) =

+∞∑
n=1

Bn sin(nπx)e
−λ2

nt

and

f(x) = u(x, 0) =

+∞∑
n=1

Bn sin(nπx)

so that the only nontrivial coefficient will be B1 = 100. The solution is explicitely given
by

u(x, t) = 100 sin(πx)e−10−4π2t.

For each fixed time t ≥ 0, it is a multiple of sin(πx), therefore its maximum will be
reached in x = 1/2 with value

Mt := max
x∈[0,1]

u(x, t) = u

(
1

2
, t

)
= 100 sin

(π
2

)
e−10−4π2t = 100e−10−4π2t.

This is a decreasing function of t, so that the required value t∗ for which the bar will
have temperature ≤ 30◦C is given by imposing

Mt∗ = 30 ⇔ 100e−10−4π2t∗ = 30 ⇔ t∗ =
104

π2
ln

(
10

3

)
(

≈ 1219.88 sec = 20 min 19.88 sec

)

3. Consider the following time-dependent version of the heat equation on the interval
[0, L], in which the constant varies linearly with time. We also impose boundary con-
ditions and we look for solutions:

u = u(x, t) s.t.


ut = 2tc2uxx, x ∈ [0, L], t ∈ [0,+∞)

u(0, t) = 0, t ∈ [0,+∞)

u(L, t) = 0, t ∈ [0,+∞)

Find all possible solutions of the specific form u(x, t) = F (x)G(t).

Solution:

The differential equation becomes:

F (x)Ġ(t) = 2tc2F ′′(x)G(t),

which is convenient to rewrite as

F ′′(x)

F (x)
=

Ġ(t)

2tc2G(t)
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because it becomes clear that we are comparing a function of x with a function of t,
and the only way that this equality might be true is that both these functions are equal
and constant:

F ′′(x)

F (x)
=

Ġ(t)

2tc2G(t)
= k, k ∈ R.

The boundary conditions are

u(0, t) = F (0)G(t) = 0 and u(L, t) = F (L)G(t) = 0 ∀t ∈ [0,+∞)

which in order to be true, excluding the trivial solution G(t) ≡ 0, become:

F (0) = F (L) = 0.

In other words the initial PDE with boundary conditions becomes the system of coupled
equations {

F ′′(x) = kF (x),

F (0) = F (L) = 0,
and Ġ(t) = 2tkc2G(t).

We first solve the system for F (x), distinguishing the cases of k positive, zero, or
negative. For k > 0 the general solution of the ODE is

F (x) = C1e
√
kx + C2e

−
√
kx,

which is, however, not compatible with the boundary conditions, in the sense that the
only solution of this form satisfying the boundary conditions is the trivial solution:
C1 = C2 = 0. In fact

0 = F (0) = C1 + C2 ⇔ C2 = −C1 =⇒ F (x) = C1

(
e
√
kx − e−

√
kx
)

but then imposing the other condition:

0 = F (L) = C1

(
e
√
kL − e−

√
kL
)

⇔ either C1 = 0
or e2

√
kL = 1

which implies C1 = 0 (and consequently C2 = −C1 = 0) because 2
√
kL ̸= 0 and

therefore its exponential is not 1.

For k = 0 the general solution is F (x) = C1x + C2 which is also not compatible with
boundary conditions unless C1 = C2 = 0. In fact

0 = F (0) = C2 =⇒ F (x) = C1x

and then
0 = F (L) = C1L ⇔ C1 = 0.

It remains the case k < 0, in which its convenient to write it in the form k = −p2 for
positive real number p, and general solutions of F ′′ = −p2F are:

F (x) = A cos(px) +B sin(px).

5 Please turn!



We impose the boundary conditions:

0 = F (0) = A =⇒ F (x) = B sin(px)

and

0 = F (L) = B sin(pL)
(if B ̸= 0)⇔ pL = nπ, n ∈ Z≥1

Conclusion: we have a nontrivial solution for each n ≥ 1, k = kn = −n2π2

L2 :

Fn(x) = Bn sin
(nπ
L

x
)
.

The corresponding equation for G(t) is

Ġ = −2t
n2π2c2

L2
G

which has general solution

Gn(t) = Cne
−n2π2c2

L2 t2 .

The conclusion is that for every n ≥ 1 we have a solution

un(x, t) = Fn(x)Gn(t) = Ane
−n2π2c2

L2 t2 sin
(nπ
L

x
)
, An ∈ R.

4. Adapt the method used to solve the previous Laplace equation in the case in which
the only nontrivial initial boundary condition is on the right vertical segment of the
rectangle

x

y

R =

{
(x, y) ∈ R2

∣∣∣∣ 0 ≤ x ≤ a
0 ≤ y ≤ b

}
u(0, y) = 0

u(x, b) = 0

u(a, y) = g(y)(
g(0) = g(b) = 0

)

u(x, 0) = 0
a

b


∆u = 0, (x, y) ∈ R

u(x, 0) = u(x, b) = 0, 0 ≤ x ≤ a

u(0, y) = 0, 0 ≤ y ≤ b

u(a, y) = g(y), 0 ≤ y ≤ b

where g(y) is any function with prescribed boundary conditions

g(0) = g(b) = 0.
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Solution:

We just have to make a few changes from the way the equation was solved in the
lecture notes. To solve the differential equation ∆u = 0 by separation of variables

u(x, y) = F (x)G(y)

we still have to impose for some k ∈ R:{
F ′′ = −kF

G′′ = kG.

We first impose the boundary conditions u(x, 0) = u(x, b) = 0, which translate into
G(0) = G(b) = 0. To have nontrivial solutions, we must have k < 0. With this condition
we solve{

G′′ = kG

G(0) = G(b) = 0
⇔

{
G(y) = A cos

(√
−ky

)
+B sin

(√
−ky

)
G(0) = G(b) = 0

⇔

⇔

{
(G(0) = 0) A = 0

(G(b) = 0)
√
−kb = nπ (n ∈ Z≥1)

⇝ Gn(y) = Bn sin
(nπ

b
y
)
, n ≥ 1

For these admissible values we found
√
−k =

nπ

b
⇝ k = −

(nπ
b

)2
we have solutions of the other differential equation F ′′ = −kF

Fn(x) = A∗
ne

nπ
b
x +B∗

ne
−nπ

b
x

and imposing the boundary condition u(0, y) = 0 we have Fn(0) = 0, that is

Fn(x) = 2A∗
n sinh

(nπ
b
x
)
.

Renaming the product of the constants An := Bn · 2A∗
n we get

un(x, y) = Fn(x)Gn(y) = An sinh
(nπ

b
x
)
sin
(nπ

b
y
)
,

and by the superposition principle

u(x, y) =
+∞∑
n=1

un(x, y) =
+∞∑
n=1

An sinh
(nπ

b
x
)
sin
(nπ

b
y
)

is also a solution. We now only have to impose the last boundary condition u(a, y) =
g(y) which translates into

g(y) =
+∞∑
n=1

[
An sinh

(nπ
b
a
)]

sin
(nπ

b
y
)

so that the expressions in the square brackets must be the coefficients of the odd,
2b-periodic extension of g(y), or equivalently

An =
2

b sinh
(
nπ
b a
) b∫

0

g(y) sin
(nπ

b
y
)
dy.
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