ZF CompSci Il D-MAVT

Julian Lotzer—jlotzer@student.ethz.ch
Daniel Steinhauser — dsteinhauser@student.ethz.ch

Version: 01.09.2023

This summary is based on the D-MAVT Computer Science I/
lectures by Dr. Ralf Sasse and Dr. Carlos Cotrini. The ZF is
constantly updated, as the lecture takes place for the first time in
this form. No guarantee can be given for correctness or
completeness. You will find the newest version on

https://n.ethz.ch/~dsteinhauser/ or https://n.ethz.ch/~jlotzer,

1 General Python @

Everything is a pointer:
11 = [1, 3, 'hi', -4] #11 ->
11

12 = 11
12/

If a copy is needed, use:

import copy

12 = copy.copy(1l2) #shallow copy (1D-Array)

12 = copy.deepcopy(1l2) #deep copy (Multi Dimensional Arrays)

Python dynamically types variables, which means that the variable type can
change during the program'’s execution

s =5

print(type(s)) #output: <class 'int'>
s = False

print(type(s)) #output: <class 'bool'>
s = "Hello World"

print(type(s)) #output: <class 'str's>

 To convert the data type:

s = 5.9 #type(s) = <class 'float'>
x = int(s) #type(x) = <class 'int'>
y = str(s) #type(y) = <class 'str'>

1.2.1 Type Hints
 Are not enforced by python, but help make code more legible:
def add_integers(li: list[int]) -> int

#the type annotation after the colon (:) indicates the
#expected type. The type annotation after the arrow
#indicates the expected return type

o Output (NOTE print(p.value, end = * *) for no \n)
print("Hello World") #output: Hello World
print("Hello", "World") #output: Hello World
print("Hello", "World", sep = "--")

#output: Hello--World

print("Hello", "World", sep = "--", end = "!")
#output: Hello--World!

e Input

name = input("Enter name:
print("Hello", name)

o Input of an integer (str->int conversion):

number = int(input("Enter your number:
print("Number:", name)

") #input returns a string

"))

o if, elif (else if), else Block
x = int(input("Enter a number: ")

if x < 5 and x >= @:
print("too small") #if x between © and 5
elif x 69 Or x == 420:
print("nice") #if x is equal to 69 or 420
elif x < o:
pass #do nothing if x negative
else:
print("big number") #x is positive and the ifs/elifs
conditions don’t hold

o while-loop

X =0

while x <= 3:
print(x)
X +=1

« for-loop over value ranges (see Ranges Chapter 2.2)

for i in range(®,4,1): #range(start, stop, step)
print(i, end = " ") #output: @ 1 2 3

for i in reversed(range(e,4,1)):
print(i, end = " ") #output: 3 2 1 @

o for-loop over lists

1=[3,5,25]

for i in 1:
print(i, end =

" ") #output: 3 5 25

for i in reversed(l):
print(i, end = " ") #output: 25 5 3

Functions do not have to be declared in a specific order, in contrast to C++
(forward declarations). This means this is completely valid:

def foo():
return bar()

def bar():
return o

1.5.1 Function Declaration
def function(argl, arg2):

return value

1.5.2 Default arguments
Using default arguments, it is possible to have “optional" arguments:
def specialprint(data="hello world")
print(data)
specialprint() #hello world

1.5.3 Global and local variables
Variables that are defined outside of a function are global and can also be
used within the function if they are defined before the function call
(although this should be avoided whenever possible!).
def scaled(x):

return x*scale #ok, because scale is global

scale = 1.1 #has to be defined before scaled(10)!
print(scaled(10)) #Output: 11

® Making a local variable in a function globally accessible:
def double(x):
global result #result is defined globally
result = x*2

double(7) #function call, before print(result)
print(result) #output: 14

2 Python Containers

Python containers can be divided into ordered (sequences) and unordered
(collections) containers.

Sequences include tuple (all types), list (all types), range (integers) and str
(characters)
Collections are e.g.: set (non-associative) and dictionary (associative)

o Number of Elements:
len(c)
o Contains element x?
X in €
o Iterate over all elements:
for X in C:

print(x)

uple with 4 Elements:

t = ("a", o, -6, 3.3) #t ->

#Tuple with 1 Element: t = (’a’,)

#empty tuple: t = ()
o List of 4 items:

1=1[1, 3, "hi", -4]
« Range with 4 elements:
r = range(e, 8, 2) #r -> [4][6]
#Syntax:

#range(start, stop, step)
#range(start,stop) -> step = 1
#range(stop) -> start = @, step = 1

o String with length 5:

s = "hello" #s -> [] -
#you can use both " or ' for strings

IMPORTANT: only list is mutable; tuple, range and string are immutable!

#1 ->

2.2.1 General sequence operations

o Subscript-Operator 1[1]:

1=1[1,3, 'hi', -4]

print(1[2]) #output: hi

e Enumeration:

enumerate(iterable, start)

#iterable = iterable container (sequence)

#start (optional) = (optional) enumerate starts counting #at

this number, starts at © when omitting start->

#enumerate(iterable)

#the enumerate(iterable, start) function returns a #tuple:

(index, object).

e Enumeration example:

for index, value in enumerate(l):
print(index, value)

#output:

#01

#13

2 Hi

#3 -4

e Combine sequences sl and s2 (zip):

z = zip(s1,s2)

#example:

#z -> [("Lea",22)| [("Tim",19)] [("Mortis",69)]
* Output with a for loop:
for name, age in z:
print(name,"->",age)
output:
Lea -> 22
Tim -> 19
Mortis -> 69
« Slicing (partial sequence) of a sequence s:
partseq = s[start:stop:step]
partseq = s[start:stop] #step = 1
partseq = s[:stop:step] #start = @
partseq = s[start::step] #stop = len(s)
s[::step] # From @ to len(s) or from len(s)-1 to (and
including!) @ || if no start -> earlies, no end -> end

2.2.2 Common List Operations

® Access item:

1[i] = value

o Add item at the end:

1.append(value)

* Remove item at location i:

del 1[1i]

 Reverse list:

1.reverse()

o Create a list of k elements with value Vv:

1=[v]*k

o To convert a string s to a list of words:
s.split(seperator, maxsplit)

#seperator and maxsplit are optional
#s.split() -> split at all whitespaces
#s.split(", ") -> split at every ", "
#s.split(maxsplit = 10) -> split 10 times at the first 10
#whitespaces -> List will have 11 entries

2.2.3 List Comprehension

o Apply a function f(x) to allitemsin list 1:

12 = [f(x) for x in 1] #z.g. 2*x for f(x)

o Apply a function f(x) toarange:

r2 = [f(x) for x in range(1,6)]

o Apply a function f(x)only toitemsin list 1 that satisfy g(x) (filter)
((we could do x for x without a function)):

13 = [f(x) for x in 1 if g(x)]

« Example: Read a sequence of numbers:

1 = [int(x) for x in input("Input: ").split()]
O = [[0 for i in range(n)]] * n BAD, reference
O = [[0 for i in range(n)] for i in range(n)] gooc

Unzipping List of Tuples into Two Lists
test_list = [(1, 'a'), (2, 'b"), (3, 'c"), (4, 'd")]
using list comprehension to perform unzipping

[[1i for i, j in test_list],

[j for i, j in test_list]]

res =

print(str(res)): [[1, 2, 3], ['a', 'b', 'c']]
2.2.4 Common String Operations

o Access element:

s[i]

o Add two strings (concatenating):

sl = "hello"

s2 = " world"

s3 = s1 + s2 #s3 = "hello world"

« Remove whitespace at beginning and end:

s =" banana "

s=s.strip() #s="banana"

o Convert a string into a list of chars:

s = list(s)

o Example: check if s is a string with content:

type(s) == str and len(s.strip()) #False if empty

o Set with 3 items:

s = {1, 29, 12}

o Dictionary with 3 items:

d = {"Lea":22, "Tim":19, "Mortis":69} #key:value

2.3.1 Set Operations

s = {1, 29, 12} #set create
o Add item:

s.add(69)

* Remove item:

s.remove(29)

e Search for an item:

12 in S #returns a bool

2.3.2 Dictionary Operations
d={"Lea":22, "Tim":19, "Mortis":69} #create dict
e Change item:

https://n.ethz.ch/~dsteinhauser/
https://n.ethz.ch/~jlotzer/

d["Lea"] = 23

o Add item:

d["Peter"] = Use 24 #an unused key

o Delete item:

del d["Mortis"] #delete item

o Search for a key:

"Tim" in d #returns a bool

o To access value at a key:

d["Tim"] #has value 19

* Make two lists into one dictionary:

cities = ["Zurich", "Basel", "Bern"] #list 1
zip code = [8000, 4000, 3000] #list 2

d2 = dict(zip(cities,code)) #dictionary D2

2.3.3 Iterating over a Dictionary
o Iterate over the keys of a dictionary:
for key in d.keys():
print(key) #Lea Tim Mortis
o Iterate over entries of a dictionary:
for item in d.items():
print(item) #("Lea",22) ("Tim",19) ("Mortis", 69)
o Iterate over entries, with keys and values separated:
for key, value in d.items():
print(key+" "+value) #Lea 22 Tim 19 Mortis 69
o Iterate over the values of the dictionary:
for value in d.values():
print(value) #22 19 69

2.3.4 Dictionary/Set Comprehension

o Transform a set into a dictionary by applying () and g(x) on every
element in the set to obtain key and value, respectively:

d3 = {f(x):8(x) for x in s} #s being a set

 Transform a set into a dictionary, only if the element satisfies h (x) :

d4 = {f(x):g(x) for x in s if h(x)}

o Dictionary comprehension with multiple variables:

ds = {f(x):g(y) for x, y in h(z)}

#h must return a list of tuples, e.g.: zip, d.items. In #the

case of d.items, we are applying f(x) on the keys #and g(y)

on the values of the dictionary.

« Example: Multiply the value of every odd key in a dictionary by 2:

d6 = {k:2*v for k, v in d.items() if k % 2 == 1}

Dict from zipped stuff:

d = {x ** 2 :y **3 for x,y in zip(range(5), [4,3,2,1]) if y

> 1} print(d) # {0:64, 1:27, 4:8}

© 2D LIST OF DICT

memo = [[{} for _ in range(n+1)] for _ in range(n+1)]

NumPy

Numpy is a Python package (equivalent to a C++ library) which supports
operations with n-dimensional arrays and various computational methods.
(fixed size and only one type. True multidimensionality instead of nested).

Import the Numpy package:
import numpy as np

Now you can refer to functions/classes from Numpy using: “np*“.

Numpy arrays are like Python lists. Below is a summary of the key
differences.

Lists Numpy Arrays

Variable size Fixed size

Different element types Single element type

Mathematical operations on
single elements only

Mathematical operations on whole
arrays

Primarily 1D Multi-dimensional

3.1.1 Declaring Numpy Arrays
* Using sequences (ordered containers):
1=11, 2, 3, 4]
a = np.array(l)

INER TR Lind

#array([1,2,3,4])
b = np.array(range(2,10,3))
#array([2,5,8])
¢ = np.array([[1,2],[3,4]])
#array([[1,2],
[3,41D)
o With random numbers in [0,1)
R = np.random.random(10)
#a numpy array with 10 random values between © and 1
o With random numbers:
R = np.random.uniform(-1,1,5)
#a numpy array with 5 random values between -1 and 1
o With random integers:
R = np.random.randint(1,7,10)
#a numpy array with 10 random values between 1 and 6
« Using np.arange (stop is not inclusive):
R = np.arange(2,10,3) #array([2,5,8])
#the same output as np.array(range(2,10,3))
#np.arange(start, stop, step)
#np.arange(start,stop) -> step = 1
#n.arange(stop) -> start = @, step = 1

 Using linspace (stop is inclusive):

R = np.linspace(start,stop,num)

#a numpy array with num equally spaced elements
#between start and stop. Stop is inclusive
#Step size = (stop-start)/(num-1)

3.1.2 Numpy Array Operations
 Return the number of elements:

a = np.arange(10)

a.size #=10

o Accessing elements (1D array)

a[5] #=5

o Accessing elements (2D array):

A = np.array([[1,2,3],[4,5,6]])
A[1,2] #=A[1][2]=6

A[:,2] #array([3,6])

A[1,:] #array([4,5,6])

3.1.3 Numpy Array Slicing
e Slicing is dependent on the dimensions of the matrix. For 1D

arrays:
A = np.arange(10) #[0,1,2,3,4,5,6,7,8,9]
A[2:5:2] #array([2,4])
o For 2D arrays (matrices):
A = np.array([[1,2,3],

A[0:2,1:3] #array([2,3],
[5,6]1)

3.1.4 Numpy Array Statistics
a = np.linspace(-4,-2,3) #array([-4,-3,-2])
o Minimum of all elements:

a.min() #-4

o Maximum of all elements:

a.max() #-2

o Sum of all elements:

a.sum() #-9

o Average of all elements:
np.mean(a) #-3

 Standard deviation of all elements:
np.std(a) #0.81

3.1.5 Mathematical Operations on Numpy Arrays
« Generally mathematical operations are carried out element-wise:
A = np.array([[2,3,4],[6,7,6]1])
B = np.array([[1,9,1],[2,3,9]])
A+l
#array([[3,4,5],
[7,8,711)
A * 2
#array([[4,6,8],
[12,14,12]])
A ¥ 4
#array([[16,81,256],

[1296,2401,1296]])
np.sin(A)
#array([[0.909,0.141,-08.756],

[-8.279,0.657,-0.279]])
A+ B
#array([[3,12,5],

[8,10,15]1)
A*B
#array([[2,27,4],
[12.21,54]])

np.sum(A, axis = @)
#= A.sum(axis = @) -> array([8,10,10])
np.sum(A, axis = 1)

#= A.sum(axis = 1) -> array([9,19])
3.1.6 Matrix Operations on Numpy Arrays
 Given that the dimensionality of two matrices is correct, one is able to
multiply them using @:
A = np.array([[2,3,4],[6,7,6]])
A @ np.array([[1, 4], [3, 4], [4,6]])
#array([[27, 44],
[51, 88]])
 Using the dot() function to multiply two matrices:
A.dot(np.array([[1,4],[3,4],[4,6]])
#array([[27, 44],
[51, 88]])
« Using the dot() function to find the scalar product of two vectors:
a = np.array([1,2,3])
b = np.array([3,4,6])
a.dot(b) #29

3.1.7 Filtering Numpy Arrays

o Filter a numpy array using the subscript operator:
a = np.arange(7) #array([0,1,2,3,4,5,6])
f=a%2
a[f] #array([0,2,4,6])

4 Pandas

Pandas is a Python package which supports working with tabulated data. It
describes itself as an open-source data analysis and manipulation tool.

Having pandas installed, one can use:
import pandas as pd

o To read a CSV file stored in the same directory as your code, use:
climate = pd.read_csv("climate.csv", sep=",",
index_col=0, usecols=["time", ..])

#"sep" -> what characters values in the csv #file are
#separated by. "index_col" -> what the index column will
#be. "usecols" -> what columns of the csv data will be
#selected.

A dataframe can be thought of as a 2D list (list within a list) supporting
access in more semantic, meaningful ways compared to using indices.
Visualized, a dataframe may look something like the following:

Unnamed:0 time jan feb mar apr may jun
o 0 1864 -7.10 -452 004 211 743 948
1 1 1865 -347 -625 -591 7.03 1009 1098
2 2 1866 -1.31 -042 -1.00 411 495 1202
3 3 1867 -387 056 -0.13 349 774 1057
4 4 1868 -546 -1.53 -230 233 1204 1197

153 153 2017 -5.15 046 4.11 442 980 1518

154 154 2018 048 -521 -021 7.81 1043 1381

155 155 2019 437 073 227 447 6.08 1525

156 15 2020 028 162 153 762 953 1182

157 157 2021 -356 NaN NaN NaN NaN NaN

climate

The leftmost column is known as the “index column®.

4.2.1 Changing the Index Column
« Change the index column by using (creates a copy):
climate2 = climate.set_index("time")

Unnamed:0 jan feb mar apr may jun
time
1864 0 -7.10 -452 004 211 743 948
1865 1 -347 -625 -591 7.03 1009 10.98
1866 2 -1.31 -042 -1.00 4.11 495 1202
1867 3 -387 056 -0.13 349 7.74 1057
1868 4 -546 -153 -230 233 12.04 1197
2017 153 -515 046 4.11 442 980 1518
2018 154 048 -521 -021 7.81 1043 1381
2019 156 -437 073 227 447 6.08 1525
2020 156 -028 162 153 762 953 1182
2021 157 -356 NaN NaN NaN NaN NaN

climate

4.2.2 Renaming Columns
o Using the “rename" function:

climate =

#renames the time column as

4.2.3 Accessing Dataframe Elements

"date".
form of: "old_index_name":"new_index_name"
o Directly set column names:
data.columns = ["Date", "January", "February", .]
#needs to be the same length as the number of columns

o Access a single column (type: Series):

climate["feb"]
#gets the column "feb"

o Access multiple columns (type: Dataframe):

climate[["jan", "mar"]]
#gets the columns "jan" and "mar"
o Access a single row, using an index (type: Series):

climate.iloc[3]
#gets row 3

* Multiple rows (type: Dataframe):

climate[1:4]
#gets rows 1 to 3

o Access to a subtable using indices (type: Dataframe):

climate.iloc[4:7,1:2]

#gets rows 4,7 with data only from column 1

climate.rename(columns={"time":

"date", .}

Add any entries in #the

o Access to a subtable using index column values and column name (type:

Dataframe):

climate2 = climate.set_index("time")
climate2.1loc[1864:1868,"jan":"mar"]
#includes the rows labeled with 1866 until and including
#1868, the columns from "jan" until and including "mar"

o Access to a single elemen
climate["jan"]1[3]

t:

#gets the element in column

4.2.4 Filtering Dataframes

o Filter rows:

climate[climate["jan"]>2]

#filters out the rows with values in the

than 2

« Example: All entries in “jan" with values more than 2:

"jan"

in row 3

climate["jan"][climate["jan"]>2]

4.2.5 Dealing with Invalid Data

o Convert all the values in a column to numeric:
data[column] = pd.to_numeric(data[column], errors="coerce")

#converts all the values to numeric values.

jan"

column #less

#errors="coerce"

-> converts values which cannot be #converted to NaN.

o Delete all rows containing NaN entries:

data.dropna(axis = @, how="any")
#how="any" -> delete row if any value is NaN.

#how="all"
#axis =

-> delete row if all values are NaN
1 -> delete column instead of row

o Fill all entries containing NaN with a value:
data.fillpa(@) #fill any NaN entries with @

4.2.6 Modifying Dataframes

o Add a column:

climate["new_col"] = climate["time"] + climate["jan"]
#"new_col" is a new column who’s values are #those of the
"time" and "jan" column added

 Delete a column:

climate = climate.drop(columns=["time"])
#delete the "time" column

o Add a row:

d = {"mar":34, "jan":23}
climate.append(d, ignore_index=True)
#adds another row with the values 34 for
#"jan". Other entries are NaN

e Delete a row:

climate = climate.drop(climate.index[0])
#deletes row @

 Transpose the dataframe:

climate = climate.T

mar" and 23 for

4.2.7 Analysing Data in Dataframes

o Sum of all the entries in each column (type: Series):

climate.sum()

* Maximum of all the entries in each column (type: Series):

climate.max()

 Create a dataframe summarizing the max and sum for each column:

climate.agg(["max","sum"])

#A dataframe containing the same columns as climate

#with row @ containing the max of the column and row 1

#containing the sum of the column. The strings in the

#list should be names of valid pandas Series functions.

o Get statistical information for each column (type: Dataframe):

climate.describe()

#includes a variety of statistical measures

« Sort a dataframe according to entries in a specific column(s):

climate = climate.sort_values(["time", "jan"],

ascending=False)

#sorts the rows by "time" in descending order. If two

#entries for "time" are equal, then the rows are sorted #by

"Jan"

o Split a dataframe into groups based on a specified column and perform a
computation on each group:

data.groupby(“column").sum()

#groups data based on the entries for "column" and

#calculates the sum for each group.

data.groupby(“column").max()

#groups data based on the entries for "column" and

#calculates the max for each group.

5 Matplotlib

Matplotlib is a Python package allowing you to visualize a variety of things:
from functions to animations. To import matplotlib, use:

import matplotlib.pyplot as plt

(not relevant for exam so far)

Now you can refer to classes and functions from the package using “plt".

5.1 Line Plots

« To graph two numpy arrays, one representing the x values and the other
representing the corresponding y values:

import matplotlib.pyplot as plt

import numpy as np

X = np.linspace(0,2*np.pi,100)
Y = np.sin(X)
fig, ax = plt.subplots()

ax.plot(X,Y)

5.2 Scatter Plots

« To graph two numpy arrays, one representing the x values and the other
representing the corresponding y values:

X = np.arange(1,9)

Y = np.array([1,2,3,1,2,3,1,2])

fig, ax = plt.subplots()
ax.scatter(X,Y)

5.3 Histogram Plots

 To plot a histogram, use the following template:
fig, ax = plt.subplots()

X = np.random.randint(@, 100, 500)

low: @, high: 100, size: 500
ax.hist(X, bins=10)

plt.show()

5.4 Graph Styling
fig, ax = plt.subplots()

e To add a title, use:
ax.set_title("title")

o To set the x-label:
ax.set_xlabel("x label name™)
o To set the y-label:
ax.set_ylabel("y label name™)

e To add a legend:

ax.legend()

#requires that you labeled your plots, i.e.: when calling
#ax.plot(X,Y, label="name of function").

6 Algorithms

Algorithms are set a of instructions to solve specific problems. The most
common problems we look at in computer science involve sorting and
searching for elements in data.

6.1 Measuring Performance
6.1.1 Big O Notation

To measure the performance of an algorithm, we use big O notation.
Let g be the relationship time vs input size for an algorithm.

« If g does not grow faster than c*f:

g = O(f) # upper limit / worst case

o If g grows about the same as c*f:

g = O(f) #g~c*f, where c is a constant

« If g does not grow slower than c*f:

g = Q(f) # best case

Mathematical definitions:
0(@={f:N—> R|3c>0,3n; € N: V¥n = ny:0 < f(n) <c-gn)}

0(g)={f: N —> R|3c>0,3n, € N: Vn = ng: 0 S%-g(n)s[(n)gc-g(n))

QUg)={f: N - R|3c>0,3ny € N: Vn = ny:0 <c-g(n) < f(n)}

6.1.2 Asymptotic Growth of Functions

 Functions in increasing asymp;(g)tic growth:

1. log (n)
2.\n

3n
4.n-log (n)
5.n?

6.2m

7.n! 1
8.n" ®

nlog(n)
n
sqrt(n)
—— log(n)

6.1.3 Code Runtime Analysis

To be able to analyze the time complexity of code, we must make certain
assumptions:

« Comparisons have a ‘time cost’ of 1:

if x==1 #has a cost of 1

if x>1 #has a cost of 1

* Mathematical operations have a cost of 1:

6 + 4 #has a cost of 1

o Assignment has a cost of 1:

X = 69 #has a cost of 1

e In general, operations on fundamental types have a cost of 1.

o Example of runtime analysis (selection sort):

(almost always f() in questions 0(1), not guaranteed!)

def sort(a):
n = len(a)
for i in range(n):
mini = i
for j in range(i+i,n):
if a[j] < a[min]:
mini = j

a[mini], a[i] = a[i], a[mini]

Time complexity patterns

6.2.1 Invariants

When it comes to algorithms that involve loops, there is usually a
condition called the invariant. This invariant fulfils:

1. Initialization: the condition is met before the loop.

2. Continuation: the condition holds at each iteration of the loop.
3. Termination: the condition holds at the end of the loop.

An algorithm involving a loop and having an invariant is said to be correct
if the invariant fulfils the above.

6.2.2 Divide and Conquer

Divide and conquer is type of algorithm involving the process of recursively
splitting the problem into two or more equally sized subproblems of the
same type.

Examples: mergesort, quicksort.

6.2.3 Selection Sort

for(i ;i n; i++)-> 0O(n) . 5 X .
for(i n; i=i+2)=> n/2 o(n) Selection sort iterates through the list, repeatedly finds the smallest
for(i ;1> 1; i-—)-> 0(n) element, and swaps it to its final position (current position in iter.). code:
for(i n; i =i * 2)-> 0(log_2(n)) det “1“(?))’
n = len(a
for(i n; i i * 3)-> 0(log_3(n)) for i in range(n):
for(i 1; i =1i / 2)-> 0(log_2(n)) # fi nimum
mini = i
. . for j in range(i+1, n):
for(i it++){-> k > sqgrt(n) if a[§] < a[mini]:
p=p mini = j
} # swap nimum
alminil,ali] = alil,a[mini]
Case Description Runtime
Examples: Worst-case A'is reverse sorted. o(n?)
. Average-case - o(n?)
Viog(n) < log(vn) < nlog(n?) < nlog(n?) < Y n—i < n?log(n) < n®—n~* Best-case A'is already sorted o(n)
=

B " n
L < log (Zz) < Vnlog(n) < nlog(vn) < Y i < n!
= =
remember: S0 i = 2D
def g(n):
def g(n): count = 0

m= 0; while n // (2 ** count) >= 1:

while m*m < n: £0)
£0 count += 1
 m=m+

6.1.4 Useful Formulas
Wl = R

Ei: _ ne+)@n+t1) Ezo:%(n) 2i = n(z(lagz(n+l)) _ 1)

= G(n“il) log(n®) = b - log(n)

6.1.5 Telescoping & Master Theorem

Telescoping

Master Theorem

Tn)=a-T (%) +0(n* - logP(n))

——————— additional runtime in each call of T'(n),
recursive call(s)
7

Comparisons: Worst, Best & Average: 6(n?)
Swaps: Worst & Average: 6(n), Best: 8(1)

6.2.4 Insertion Sort
Sort an array of values by taking the next value in the array and putting it in
the right position. code:

def insertion_sort(items):
for i in range(1, len(items)):
while i > 0 and items[i] < items[i-1]:
items[i], items[i-1] = items[i-1], items[il]
i-=1
return items

Case Description Runtime
Worst-case Ais reverse sorted. o(n?)
Average-case - o(n®)
n=sizeofinput a= Best-case Ais already sorted o(m)
number of in -
the recursion Comparisons: Worst & Average: 6(n?), Best: 8(n)
nb = size of each | Swaps: Worst & Average: 6(n2), Best: 6(1)
subproblem. Al

subproblems are assumed
to have the same size. f(n)
= 9(n*log’n) cost of the
work done outside the
recursive call,

which includes the cost of
dividing the problem and
cost of merging the
solutions (.. _a_linear
operation d = 1) 0d

1. ifa > bk, then T(n) = (n'°9(@)

2. ifa= bk and
a) if p>—1, then T(n) = 6@ . [ogP*1(n))
b) if p=—1,then T(n) = 0(n'°9@ - log(log(n)))
o) ifp<—1,then T(n) = (n'o9r@)

3. ifa< bk, and
a) ifp>=0, then T(n) = 6(n* - logP(n))
b) if p <0, then T(n) = 6(n¥)

T() =T

~1(3)+1

6.2 Sorting Algorithms

Tm) = [T (;) +c

d, n=1
n>1

G)+C:T(;)+Zc

0@

= T(E)+logzn-c
=d +log,n-c = 0(ogn))

6.2.5 Merge Sort

Sort an array by splitting it into smaller subarrays (divide and conquer) and
rearranging them to form a sorted array. code:

pre: list A of comparable elements,
post: list A sorted between U (included) and r (not included)
def mergeSort(A, 1, r):
if r-1>1:
m=(lL+r)//2
mergeSort (A, 1,m)
mergeSort(A, m, r)

def merge(al, a2):
b, i, j=0,00
while i < len(al) and j < len(a2):
if atfi] < a2[j]:
b.append(a1[il)
i4=1
else:
b.append(a2[j1)

def merge_sort(a):
if len(a) <= 1:

return a joa=1
else: b += alli:]
sorted_al = merge_sort(al:len(a) // 2]) P *= 2203
sorted_a2 = merge_sort(allen(a) // 2:]1) return b
return merge(sorted_al, sorted_a2)
Uses additional ©(n) storage for subarrays.
| Case | Description | Runtime

| All cases | = | O(n - log (n)) | Best-case b is at the 0(1) 2. Keys in the left subtree are smaller than v. key def add(self, key: int) —-> bool:
beginningA 3. Keys in the right subtree are Iarger than v.key """Add a node with the specified key to the tree if it does not
. already exist in the tree.
6.2.6 Quick Sort

e Return True iff the node was added, and False otherwise.

o o if self.root is None:

self.root = Node(key)

6.3.2 Binary Search
Search for the index of a specific element in a sorted array. Code:
def binarySearch(array, x, low, high):

A divide and conquer algorithm which recursively splits the array into two
parts: one which only contains elements bigger than the pivot and the
other containing only elements smaller. code:

def partition(a, 1, r):

p = alr] if high >= low: . return True
def quicksort(a, 1, r): j=1 mid = low + (high - low)//2
. for i i @, =8 i i == Xx: i i
if 1 < r: N ﬁ}lazgffff = if array[mld! x: # If found at mid, return it node = self.root
k = partition(a, 1, r) alil, aljl = aljl, alil) return "u_'d 0 0 while True:
quicksort(a, 1, k - 1) .]' +=[1] . elif array[mid] > x: # Search left half # Key already exists in the tree
i + aljl, alr]l = alr], alj i id— . 5 — .
quicksort(a, k + 1, r) regum : J return binarySearch(array, x, 1l.ow, mid-1) A binary search tree if key == node.key:
else: # Search right half return False
return binarySearch(array, x, mid + 1, high)
Case Description Runtime else: 7.31 Helght of a BST # Found the position with an empty child
Worst-case Pivot is the o(n?) return -1 The height of a BST is defined as the maximum depth one must recurse to if key < node.key and node.left is None:

min/max value.
Pivot is chosen
randomly.

Pivot is always the
median of the
array.

Average-case O(n - log (n))

Best-case O(n -log (n))

Pivot is often the median of three elements:

Pivot = Median3(A[1],A[(1+r)//2],A[r])

6.2.7 Heapsort

A sorting algorithm which converts an array into a heap (see 7.2) and
creates a sorted array from the heap. Pseudocode:

def heapify(arr, n, i): # SiftDown operation

largest = i

T=2%xi+1

r=2%i+2

if U< n and arrli]l < arrll]:
largest = 1

if r < n and arrllargest] < arr[r]: # MaxHeap: '<' '<' MinHeap: '<' '>'
largest = r

if largest != i:
arr[il, arr[largest] = arr[largestl, arr[il
heapify(arr, n, largest)

MaxHeap: '<' '<' MinHeap: '<' '>'

def heapSort(arr):

n = len(arr)

Build max heap

for i in range(n//2, -1, -1): # Create heap
heapify(arr, n, i)

for i in range(n-1, 0, -1):
Swap
arrl[il, arr[e] = arr[e], arrl[il
Heapify root element
heapify(arr, i, 0)

arr = [1, 12, 9, 5, 6, 10,0,999,213,1,22]
heapSort (arr)

after we got max heap, swap smallest with biggest, draw

tree so you can sift down the element so the largest is on

top again.

| Case | Description | Runtime

i [- [e lgm) |

swap - 124 6

764512 cpn gifipown = 4 215 6

swap - 26450/ avap . NEEEE

i 6 5 4 2 1

oo = EEDE siftbown = 2 1 456

swap - s a2 A

siftoown = 5 2 4 1 swap = 2

6.3.1 Linear Search
Search for the index of a specific element in an unsorted array. Code:
def LinearSearch(array, n):
for i, x in enumerate(array):

if x == n:
return i
return "not found"
Case Description Runtime
Worst-case b is at the end of 0(n)
the array.
Average-case - o(n)

array = [3, 4, 5, 6, 7, 8, 9]

X =4

result = binarySearch(array, x, 0, len(array)-1)

reach a node with no children. Code:
def height(node: Optional[Node]) —> int:
if node is None:
return 0

Case Description Runtime le:szhzlghEt=_h:1gh;L:\odz. 1ef,t:1t)
Worst-case b is the max/min 0(log (n)) right_fieight = heigntinode.r-gnt)

value. return max(left_height, right_height) + 1
Average-case - 6(log(n))
Best- bi tly th o1
estcase . w 7.3.2 Search for a Node

median value.

Data Structures

Data structures are ways of organizing and storing data for efficient access

and manipulation.

A note on BSTs: a binary tree is a tree with at most 2 children. Binary trees

can be:

o Full: every node has 0 or 2 children.

« Complete: every level except for the lowest is filled. Lowest level is filled
from left to right.

o Perfect: every level is completely filled.

_ case
Worst-case

Some data structures can be categorized as FIFO (first in, first out) or LIFO

(last in, first out).

FIFO data structures offer fast access to the first element that was inserted.

Return the node with a specific key.
following code is based upon the class implementation
def search(self, key: int) —> OptionallNode]:
"""Search for the node with the specified key in the tree and return
it, or None if there is no such node.
node = self.root
while node != None:
if key == node.key:
return node
elif key < node.key:
node = node. left
else:
node = node.right
return None

Description Runtime
The tree is 0(n)
degenerated

Average-case The tree is 0(log(n))
balanced

Best-case Key is the root of 0(1)
the tree

LIFO data structures offer fast access to the last element that was inserted.

FIFO example: queue

LIFO example: stack

front

7.3.3 Insert a Node
Add a node with a specific key to the tree.

back

a enqueue

1 L
aspeon/—0

e,
‘top

=0
N

\

A binary search tree is a binary tree which fulfils the following:
1. Every node V stores a key

node. left = Node(key)
return True

if key > node.key and node.right is None:
node. right = Node(key)
return True

Otherwise, keep searching for the node position
if key < node.key:

node = node.left
else:

node = node.right

Case Description Runtime

Worst-case The tree is 0(n)
degenerated

Average-case The tree is 0(log(n))
balanced

Best-case The tree is empty 0(1)

7.3.4 Remove a Node

1. If a node has no children, simply delete the node by setting the variable

to None

2. If a node has one child, replace the node with its child.

3. If a node has two children, replace the node with its symmetric
successor — the next biggest element. Code:

def remove(self, key: int) —> bool:
""""Remove the node with the specified key from the tree. Return
True if the node was removed, False if it was not in the tree.
Handle the case when we are deleting the root node
if self.root is not None and self.root.key == key:
self.root = symmetric_desc(self.root)
return True

node = self.root
while node is not None:
Found the key as the left or right child of current code
if node.left is not None and node.left.key == key:
node.left = symmetric_desc(node.left)
return True

if node.right is not None and node.right.key == key:
node.right = symmetric_desc(node.right)
return True

Have not found the key, keep searching
if key < node.key:
node = node.left
else:
node = node.right
return False

def findSuccessor(start_node: Node) -> Optional[Node]

If the node has a right child, the successor is the leftmost node in the right subtree
if start_node.right:

node = start_node. right

while node.left:

node = node. left

return node
return None # This is a simplified version
#1In a full inplementation, you'd traverse up the tree to find the successor

Case Description Runtime
All Runtime is o(h)
dominated by h is the height of
finding the the tree
successor.
7.3.5 Traversal
There are different ways to traverse over a BST:
1. Inorder traversal (will ys print el in ascending order):

def inorder_traverse(node: Optional[Node]):
if node:
inorder_traverse(node. left)
print(node.key)
inorder_traverse(node. right)

2. Preorder traversal:
def to_preorder_list(node: Optional[Nodel) —-> list:
if node is None:
return []
return [node.key] + to_preorder_list(node.left) + to_preorder_list(node.right)

3. Postorder traversal:
def postorder_traverse(node: Optional[Nodel):
if node:
postorder_traverse(node. left)
postorder_traverse(node. right)
print(node.key)

Runtime
0(n)

Case Description

All Each edge is
traversed twice and
the number of
edges is O(n)

7.3.6 Traversal Rules

 Given an inorder traversal: there is no possible representation of the tree
if the sequence is not in ascending order. Repr is not

Example: 12 4 3 has no representation as a BST.

 Given a preorder traversal: there is no possible representation of the tree

if there is not a way to (recursively for the new subsequences as well)
place the first number in the sequence so that the numbers to the left are
smaller and that the numbers to the right are greater. Representation is
unique.

Example: 43128657

31248657

123,6578

12,567 ->valid

 Given a postorder traversal: there is no possible representation of the tree
if there is not a way to (recursively for the new subsequences as well)
place the last number in the sequence so that the numbers to the left are
smaller and the numbers to the right are greater. Representation is
unique.

Example: 1325687 4

1324 5687

1235678

56 -> valid

7.3.7 Tree Traversal - Trick

Preorder: path touches line in
following order:
B

Inorder: path touches line in Postorder: path touches line in
following order: following order

3,4,5,8,9,10,13, 19 4,5,3,9,10,19,13,8

A heap is a binary tree which fulfils the following:

1. It is complete (see 7).

2. If there are any gaps in the tree, they're on the last level to the right
(definition of complete, see 7).

3. Key of parent is always bigger than the one of its children.

It is a good data structure to use when one wants efficient
access to the max/min at all times.
w children(i) = {2i,2i + 1}

m w parent(i) = |i/2],__— ab[¥]
@ @ [22]20]18[16[12[15[17] 3 [2 [8 [11[14
12 34567 8910112

A max heap / Heap as an Array
7.4.1 Implementation of a Heap as Array
Given an element with index i, with first index = 0:
o Children of i: {21+1, 2i+2}
e Parentofi:i-1//2
With first index = 1:
e Children of i: {21, 2i+1}
e Parentofi: i//2
7.4.2 Height of a Heap

 Given n elements:

Tree — Array:

Depends on the starting index?

H(n) = [log,(n + 1)]
7.4.3 Insert an Element
Insert an element by placing it in the first free place on the lowest level of
the heap. Iteratively swap the element with its parent until the heap
conditions are fulfilled (Chapter 7.2).
The Code snippets of 7.4 will work by themselves (independent of 6.2.7)

def insert(heap, value):
heap.append(value)
SiftUp(heap, len(heap)-1)

heap: list representing the heap

def SiftUp(a, m): # a: list representing the heap,
m: index of the element to be sifted up
v = alm] # v: value to be sifted up
c=m # c: current index of the value
p=c//2 # p: parent index of the current value
while ¢ > @ and v > alpl: #! For MinHeap: change '>' '>' to '>' '<'
alc] = alp]
c=p
p=c//2
alcl = v
Case Description Runtime
All In the worst case, inserting an element 0(log(n))
will involve log(n) swaps.

7.4.4 Remove the Maximum (Max-Heap)

Replace the maximum with the rightmost element in the lowest level and
iteratively swap the replacement element in direction of the greater child
(smaller child for min-heaps)

def removeMax(heap): # heap: list representing the heap.

#! (For MinHeap: rename to removeMin)

=)

if len(heap) ==
return None

max_val = heap[0]

heap[@] = heap[-1]

heap.pop()

SiftDown(heap, @, len(heap)-1)

return max_val #! For MinHeap: return min_val

#! For MinHeap: rename max_val to min_val

def SiftDown(a, i, m):
while 2%i + 1 < m:
j=2¢i+1 #j: left child index
if j +1 <mand alj]l <alj + 1]: #! For MinHeap: change '<' '<' to '<' '>'
j=j+1 #j: right child index if right child exists and is greater than left child
if alil >= aljl: #1 For MinHeap: change '»=' to '<='
break

a: list representing the heap, i: start index, m: end index

alil, aljl = aljl, alil
i=j
Case Description Runtime
All In the worst case, removing an element 0(log(n))
will involve log(n) swaps.

7.4.5 Heapify an Array
Property: the leaves of a heap fulfill the heap condition trivially -> only
need to "heapify” the first n/2 elements.

def heapify(a): # a:
n = len(a)
for i in range(n//2 - 1, -1, -1):
SiftDown(a, i, n)

list to be transformed into a heap

def siftDown(a, i, m): REQUIRED! see 7.4.4

| Runtime

|
o(n) |

| Case | Description
Al =

7.4.6 Sorting a heap
If "a" is a heap, one can efficiently sort the array:
def SortHeap(a): # a: list representing the heap
n = len(a)-1
while n > 0:
alel, aln] = aln], alo]
SiftDown(a, @, n-1)

n=n-1
Case Description Runtime
All SiftDown traverses O(n - log (n))
at most log (n)
nodes. Sorting the
array requires n
calls to SiftDown.
Testing
heap = (1

insert(heap, 5)

insert(heap, 3)

insert(heap, 8)

insert(heap, 1)

print("Heap after insertions:", heap)
print(“Removed max:", removeMax(heap))
print("Heap after removeMax:", heap)

1]2]3]a]s)6
0 1 2 5] 4 5

o Ordered data.
o Fast Access via index.
o Slow for updates.

Operation Time Complexity
Index Access o)
Search (in) 0(n)
Sorted Search 0(log(n))
Insertion o(m)
Removal 0(n)

- - —ail—ai—-a

data next data next data next
 Ordered data.
o Fast updates at the front of the linked list.
Operation Time Complexity
o(n)

P e

data next

Access

Search (in) o(n)
Insertion (head) o)
Removal (head) 0(1)
Insertion (after value) o(n)
Insertion (after value) o(n)

Hash tables are a data structure which allow fast access to elements.
e Unsorted, unordered data.
o Fast search.

The idea behind the implementation is that one uses a “hashing function”
to obtain an index/address from the element, and to store the element
there.

Operation Best Case Worst Case

C rI i o C rI i o
Search o) o(n)
Insertion o) o)
Removal 0(1) o(n)

7.7.1 Collision Handling

With probing: next available index is chosen.

 Problem: entry at calculated index may not contain element.
With chaining: a linked list at every entry.

7.7.2 Properties of a Hash Function
 Consistent (always same output for given input).
o As collision-free as possible.

7.7.3 Hash Table manual

There most likely will be one or two hash functions given, if after the first
one we have a collision we go to the next one and add from where we got
the collisions the amount of steps we've newly calculated

A quadtree is a type of tree with 4 children. In this course, the application
of a quadtree is mainly graphical.

(15,1)

A QuadTree with max_cap =2

Example of a quadtree implementation:
class QuadTree:
def __init__(self, 1, u, max_cap):

self.l =1

self.u=u

self.m = max_cap

self.points = []

self.children = None

self.count = @

def subdivide(self):

x, ly = self.l

ux, uy = self.u

mx, my = (Ix + ux) /2, (ly +uy) /2

self.children = [None, None, None, None]

self.children[@] = QuadTree((1lx, ly),
(mx, my),
self.m)

self.children[1] = QuadTree((mx, ly),
(ux, my),
self.m)

self.children[2] = QuadTree((mx, my),
(ux, uy),
self.m)

self.children[3] = QuadTree((1lx, my),
(mx, uy),
self.m)

iy

def insert(self, point):
if self.children is not None:
index = self.get_index(point)
if index is not None:
self.children[index].insert(point)
self.count += 1
return
self.points.append(point)
if len(self.points) > self.m:
self.subdivide()
for point in self.points:
index = self.get_index(point)
if index is not None:
self.children[index].insert(point)
self.count += 1
self.points = []

def get_index(self, point):
wx, ly = self.l
ux, uy = self.u
mx, my = (Ix +ux) /2, (ly +uy) / 2
px, py = point
if 1x <= px < mx:
if ly <= py < my:
return @
elif my <= py <= uy:
return 3
elif mx <= px <= ux:
if ly <= py < my:
return 1
elif my <= py <= uy:
return 2
return None

Initialize a QuadTree with boundary (0,0) to (10,10) and max capacity of 4
qt = QuadTree((0, 0), (19, 10), 4)
Insert points
points = [(2, 3), (4, 5), (7, 8), (9, 1), (6, 6), (3, 7), (8, 9), (5, 2)]
for point in points:

qt. insert(point)

7.8.1 Search for Number of Points within Rectangle

Quadtree inside rectangle?

Rectangle overlaps with
quadtree’s bounding rectangle?

Al points in the quadtree
arein the rectangle

No points in that quadtree
arein the rectangle

Check each child
recursively

Check which points in the quadtree
are contained in the rectangle

Time complexity: O(log(n))

8 Programming Concepts

Classes:
« Bundling of data that belongs together contentwise.
 Definition of a new type.

Data:

o Stored in variables of the class (attributes).

o Default values can be declared in the class (see 1
Object:

o Instance of a class

8.1.1 Example Implementation

class Earthquake:
#Constructor (member variables: location,
def __init__(self, location, magnitude):
self.loc = location
self.mag = magnitude
self.__id = 5 #hidden (private) attribs

.5.2).

magnitude)

ute

#Print operator overload —> what is shown when

#print(Earthquake) is called
def __str__(self):

return "earthquake with mag: " + str(s
#0verloaded ==
def __eq__(self,other):

return self.mag == other.mag and self.

#method to access hidden/private attribute
def get_id(self):
return self.__id

A class method
def bar(cls, x):
print("This is a class method with arg

a = Earthquake("Indonesia", 5)
print(a) #earthquake with mag: 5
a.bar(5) #call class method bar
print(a.__id) #AttributeError

8.1.2 Magical Methods

Magical methods allow you to overload operators in python. Below is a

table of magical methods you can define.
Comparisons:

elf.mag)

loc == other.loc

ument:", x)

Operation Meanin Magical Method

< Less than 1t

<= Less than or equal _le

> Greater than _8t__

>= Greater than or _ge__

equal
== Equal to _eq__
1= Not equal to __ne__
Relational Operations:

Operation Meanin Magical Method

+, = Addition __add__,
__dadd__

- Subtraction __sub__

* Multiplication _mul__

/ Division __truediv__

// Integer division __floordiv__

% Modulo __modulo__

** Exponentiation __pow__

Others:

Operation Meanin Magical Method

print() overload print() _str__

- Negation __neg__

Classname() Constructor __init__

class Student:
def __init_ (self, name):
self.name= name
def __str__(self): #overload print()
return self.name

8.1.3 Inheritance

Through inheritance a class can “inherit” all the attributes and the methods
of the class it is inheriting from.
Example:
class Animal:
def __init__ (self, name):
self.name = name

def speak(self):
print("The animal makes a sound.")

class Dog(Animal):
def __init__(self, name, breed):
super().__init__(name)
self.breed = breed

def speak(self):
print("The dog barks.")

#Create an instance of the Dog class
dog = Dog("Fido", "Golden Retriever")

#Access the attributes of the Dog instance
print(dog.name) #Output: Fido
print(dog.breed) #Output: Golden Retriever

#Call the speak method on the Dog instance
dog.speak() #Output: The dog barks.

Compiled (C++):

* Program code is translated to assembly.

o Assembly is executed.

« Single translation, with optimizations.

o Usually, higher performance

Interpreted (Python):

* Program code executed together with translation.
o Translation is repeated each time.

o Quick and easy to make minor changes.

C++ is statically typed:

« Each element has a type defined by the programmer.

 Types used fitting together correctly is checked at compilation, yielding
compile time errors (happen during the program itself) if wrong.

Python is dynamically typed:

 Elements have no type in advance.

o At runtime the type is chosen.

 Type changeable at runtime.

« Depending on the type when executing, there may be runtime errrors
(happen during the program).

o Errors are more difficult to debug, do not happen all the time.

The goal of generic programming is to make code as widely usable as
possible (no need for new functions for different types).

Can be done with templates in C++.

No need to do anything in Python thanks to dynamic typing.

The central idea is to pass functions as parameters to functions. Example
where we pass a function to “map”:

#Define a list of numbers
numbers = [1, 2, 3, 4, 5]

#Define a function that squares a number
def square(x):
return x *x 2

Use map() to apply the square function to each
element #in the numbers list
squared_numbers = list(map(square, numbers))

#Print the result
print(squared_numbers) #Output: [1,4,9,16,25]

8.5.1 Lambda Functions
Lambda functions are small functions without a specific name, useful to
pass into a function as parameter.

lambda arguments : expression

o Lambda with one argument:

n = [1,2,3,4,5]

sqrd_numbers = map(lambda x : x*¥2, n)
print(list(sqrd_numbers)) #[1,4,9,16,25]

o Lambda with multiple arguments:
y = lambda x,y: xkxy
y(5,3) #15

8.5.2 Examples of Functions that Accept Functions

emap(func, it) -applies a function on each element of a container.
n = [1,2,3,4,5]

sqrd_numbers = map(lambda x : x*%2, n)
print(list(sqrd_numbers)) #I[1,4,9,16,25]

e filter(func, it)-removes any elements that don't fulfil a
condition.

n = [1,2,3,4,5]

even_numbers = filter(lambda x : X%2==0, n)
print(list(even_numbers)) #[2,4]

e reduce(func,it) - recursively reduce a container to a single value
by applying a function to two elements.
from functools import reduce
n = [1,2,3,4,5]
sum_numbers = reduce(lambda x,y: x +y, n) #15

ynamic Programming (DP)

DP is a problem-solving strategy:

o It is generally a "bottom-up” strategy — we iteratively solve smaller
problems to solve progressively bigger problems.

o It is faster than recursion because we avoid recalculating known solutions.

* We store answers to smaller problems in a table.

In dynamic programming, a "top-down" approach usually refers

to memoization

On the other hand, a "bottom-up" approach usually refers to

tabulation

Dynamic Programming

Recursion Iteration

Memoization Tabulation

Problems need to hav
o Optimal substructure — the answer of the problem depends on the
answer of some smaller subproblems.

« Overlapping subproblems — in calculating the answer of a problem, we
often recalculate the answer to the same subproblems.

Example: Fibonacci
fib(n) = fib(n-1) + fib(n-2) #Optimal substructure

Recursion tree for fib(6)

def fib_DP(n):
#create table
F = [Nonel * (n+1)
#border cases
Flo] =1
F[1] =1
#Bottom-Up for loop
for i in range(2, n+l1):

F[i]l = F[i-1] + F[i-2]

#return last value
return F[n]

1. Find the first solution, using brute force or the recursive
implementation. Draw a tree or visualize the process.

2. Analyze the solution — look for repeating subproblems. Then look for
an optimal substructure to your solution — how does the answer of the
problem depend on the answer of the subproblems? (Find relationship
of subp.)

3. Think about how to store the answers of the subproblems. Should it be a
list? A table?

4. Flip the recursive implementation around to implement a bottom-up,
iterative solution.

EXAMPLES IN APPENDIX

10 Machine Learning (M

(Supervised) Machine learning is the use of “models” to create functions

which map inputs to desired outputs. Generally, there are two areas:

1. Regression: given some input values, what is the output value? Example:
given a house has 5 bedrooms, 1000 square meters, 3 bathrooms and is
50m from the nearest train station, what is its price?

2. Classification: given some input values, to what
group does the input belong to? Example: given
the temperature is 5 degrees and it is cloudy, will
it rain?

An existing package for many ML algorithms is
sklearn.

o Select a model, using a technique such as cross validation.
 Read the data, using pandas.
o Split data into test set and train set.
(X (input features) and y (target) need to be provided below)
Split the dataset into training and testing sets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
#0.3 of the data will be used in validation
o Train the model.

from sklearn import linear_model

model = linear_model.LinearRegression()
model.fit(X_train,y_train)

o Validate the model to rate how well it performed.
from sklearn.metrics import mean_squared_error
y_pred = model.predict(X_test)

mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)

correctly classified

o Accuracy score . 1 is the best score, 0 is the worst.

total number

from sklearn.metrics import accuracy_score

o R? score. 1 is the best score, the more negative the worse.
from sklearn.metrics import r2_score

* Mean squared error. 0 is the best score. The bigger the worse.

from sklearn.metrics import mean_squared_loss

For classification tasks (discrete categories), use accuracy_score. For
regression tasks (continuous variables), use metrics like
mean_squared_error or R-squared for evaluation.

10.3.1 Decision Tree Classifier
Given: some data X, and labels y. Constructs a decision tree to divide up the
data based on its features.

Before Split the dataset into training and testing sets
from sklearn.tree import DecisionTreeClassifier
Define the classifier
tree = DecisionTreeClassifier(max_depth=4)

Train the model
tree.fit(X_train, y_train)

Predict using the test set
y_pred = tree.predict(X_test)

Example:

10.4.1 Linear Regression
Given: some data X, and labels y. Constructs a linear model w”x + b, so
that the loss function (residual sum of squares) is minimized for the data
provided.

from sklearn import linear_model

model = linear_model.LinearRegression()

#train the model

model.fit(X_train, y_train)

#calculate the prediction of the model

y_pred = model.predict(X_test)

10.4.2 Logistic Regression
from sklearn.linear_model import LogisticRegression
Define the classifier
log_reg = LogisticRegression(max_iter=1000)
Train the model
log_reg.fit(X_train, y_train)
Predict using the test set
y_pred = log_reg.predict(X_test)

Logistic Regression is a statistical method used for modeling the
probabilities of binary outcomes

A neural network is an ML algorithm which is incredibly powerful because it
can be used for both regression (Predicts continuous values.) and

classification (Predicts discrete values (labels or categories)). It is comprised
of layers of neurons, where the output of each neuron is made non-linear
through an activation function.

Example classification:

from sklearn.neural_network import MLPClassifier
#hidden_layer_sizes is an array indicating the #number
#of neurons in each of the hidden layers,
#activation is the activation function

nn = MLPClassifier(hidden_layer_sizes = [4,4], #!
activation="logistic", max_iter=1000) #! indentation
#train the regression model

nn. fit(X_train,y_train)

#calculate the prediction

y_pred = nn.predict(X_test)

Example regression:

from sklearn.neural_network import MLPRegressor

nn = MLPRegressor(hidden_layer_sizes = [4,4], activation="relu")

you may set max_iter=1000 The default value in scikit-learn is 200
#train the regression model

nn.fit(X_train,y_train)

#calculate the prediction of the model

y_pred = nn.predict(X_test)

. Underfitting and Overfitting:
- Underfitting: Model too simple; performs poorly on training/test data.
- Overfitting: Model too complex; captures noise, good on training but bad on test data.
K-fold Cross Validation:
- Splits training data into 'K' parts. Model trains on K-1 parts and tests on 1. Repeated K
times. Averages used for performance.
3. Grid Search:
- Tunes hyperparameters by testing all combinations within a range. Uses cross-
validation to identify the best.
4. Convolutional Neural Networks (CNNs):
- For image recognition tasks:
- Filters: Extract features by moving over the image.
- Pooling: Downsamples to reduce dimensions.
- Fully Connected Layers: Final layers for prediction output.
5.N | Data ding:
- Ordinal Encodin: Maps categories to ordered integers. E.g., Low -> 1, Medium -> 2.
- Mean Encoding: Assigns each category a value based on the average target variable.
Beware of overfitting.
- One-hot Encoding: Creates binary columns for each category value, marking presence
(1) or absence (0).
6. Clustering:
- Categorizes data into groups based on similarity, without prior labels.
- K-means: Divides data into 'K' groups by minimizing intra-cluster distances.
- Hierarchical: Produces a tree of clusters. Can merge (agglomerative) or split
(divisive) groups.
7. Loss Function:
- Assesses model prediction accuracy. Goal is minimization. Examples: Mean Squared
Error (regression), Cross-Entropy (classification).
8. Dimension Reduction: - Techniques to lower feature count, preserving essential data
characteristics.
10.6.1 Common sorting algorithms
e Bubble sort O(n?)
“bubbles” items on top by going through the array again
and again and taking the biggest element to the top position
it belongs
o Insertion sort O(n?) / if sorted O(n) Chap. 6.2.4
Will move right to left taking the next element as far
left until it is the next biggest too the one on the left
o Selection sort O(n?) / always O(n?) Chap. 6.2.3
Finds smallest element in the array and exchanges it with
the element at the beginning (current start index)
* Merge Sort (Divide and conquer) / O(n*log(n)) Chap. 6.2.5

-

L

Divides (goes for midpoints splice) , sorts, reassembles
(merge function)

Requires extra space as it doesn’t sort in place => if
issue: Quicksort

* Quicksort (divide and conquer with pivot) / O(n*log(n)) Appendix

Quick Sort, another Divide and Conquer algorithm, uniquely
partitions the array around a chosen 'pivot' element,
placing smaller elements before and larger ones after. (
Space complexity: 0(log(n)))

- Big-0 Complexity Chart
- [) o

altid LI

e Heapsort O(n*log(n)) Chap. 6.2.7 and 7.4 (min, max)

Heap Sort manipulates data using a binary heap data
structure (construction phase), continually removing the
largest element from the heap (extraction phase) and
reconstructing it, resulting in a sorted array. Space
Complexity O(n).

n*log(n) also called quasilinear, of not too big dataset
SORTING ALGORITHMS TIME COMPLEXITY OVERVIEW

Time Complexity Worst Case

Algorithm Space
Worst Complexity

Best Average

Bubble Sort O(n) o(n?) O(n?) o)

Insertion Sort ofn) ofn?) ofn?) ofm

Selection Sort ofn?) o(n?) o(n*) om

Merge Sort Ofn log n) Ofn log n) Ofn log n) O(n)

Heap Sort O(n log n) O[n log n) Olnlog n) o[

Quicksort Ofnlog n) ofn)

Ofn log n)

o[n?)

*k represents the number of buckets
**k represents the number of digits in the largest number in the array
***k represents the difference between the smallest and the largest array value

11 Appendix

11.1.1 Code Snippet Overview

(Not directly in Appendix below) : mergeSort 6.2.5

1D DP: chap 9.2 Fibonacci

Sorting Algos Code locations are referenced in 10.6.1

For main Topics:

[6.3 SearchAlgo],[7.3 Binary Search Tree],[7.8 Quadtrees],[8.1.1 OOP],[8.1.3
Inheritance]

CODE (codes in black boxes not under correct chap. (space reasons))
PANDAS EXAMPLE

return the maximum number of pieces to cut n with pieces of lengths from p

——= DATA ———_ def subsequence(nums: list) —> int: # (Sliding Window app.) import pandas as pd
2021-01-07,AG, johnson_johnson, 0, vaccine, 694072,0,0,0,0,0,COVID19VaccDosesAdministered wuipetermine the length of the longest subsequence in ‘nums' from sklearn.model_selection import GridSearchCV, train_test_split # if no pOSS?blllty to cut without rest, -1 is returned
12022-02-22_07-01-47,detailed where the difference between the largest and smallest values is 1 from sklearn.tree import DecisionTresRegressor def Rod_Cutting_DP(n, p):
2021-01-08,AG, johnson_johnson, @, vaccine, 694072,0,0,0,0,0, from sklearn.pipeline import Pipeline solution = [-1] % (n + 1)
- B Args: nums: Sorted list of integers. from sklearn.linear_model import LinearRegression solution[o] = @
import panddt as pd Returns: Length of the specified subsequence. from sklearn.preprocessing import PolynomialFeatures
def read_and. filter data(): . #given a string s consisting of words and spaces |fXom sklearn.metrics import mean squared_error, r2_score for i in range(1, n + 1):
"“Return dataframe from CSV with specific columns filtered by 'detailed l=r=0 #return length of last word def foo(model, param_grid): for j in range(, len(p)):
granularity.""" length = 0 def lengthOfLastlord(self, s):) p
data = pd.read_csv(while r < len(nums): df = pd.read_csv("data.csv") if i - pljl >= 0:
"COVID19AdministeredDoses_vaccine.csv", while nums[r] - nums[l] > 1: ‘type s: str X = df.drop(['target'], axis=1) solution[i] = max(solution[il, solutionli - p[j1])
usecols=["date", "geoRegion", "vaccine", “"entries", "pop", L= 1 irtype: int y = af['target')
“sumTotal", “"granularity"], if solution[i] != -
commen .) s ¢ o solution[i] += 1
i - return len(s.strip().split(" ")[-1 X_t , X_test, y train, y_test = train_test_split(X, y, test_size=0.2, d tate=42
data = dataldata["granularity"] “detailed"] if nums(r] - nums[l] (p().split(" ")[-1]) _train, X_test, y_train, y_tes rain_test_split(X, y, test_size random_state=42)
data = data.drop(columns = “granularity") length = max(length, r - 1 + 1) . n return solution[n]
return data grid = Gri + param ¢ param_grid, cv=5)
r+=1 grid.£it(X_train, y_train) def longestCommonSubsequence(self, textl: str, text2: str) -> int:
def question_one(data): return length dp = [[0 for j in range(len(text2) + 1)] for i in range(len(textl) + 1)]
""“Return the total vaccine doses across all geoRegions. - - e d def Aufgabenplanner_v2(wl, t1, w2, t2): for i in range(len(textl) - 1, -1, -1):
return data["entries"].sum() Python Linked lists bestimodelpyGridibest estimatorR n = len(wl) for j in range(len(text2) - 1, -1, -1):
eoe) s = [0]*(n+1) if textl[i] text2[j]:
def question_two(data): o - dp[i]1[j] = 1 + dp[i + 1][J + 1]
. - s y_pred = best_model.predict (X_test) PLI0 3 J
"""Return the maximum administered doses in any region. =t ¥, Bl G2 u s sin] =@ else:
N " dunny = ListNode(0) mse = mean_squared_error(y_test, y_pred) = o o)
return data["sunTotal"].max() e B O EEL LT oy S for i in range(n-1, -1, -1): dp(il[3] = max(dp[i](3 + 11, dpli + 11(3])
pl = listl print("R2 on test data: 3£)". format(r2)) maxwls max(Wl[i]+s[i+£1[i]], s[i+1]) return dp(0](0]
def question_three(data): L 4

. p2 = lise2 _ Taalistori X
wniReturn doses per capita for geoRegion “BE". T [£ 20 e) 20 A s T Make pre ons on new dat "‘?ﬁ“]‘z' "'“EWZ[”*S[“‘;E”]’ s(is]) class Solution:

- " jon"] == "BE™ - . - . P s[i] = max(maxwl, maxw. X . .)
be_data = dataldata["geoRegion"] == "BE"] if pl.val <= p2.val: ST, O Bl G L ETT) def coinChange(self, coins: List[int], amount: int) -> int:
assert len(be_data["pop"].unique()) == 1 = pl y_final = best_model.predict (X_£inal) return s[e]

pl.next dp = [amount + 1] * (amount + 1)
dp[0] = 0

be_population = be_data["pop"].iloc0] cinat
return y_fina

return be_data["entries"].sum() / be_population

= p2

oL 2>< LP # Choose a model and a parameter grid

e Sy # T0DO: Uncomment one model and one parameter grid .

model = #1 DecisionTreeRegressor() for a in range(l, amount + 1):
#

def question_four(data): last = last.next
"“"Return percentage of total doses administered by each vaccine.""" point, at lea to the enc e = $1 ('mas donth's (1, 30 3 4, 51 ‘eriterite's 1 " o etried o T @ G G
aram_grid = ‘max_depth': (1, 2, 3, 4, 5], 'criterion': [“squared error®, friedman_mse :
vaccine_types = datal["vaccine"].unique() if pL is not None: peran-s er e -
_ X last.next = p1 if a - ¢ >= 0:
total_doses = question_one(data) . # model = #2 Pipeline([("transf”, PolynomialFeatures()), ("lr", LinearRegression())])
percentages = {vt: dataldatal"vaccine"] == vt]["entries"].sum() / total_doses A 6. 08 # param_grid = #2 ("transf_degree” : range(1, 10)) dp[a] = min(dp[a], 1 + dp[a - c])
for vt in vaccine_types} return dummy.next ¢ node is the dummy node, so we return the next node return dp[amount] if dp[amount] != amount + 1 else -1
return percentages # DP Unbounded Knapsack (Repetition of items allowed) 7 footnodel, paran grid) 4 5 Ffici
Bubble Sort def unboundedKnapsack(W, n, val, wt): Binomial Coefficient
dp = [0 for i in range(W + 1)1 ML General Blueprint P ——— def compute_binomial_coefficient(n, k):
0P Tor 01 Knapsack problen def reverse_string(text, interval): coefficients = [[8] % (k + 1) for _ in range(n+1)]

def bubbleSort(array):
W: Maxinun capacity of the knapsack.

for i in range(W + 1):

n = len(array)
* import numpy as np
for 1 in ronge(n: or 3 o rangelr): Ioport panias. 2556 vt Lt ot eions of con i reverse =
z <= i) # val: List of values of each item. for i in range(n+1):
swapped = False dplil = max(dplil, dpli - wt[jl] + vallj]) # n: Number of ites rengelnid):
for j in range(0, n-i-1): return dplwl def main(): # CIRCLES MASTER SOLUTIONS def knapSack(W, wt, val, n): for i in range(®, len(text), interval) for j in range(min(i, k)+1):
if array[]! > array[]fl]: - # Task 1: Load the data into a Pandas data frame. :: l‘lﬂ ‘fur\gg :r:]:nge(w :‘m for x in range(n + 1)] reverse += text[i:i+interval:1][::-1] ifj==0 m.' j .1)
arrayljl, arrayl[j+1] = array[j+1], array[j] df = pd.read_csv("data.csv") #! If it doesnt work see other snippets : uild table h]:T bottom up manner coefficients[il[j] = 1
w1 EXAMPLE OF OTHER df creation o o rangen + 1 else:
return reverse coefficients[il [j] = coefficients[i-1][j-1] + coefficients[i-1]1[j]

swapped = True

if not swapped: df = pd.read_csv("data.csv")
break X = df.drop(['diagnosis'], axis=1) #Return the number of combinations that make up that
Quick Sort df['diagnosis']) o] = mmtusl 1] #1 indent #amount. I that amount of money cannot be made up by return coefficients[n] [k]
+ KLi-1] [w-wt[i-1]], #1 indent | #any combination of the coins, return 6. Coins is a
def partition(array, low, high): df [["Featurel”, "Feature2"]].to_numpy() K[i-1]w]) #! indent #1list of denomanations def subsetsum(a, x):

. . y = df['Label'].to_numpy() else: def coin_change2(self, amount, coins): n = len(a) e Mot der Grosse (o) 5+ 1) wobe (412 5. et
pivot = arrayl[highl KU1) = Kli-1] W] s = [[None] * (x + 1) for _ in range(n + 1)] ="' 012346672 @
i=low -1 # Task 2: Split the dataset into training and testing sets return Kin] W] ype anount: int L = [[None] % (x + 1) for _ in range(n + 1)] SGi Y ‘;

o . from sklearn.model_selection import train_test_split . ype coins: List[int] P
for j in range(low, high): def bestway(a): type: int for 4 in range(n, -1, -1 ‘5
if array[j] <= pivot: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) m, n = len(a), len(alol) for t in range(x + 1): 2 -
_ . n = amount + 1 if t == 0:
i4=1 # Task 3: Train at least two different models on the training set s = [[None] * n for _ in range(m)] :Z = [e17(m . e o s[il[t] = True >° s
- ase case: there is one way to make @, take no coins S
; o= ; i #! For more Models go to chapter 10. Dont forget to import the libraries . elif i ==n J <

arrayl[il, arra = arra array[i = dple] = 1 .

. ylil, _y[J] y[J. 1 ylil . # Train a neural network (Multi-Layer Perceptron) on the dataset L = [[None] % n for _ in range(m)] F:E 10”‘ i coine: s[i1[t] = False 22, My
array[i + 1], arrayl[high] = arrayl[high], array[i + 1] from sklearn.neural_network inport MLPClassifier for 4 in ranga(n) elif a[i] > t: 223 IR
return i + 1 for j in range(n-1, -1, -1): if i - coin sLillt) = s[i+1](t] VIA =G

mlp = MLPClassifier(hidden_layer_sizes=(100,), max_iter=1000, random_state=42) for i i (dpli] += dp[i-coin] LLi1[t] = "no" S a‘c‘

mlp. fit(X_train, y_train) or 1 1in range(m): else: - SS

i i if j n-1: return dp[amount] S[410t] = s[i+1][t] or s[i+1][t - a[i]] 1 =2

def qulckSort(array, Llow, hlgh) : # Train a linear regression model on the dataset s[il[j] = alil[j] if s[i+1][t - a[i]]: €

if low < high: from sklearn.linear_model import LogisticRegression else: LL910t] = "yes" g e

; r— 5 : else: e
pi = partition(array, low, high) Ur = LogisticRegression() northeast = s[i-1]1[j+1] if i > 0 else -1 L[i][t] = "no" € S-c

quickSort(array, low, pi - 1) Ur.fit(X_train, y_train) east = s[i] [j+1]] =]
. . . ors : e subset = [] =
quickSort(array, pi + 1, high) # Train a decision tree nodel on the dataset southeast = s[i+1][j+1] if i <m - 1 else -1 it-o,x ¥ ,
Dict comprehension from sklearn.tree import DecisionTreeClassifier if northeast >= east and northeast >= southeast: while i < n and t > @: 54
b s[il[j] = alil[j] + northeast if L[10t] "yes SR <
def bridge_lengths(dt = DecisionTreeClassifier() LIil[§] = "North east" subset.append (a[1]) e
names: list, lengths: list, completion_years: list, min_length: int) -> dict: dt.fit(X_train, y_train) 11yl = "North eas t-=ali ++ 8 o
return {names[i]: completion_years[i] for i in range(len(names)) if lengths[il >= min_length} elif east northeast and east >= southeast: 5 1 S5 a B
58k
3D Memoization Example # Task 4: Evaluate the performance of all models on the test set s[il[j] = alillj] + east else: ——
from sklearn.metrics import accuracy_score 1037 = " ie=1
Memoization using A matrix with a dict as third dimension P V- L[il[j] = “East
: iould Z:so be :t();ved :m aME? 'hut)t'mt stop at neg. index! y_pred_nlp = mip.predict(X_test) else: return s[0][x], subset
Eﬁ‘:‘“‘ :2::19 1 €OS’ -X'Y;' ;ew";: . part y_pred_Lr = lr.predict(X_test) s[il[j] = alil[j] + southeast
M= [[{} for j in range(8,len(A))] for i in range(o,len(A))] y_pred_dt = dt.predict (X_test) LIil[j] = "South east" Binary Insertion Sort Farthest Point
N0 oy o) Lin . accuracy_mlp = accuracy_score(y_test, y_pred_mlp) et binary, search(1, target: Gt get_nean(s)
if cost in Mix]lyl: few DP mewo par accuracy_Lr = accuracy_score(y_test, y_pred_Lr) V- s Target): x_total = 0.0
1retum MIx] [yl [cost] R . accuracy_dt = accuracy_score(y_test, y_pred_dt) =1 1=0 y_total = 0.0
else: new DP memo par = len(li) - 1 o .
=0, 0 r = len(li for i in range (8, len(s)):
if x == 0 and y == 0: o " ’ . :
_ print("MLP Accuracy: {:.2f}".format(accuracy_mlp)) s . while 1 <= r: x_total += s[i][e]
\[’isu“ 1 if (Alx]ly] == cost) else 0 print("Logistic Regression Accuracy: {:.2f}".format(accuracy_Lr)) while j <n - 1: m = (l4r)//2 y_total += S[][1]
etd X“ - o oA IX] Iy] oy) print("Decision Tree Accuracy: {:.2f}".format(accuracy_dt)) path.append(L[i]l [j]) if 1i[n] < target: X_mean = x_total / len(s)
resutt = counttlemoized(A, cost-Alxllyl,x,y=1, # Task 5: Choose a model and use it to make predictions for the points in X_final. if L[i][j] == "North east": : y_mean = y_total / len(s)
Lt l=m+1 return np.array([x_mean, y_nean])
e countMemoized (A, cost-Alx][yl,x-1,y,M) df = pd.read_csv("X_final.csv") 1 = else:
else: y_final = mlp.predict(df) elif L[il[j] "South east": r -1 def furthest_away_from_mean(s):
result = countMemoized(A, cost-Alxllyl,x-1,y,M) + countMemoized(A, cost-Alxllyl,x,y=1,M) Teturn v final . distances = {}
MIxIlyl [cost] = result #! new DP memo part — MLPY*I TS =1 return 1 nean_point = get_mean(s)
return Mx] [yl [cost] rain crassiiier . . j+=1 for i in range (o, len(s)):
mlp = MLPClassifier(hidden_layer_sizes=(32,32,16,16,8), max_iter=5000, random_state=0) def insertion_sort_binary(1i): distance = ((mean_point[e] - S[i][e])**2
def computeCount(A,cost): mlp. fit(X_train, y_train) s 0y int[1] - SA][1])="2
< return s[01[0], path for i in range(1, len(li)):) [+ (mean_poine[1] - S[i1011)™-2)
n = len(A) o i oqers Srean. distances[distance] = (s[i][6], S[i][1])
i Grind search: if 1i[i] < li[i-1]: € 1
count = counttlemoized(A, cost,n=1,n-1) # hint: you may want to change this call B S Coen s max_distance = max(distances.keys())
return count 3 = binary_search(li[:i], 1i[i]) x_max = distances[max_distance][e]
li.insert(j, li.pop(i)) y_max = distances[max_distance][1]
return 1i return np.array([x_max, y_max])

11.1.2 String manipulation terms

A subsequence is a sequence derived from another by deleting some elements but
preserving order, not necessarily containing adjacent elements.

A substring is a subsequence with adjacent elements.

A palindrome is a sequence or subsequence, including substrings, that reads the same
forwards and backwards.

11.1.3 Additional Information

An AVL tree is a type of self-balancing binary search tree in computer science. It maintains
balance by ensuring the heights of the left and right subtrees of any node differ by at
most one. This leads to efficient insertions, deletions, and look-ups, all with a time
complexity of O(log n), making AVL trees useful in databases and file systems.

Greedy Algorithm: A greedy algorithm is any algorithm that follows the problem-solving
heuristic of making the locally optimal choice at each stage. // Theory BAUG: Tree traversal
O(n) // Inserting into AVL tree O(log(n))

11.1.4 APPENDIX 2. Note to the reader

This is a revised version of the original summary, kindly provided by Julian
Lotzer and Daniel Steinhauser. The new code snippets were created using
VSC in the high-contrast light theme and (most of them) tested. In case
some code snippets shouldn’t work, please contact me:
lehmannni@ethz.ch

(No responsibility is taken by the author for the correctness of the additional
code snippets)

Tip for future versions: Add more ML theory. In the exam, there were
questions regarding filters (chapter about CNN's) and principal component
analysis. See exam collection: Info Il exam 2023 D-MAVT.

It's recommended to print this cheat sheet using a printer on high-quality
settings, like an HP Officelet Pro, due to the small font size.

mailto:lehmannni@ethz.ch

