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1. For k ∈ R, find the Fourier series solution u = u(x, t) of the 1-dimensional wave
equation on the interval [0, 1] with the following boundary and initial conditions:

utt = uxx,

u(0, t) = 0 = u(1, t), t ≥ 0

u(x, 0) = kx(1− x2), 0 ≤ x ≤ 1

ut(x, 0) = 0, 0 ≤ x ≤ 1

Use the method of separation of variables from scratch and describe each step of it.

Solution:

With variables separated u(x, t) = F (x)G(t) the differential equation becomes:

F (x)G̈(t) = F ′′(x)G(t),

which is convenient to rewrite as

F ′′(x)

F (x)
=

G̈(t)

G(t)

because it becomes clear that we are comparing a function of x with a function of t,
and the only way that this equality might be true is that both these functions are equal
and constant:

F ′′(x)

F (x)
=

G̈(t)

G(t)
= k, k ∈ R.

The boundary conditions are

u(0, t) = F (0)G(t) = 0 and u(1, t) = F (1)G(t) = 0 ∀t ∈ [0,+∞)

which in order to be true, excluding the trivial solution G(t) ≡ 0, become:

F (0) = F (1) = 0.

In other words the initial PDE with boundary conditions becomes the system of coupled
equations {

F ′′(x) = kF (x),

F (0) = F (1) = 0,
and G̈(t) = kG(t).
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We first solve the system for F (x), distinguishing the cases of k positive, zero, or
negative. For k > 0 the general solution of the ODE is

F (x) = C1e
√
kx + C2e

−
√
kx,

which is, however, not compatible with the boundary conditions, in the sense that the
only solution of this form satisfying the boundary conditions is the trivial solution:
C1 = C2 = 0. In fact

0 = F (0) = C1 + C2 ⇔ C2 = −C1 =⇒ F (x) = C1

(
e
√
kx − e−

√
kx
)

but then imposing the other condition:

0 = F (1) = C1

(
e
√
k − e−

√
k
)

⇔ either C1 = 0
or e2

√
k = 1

which implies C1 = 0 (and consequently C2 = −C1 = 0) because 2
√
k ̸= 0 and therefore

its exponential is not 1.

For k = 0 the general solution is F (x) = C1x + C2 which is also not compatible with
boundary conditions unless C1 = C2 = 0. In fact

0 = F (0) = C2 =⇒ F (x) = C1x

and then
0 = F (1) = C1.

It remains the case k < 0, in which its convenient to write it in the form k = −p2 for
positive real number p, and general solutions of F ′′ = −p2F are:

F (x) = A cos(px) +B sin(px).

F (0) = 0 if and only if A = 0. F (1) = 0 if and only if B sin(p) = 0, so if we want
nontrivial solutions B ̸= 0, we need to have

p = nπ

for some integer n ≥ 1. Conclusion: we have a nontrivial solution for each n ≥ 1,
k = kn = −n2π2:

Fn(x) = Bn sin (nπx)

The corresponding equation for G(t) is

G̈ = −n2π2G

which has general solution

Gn(t) = Cn cos(nπt) +Dn sin(nπt).

The conclusion is that for every n ≥ 1 we have a solution

un(x, t) = Fn(x)Gn(t) =
(
Bn cos(nπt) +B∗

n sin(nπt)
)
sin(nπx), Bn, B

∗
n ∈ R.
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and by the superposition principle general solution:

u(x, t) =
+∞∑
n=1

un(x, t) =
+∞∑
n=1

(
Bn cos(nπt) +B∗

n sin(nπt)
)
sin(nπx).

The coefficients are found by imposing the initial conditions. Firstly the initial position
must be

u(x, 0) =

+∞∑
n=1

Bn sin(nπx) = kx(1− x2).

For this equality to hold the coefficients Bn must be the coefficients of the Fourier
series of the odd, 2L(= 2 in this case)-periodic extension of the function kx(1 − x2)
from the interval [0, 1]. That is:

Bn = 2

1∫
0

kx(1− x2) sin(nπx) dx = 2k

1∫
0

(x− x3) sin(nπx) dx =

= 2k

−(x− x3)
cos(nπx)

nπ

∣∣∣∣1
0

+
1

nπ

1∫
0

(1− 3x2) cos(nπx) dx

 =

=
2k

nπ

(1− 3x2)
sin(nπx)

nπ

∣∣∣∣1
0

+
1

nπ

1∫
0

6x sin(nπx) dx

 =

=
12k

n2π2

−x
cos(nπx)

nπ

∣∣∣∣1
0

+
1

nπ

1∫
0

cos(nπx) dx

 =

= − 12k

n3π3
(−1)n − 12k

n4π4
sin(nπx)

∣∣∣∣1
0

=

=
12k

n3π3
(−1)n+1.

The initial speed instead gives trivially

ut(x, 0) =
+∞∑
n=1

nπB∗
n sin(nπx) = 0 ⇔ B∗

n = 0.

Finally, the solution is

u(x, t) =
12k

π3

+∞∑
n=1

(−1)n+1

n3
cos(nπt) sin(nπx).
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2. Find the solution u = u(x, t) of the 1-dimensional wave equation on the interval [0, L]
with the following boundary and initial conditions:

utt = c2uxx,

u(0, t) = 0 = u(L, t), t ≥ 0

u(x, 0) = 0, 0 ≤ x ≤ L

ut(x, 0) = sin
(
π
Lx

)
, 0 ≤ x ≤ L

Find the solution via Fourier series, you don’t need to detail the steps. So use directly
the formula given in §4.3 of the Lecture Notes.

Solution:

The formula for the solution via Fourier series in this case in which the initial function
f = 0 looks like:

u(x, t) =

+∞∑
n=1

B∗
n sin

(cnπ
L

t
)
sin

(nπ
L

x
)
.

To find the coefficients B∗
n we impose the initial condition:

ut(x, 0) =
+∞∑
n=1

B∗
n

cnπ

L
sin

(nπ
L

x
)
= sin

(π
L
x
)

=⇒

{
B∗

1 = L
cπ ,

B∗
n≥2 = 0 .

=⇒ u(x, t) =
L

cπ
sin

(cπ
L
t
)
sin

(π
L
x
)

3. Find all possible solutions of the following PDEs of the form u(x, t) = F (x)G(t) (se-
paration of variables):

a) xux + ut = 0

Solution:

As customary, we will denote by F ′ the derivative of F in the variable x and by
Ġ the derivative of G in the variable t. Plugging in the equation a function of the
form u(x, t) = F (x)G(t) we get

xF ′(x)G(t) + F (x)Ġ(t) = 0 ⇔ x
F ′(x)

F (x)
= −Ġ(t)

G(t)

On the left-hand side we have a function of x while on the other side we have a
function of t. The equality is possible only if these expressions are constant, so
there must be a k ∈ R such that

x
F ′(x)

F (x)
= −Ġ(t)

G(t)
= k ⇔

{
F ′(x)− k

xF (x) = 0

Ġ(t) + kG(t) = 0
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This is a system of two homogeneous, first order, ODEs, one with non-constant
and the other with constant coefficients. The solutions are{

F (x) = c1e
∫

k
x = c1e

k
∫

1
x = c1

(
eln(x)

)k
= c1x

k

G(t) = c2e
−kt

so that, calling c := c1c2 the product of the constants, we have solutions of the
form

u(x, t) = F (x)G(t) = cxke−kt, k ∈ R.

b) ux + ut + xu = 0

Solution:

Here we get
ux + ut + xu = F ′G+ FĠ+ xFG,

which we are going to impose equal to zero. We want to keep track of the variables
involved in order to have clear which function depends on which variable, to then
separate the equations properly:

F ′(x)G(t) + F (x)Ġ(t) + xF (x)G(t) = 0 ⇔

⇔ (F ′(x) + xF (x))G(t) = −F (x)Ġ(t) ⇔ F ′(x)

F (x)
+ x = −Ġ(t)

G(t)

which, again, is an equality between some function of x and some other function
of t, so there must be some constant k ∈ R for which{

F ′

F + x = k

− Ġ
G = k

⇔

{
F ′ + (x− k)F = 0

Ġ+ kG = 0
⇔

{
F (x) = c1e

−
∫
(x−k) = c1e

−x2

2
+kx

G(t) = c2e
−kt

⇝ u(x, t) = F (x)G(t) = ce−
x2

2
+kxe−kt = ce−

x2

2
+k(x−t).

c) t3ux + cos(x)u− 2uxt = 0

Solution:

The equation with separated variables becomes

t3F ′(x)G(t) + cos(x)F (x)G(t)− 2F ′(x)Ġ(t) = 0.

We want to get some equation in which there are just two terms, each of which is
a product of a function of x and t. So we need to gather the first term with the
third term:

F ′(x)
(
t3G(t)− 2Ġ(t)

)
= − cos(x)F (x)G(t) ⇔ cos(x)F (x)

F ′(x)
=

2Ġ(t)− t3G(t)

G(t)
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Again we need to impose both terms to be constantly equal to some k ∈ R. In
the case k ̸= 0 we can divide by it and getting the following system of ODEs:{

F ′ − cos(x)
k F = 0

Ġ− (t3+k)
2 G = 0

⇔

F (x) = c1e
∫ cos(x)

k = c1e
1
k

∫
cos(x) = c1e

sin(x)
k

G(t) = c2e
∫ (t3+k)

2 = c2e
t4

8
+ kt

2 = c2e
t
8(t

3+4k)

⇝ family of solutions: u(x, t) = ce
sin(x)

k e
t
8
(t3+4k), k ∈ R \ {0}.

As one can easily observe instead the case k = 0 forces F = 0 and so also u = 0,
which is the trivial solution and it’s anyway already been considered above if the
constant c = 0.

Remark (unimportant for the purpose of the exercises): what we did in each
exercise is finding admissible values k ∈ R for which there exists some solution of the
form1

uk(x, t) = c(k)Fk(x)Gk(t)

Because each of these PDEs was homogeneous, by the so-called superposition principle,
then also the sum of any of these solutions is a solution.
More generally any expression of the form

u(x, t) =

+∞∫
−∞

c(k)Fk(x)Gk(t) dk

will be a solution, providing that there are some convergence conditions (i.e. the integral
converges, and it does it in such a way that this expression will be differentiable, etc.
etc.).
This is in what fully consists the method of separation of variables: find the values
k ∈ R for which exists a specific solution with separated variables (and this is usually
easy just because we have separated the variables); then ’sum’ in some sense over
all admissible values of k (take a series, if it’s a discrete set, take the integral, if it’s
continuous) these solutions to get a more general solution.
This is, more or less, how to get any possible solution of the simplest PDEs.

4. Wave Equation with inhomogeneous boundary conditions

Find the solution of the following wave equation (with inhomogeneous boundary
conditions) on the interval [0, π]:

utt = c2uxx, t ≥ 0, x ∈ [0, π]

u(0, t) = 3π2, t ≥ 0

u(π, t) = 7π, t ≥ 0

u(x, 0) = 2 sin(5x) + sin(4x) + (7− 3π)x+ 3π2, x ∈ [0, π]

ut(x, 0) = 0. x ∈ [0, π]

(1)

You must proceed as follows.

1in what follows the subscript is there to indicate a dependence on k, it’s not a derivative!
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a) Find the unique function w = w(x) with w′′(x) = 0, w(0) = 3π2, and w(π) = 7π.

Solution:

The only functions with second derivative zero are the linear functions

w(x) = αx+ β, α, β ∈ R.

Imposing the boundary conditions we find the right coefficients{
3π2 = w(0) = α · 0 + β

7π = w(π) = α · π + β
⇔

{
α = 7π−3π2

π

β = 3π3
⇔ w(x) = (7− 3π)x+ 3π2.

b) Define v(x, t) := u(x, t)−w(x). Formulate the corresponding problem for v, equi-
valent to (1).

Solution:

The PDE doesn’t change because w is independent of time and has second deri-
vative in x zero. The boundary conditions become homogeneous (that’s why we
chose this w)

v(0, t) = u(0, t)− w(0) = 3π2 − 3π2 = 0

v(π, t) = u(π, t)− w(π) = 7π − (7− 3π)π − 3π2 = 0.

The initial position of the wave changes in

v(x, 0) = u(x, 0)− w(x) = 2 sin(5x) + sin(4x) + (7− 3π)x+ 3π2 − (7− 3π)x− 3π2

= 2 sin(5x) + sin(4x),

while the initial speed doesn’t change (because, again, w is independent of time).
Finally 

vtt = c2vxx, t ≥ 0, x ∈ [0, π]

v(0, t) = v(π, t) = 0, t ≥ 0

v(x, 0) = 2 sin(5x) + sin(4x), x ∈ [0, π]

vt(x, 0) = 0. x ∈ [0, π]

c) (i) Find, using the formula from the script, the solution v(x, t) of the problem you
have just formulated.
Solution:
This is a standard homogeneous wave equation with homogeneous boundary
conditions. The formula from the script is

v(x, t) =

+∞∑
n=1

(
Bn cos(λnt) +B∗

n sin(λnt)
)
sin

(nπ
L

x
)
, λn =

cnπ

L

(L=π)
=

+∞∑
n=1

(
Bn cos(cnt) +B∗

n sin(cnt)
)
sin(nx).
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The coefficients B∗
n = 0, because the initial speed is zero, while the coefficients

Bn are the Fourier coefficients of the odd, 2π-periodic extension of the initial
position datum v(x, 0) = 2 sin(5x) + sin(4x), that is:

+∞∑
n=1

Bn sin(nx) = 2 sin(5x) + sin(4x).

By identifying the term we have, B4 = 1, B5 = 2 and Bn = 0 otherwise.
Finally we get the following solution

v(x, t) = cos(4ct) sin(4x) + 2 cos(5ct) sin(5x).

(ii) Write down explicitly the solution u(x, t) of the original problem (1).

Solution:

The solution u(x, t) of the inhomogeneous problem is

u(x, t) = cos(4ct) sin(4x) + 2 cos(5ct) sin(5x) + (7− 3π)x+ 3π2.
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