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Solutions Serie 5

1. Determine whether the following functions are even, odd, or neither. Justify your ans-
wer.

a) f(z)=2%+2

Solution:

— f is even.

b) f(z)=x+1

Solution:

f(—z)=—z+1#+(x+1)==f(2)
= f is neither even nor odd.
c) f(x) = sinh(z® + )

Solution:

f(=z) = sinh((—z)3—z) = sinh(—23—x) = sinh(—(2*42)) = — sinh(z3+z) = — f(z)
= f is odd.

d) f(z) = sin(rz) + sin(z?)

Solution:

f(—2) = sin(—nz) + sin((—x)?) = —sin(7z) + sin(z?)
—> f is neither even nor odd.
e) f(z) = Re(e"™)

Solution:

f(z) = Re(cos(sin(z)) + isin(sin(x))) = cos(sin(z))

os(sin(—x)) = cos(—sin(z)) = cos(sin(x))
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— f is even.

1 Please turn!



2. Consider the function
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a) Extend f to an even function on the interval [—,

7] and then finally to an even,

2m-periodic function on R and call this function f,.

Sketch the graph of f. and find its Fourier series.

Solution:
The even extension f. is given, in the interval [—m, 7], by
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3.

b) Do the same for the odd, 2w-periodic extensionﬂ of f (call this f,).

Solution:

The odd extension f, is given, in the interval (—m, x|, by
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Therefore here the a,, coefficients will be all zero, while
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a) Sketch the graph of the 2L-periodic extension of

fz) =,

ze[-L,L)

in the interval [-2L,2L]. In which points this extension is not continuous?

"We added the condition f(r) = 0, to avoid problems when we want to extend f to an odd function.
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Solution:

period = 2L 0
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This extension is not continuous in the points x = L 4+ 2k L, with k € Z. In these
points the limit from the right is —L, while the limit from the left is L.

b) Compute its Fourier series.

Solution:

The extended function is 0ddE| and therefore all a,, coefficients are going to vanish.
Integration by parts (and a change of variable y = wx/L) yields
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Therefore the Fourier series is
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c) Evaluate the Fourier series at an appropriate point xp and use the convergence
result to calculate the following numerical series
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2To be precise, it is odd almost everywhere, in the sense that f(—z) = —f(z) for all x apart from a

discrete set. In fact when we extend it to a 2L periodic function we get for example f(L) = —L = f(—L).
Anyway, because we are integrating the function, these points don’t contribute.
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Solution:

We know that the Fourier series converges to the function in every point in which
the function is continuous. In this case, this means that every = € (—L, L) can be

written as:
= oL nm
= —1“+1—‘(—). 1
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We want to use this equality in a particular xg to find the value of
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We notice that we need only the terms n = 2k 4 1 in our Fourier series, while the
others must cancel. Therefore a good attempt is zo = L/2. In fact in this way we
obtain

) T . T L . i ) -
() = ) s () = {0 1R

Plugging this in the equation we get
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But then the series we were looking for is:

4. Find the complex Fourier series of the same function f(x) considered in Exercise 3.
Verify that the coefficients ¢, of this series
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are related as written in the script to the real coefficients a,, b,, found in the previous
exercise.

Solution:
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The complex Fourier coefficients for f are, for n # 0,
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Therefore the complex Fourier series of f is

Y S L
Z i ( ) el
nm

n=—oo

n#0

The formula relating the real coefficients to the complex coefficients is

apg = Cp
an =cn+c—p (Mn>1)

b =1(cn —c—p)
and substituting we get indeed
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which is what we expected.



