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1 General Python  
1.1 Reference Semantics and Aliasing 
Everything is a pointer:  
l1 = [1, 3, 'hi', -4] #l1 ->  1   3  'hi' -4, 
l2 = l1  
 
 
 
 
 
If a copy is needed, use: 
import copy 
l2 = copy.copy(l2) #shallow copy (1D-Array) 
l2 = copy.deepcopy(l2) #deep copy (Multi Dimensional Arrays) 
 

1.2 Data Types 
Python dynamically types variables, which means that the variable type can 
change during the program's execution 
s = 5 
print(type(s)) #output: <class 'int'> 
s = False 
print(type(s)) #output: <class 'bool'> 
s = "Hello World" 
print(type(s)) #output: <class 'str'> 
 
• To convert the data type: 
s = 5.9 #type(s) = <class 'float'> 
x = int(s) #type(x) = <class 'int'> 
y = str(s) #type(y) = <class 'str'> 
 

1.2.1 Type Hints 
• Are not enforced by python, but help make code more legible: 
def add_integers(li: list[int]) -> int 
    … 
#the type annotation after the colon (:) indicates the 
#expected type. The type annotation after the arrow 
#indicates the expected return type 
 

1.3 Input and Output 
• Output ( NOTE print(p.value, end = ' ') for no \n )  
print("Hello World") #output: Hello World 
print("Hello", "World") #output: Hello World 
print("Hello", "World", sep = "--")  
#output: Hello--World 
print("Hello", "World", sep = "--", end = "!")  
#output: Hello--World! 
• Input 
name = input("Enter name: ") #input returns a string 
print("Hello", name) 
• Input of an integer (str->int conversion): 
number = int(input("Enter your number: ")) 
print("Number:", name) 
 

1.4 Control Flows (if/else, while, for) 
• if, elif (else if), else Block 
x = int(input("Enter a number: ")) 

if x < 5 and x >= 0: 
  print("too small") #if x between 0 and 5 
elif x == 69 or x == 420: 
  print("nice") #if x is equal to 69 or 420 
elif x < 0: 
  pass #do nothing if x negative 
else: 
  print("big number") #x is positive and the ifs/elifs 
conditions don’t hold 
 
• while-loop 
x = 0 
while x <= 3: 
  print(x) 
  x += 1 
• for-loop over value ranges (see Ranges Chapter 2.2) 
for i in range(0,4,1): #range(start, stop, step) 
  print(i, end = " ") #output: 0 1 2 3 
 
for i in reversed(range(0,4,1)): 
  print(i, end = " ") #output: 3 2 1 0 
 
• for-loop over lists 
l=[3,5,25] 
for i in l: 
  print(i, end = " ") #output: 3 5 25 
 
for i in reversed(l): 
  print(i, end = " ") #output: 25 5 3 
 

1.5 Functions 
Functions do not have to be declared in a specific order, in contrast to C++ 
(forward declarations). This means this is completely valid: 
 
def foo(): 
  return bar() 
 
def bar(): 
  return 0 
1.5.1 Function Declaration 
def function(arg1, arg2): 
  … 
  return value 
1.5.2 Default arguments 
Using default arguments, it is possible to have "optional" arguments: 
def specialprint(data="hello world") 
  print(data) 
specialprint() #hello world 
 

1.5.3 Global and local variables 
Variables that are defined outside of a function are global and can also be 
used within the function if they are defined before the function call 
(although this should be avoided whenever possible!). 
def scaled(x): 
  return x*scale #ok, because scale is global 
 
scale = 1.1 #has to be defined before scaled(10)! 
print(scaled(10)) #Output: 11 
 
• Making a local variable in a function globally accessible: 
def double(x): 
  global result #result is defined globally 
  result = x*2 
 
double(7) #function call, before print(result)!  
print(result) #Output: 14 
 

2 Python Containers 
 

Python containers can be divided into ordered (sequences) and unordered 
(collections) containers. 

Sequences include tuple (all types), list (all types), range (integers) and str 
(characters)   
Collections are e.g.: set (non-associative) and dictionary (associative) 
 

2.1 Operations on Containers 
• Number of Elements: 
len(c) 
• Contains element x? 
x in c 
• Iterate over all elements: 
for x in c: 
print(x) 
 

2.2 Sequences (ordered containers) 
• Tuple with 4 Elements: 
t = ("a", 0, -6, 3.3) #t -> "a"  0  -6  3.3, 
#Tuple with 1 Element: t = (’a’,) 
#empty tuple: t = () 
• List of 4 items: 
l = [1, 3, "hi", -4]  #l ->  1   3  "hi" -4, 
• Range with 4 elements: 
r = range(0, 8, 2) #r ->  0   2   4   6, 
#Syntax:  
#range(start, stop, step) 
#range(start,stop) -> step = 1 
#range(stop) -> start = 0, step = 1 
• String with length 5: 
s = "hello" #s ->  'h' 'e' 'l' 'l' 'o' 
#you can use both " or ' for strings  
IMPORTANT: only list is mutable; tuple, range and string are immutable! 
 
2.2.1 General sequence operations 
• Subscript-Operator l[i]: 
l = [1, 3, 'hi', -4] 
print(l[2]) #output: hi 
• Enumeration: 
enumerate(iterable, start)  
#iterable = iterable container (sequence) 
#start (optional) = (optional) enumerate starts counting #at 
this number, starts at 0 when omitting start->  
#enumerate(iterable) 
#the enumerate(iterable, start) function returns a #tuple: 
(index, object). 
• Enumeration example: 
for index, value in enumerate(l): 
print(index, value) 

#output: 
# 0 1 
# 1 3 
# 2 Hi 
# 3 -4 
• Combine sequences s1 and s2 (zip): 
z = zip(s1,s2) 
#example: 
#s1 -> "Lea" "Tim" "Mortis"  
#s2 -> 22 19 69 
#z -> ("Lea",22) ("Tim",19) ("Mortis",69)  
• Output with a for loop: 
for name, age in z: 
print(name,"->",age) 

# output: 
# Lea -> 22 
# Tim -> 19 
# Mortis -> 69 
• Slicing (partial sequence) of a sequence s: 
partseq = s[start:stop:step] 
partseq = s[start:stop] #step = 1 
partseq = s[:stop:step] #start = 0 
partseq = s[start::step] #stop = len(s) 
s[::step] # From 0 to len(s) or from len(s)-1 to (and 
including!) 0 || if no start -> earlies, no end -> end 

2.2.2 Common List Operations 

• Access item: 
l[i] = value 
• Add item at the end: 
l.append(value) 
• Remove item at location i: 
del l[i] 
• Reverse list: 
l.reverse() 
• Create a list of k elements with value v: 
l=[v]*k 
• To convert a string s to a list of words: 
s.split(seperator, maxsplit)  
#seperator and maxsplit are optional 
#s.split() -> split at all whitespaces 
#s.split(", ") -> split at every ", " 
#s.split(maxsplit = 10) -> split 10 times at the first 10 
#whitespaces -> List will have 11 entries 
 
2.2.3 List Comprehension 
• Apply a function f(x) to all items in list l: 
l2 = [f(x) for x in l] #z.g. 2*x for f(x) 
• Apply a function f(x) to a range: 
r2 = [f(x) for x in range(1,6)] 
• Apply a function f(x) only to items in list l that satisfy g(x) (filter) 

((we could do x for x without a function)):  
l3 = [f(x) for x in l if g(x)] 
• Example: Read a sequence of numbers: 
l = [int(x) for x in input("Input: ").split()] 

 
Unzipping List of Tuples into Two Lists 

 
2.2.4 Common String Operations 
• Access element: 
s[i] 
• Add two strings (concatenating): 
s1 = "hello" 
s2 = " world" 
s3 = s1 + s2 #s3 = "hello world" 
• Remove whitespace at beginning and end: 
s = "   banana "  
s=s.strip() #s="banana" 
• Convert a string into a list of chars: 
s = list(s) 
• Example: check if s is a string with content: 
type(s) == str and len(s.strip()) #False if empty 
 

2.3 Collections (unordered containers) 
• Set with 3 items: 
s = {1, 29, 12} 
• Dictionary with 3 items: 
d = {"Lea":22, "Tim":19, "Mortis":69} #key:value 
 

2.3.1 Set Operations 
s = {1, 29, 12} #set create 
• Add item: 
s.add(69) 
• Remove item: 
s.remove(29) 
• Search for an item: 
12 in S #returns a bool 
 

2.3.2 Dictionary Operations 
d={"Lea":22, "Tim":19, "Mortis":69} #create dict 
• Change item: 
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d["Lea"] = 23 
• Add item: 
d["Peter"] = Use 24 #an unused key 
• Delete item: 
del d["Mortis"] #delete item 
• Search for a key: 
"Tim" in d #returns a bool 
• To access value at a key: 
d["Tim"] #has value 19 
• Make two lists into one dictionary: 
cities = ["Zurich", "Basel", "Bern"] #list 1 
zip code = [8000, 4000, 3000] #list 2 
d2 = dict(zip(cities,code)) #dictionary D2 
 

2.3.3 Iterating over a Dictionary 
• Iterate over the keys of a dictionary: 
for key in d.keys(): 
  print(key) #Lea Tim Mortis 
• Iterate over entries of a dictionary: 
for item in d.items(): 
  print(item) #("Lea",22) ("Tim",19) ("Mortis", 69) 
• Iterate over entries, with keys and values separated: 
for key, value in d.items(): 
  print(key+" "+value) #Lea 22 Tim 19 Mortis 69 
• Iterate over the values of the dictionary: 
for value in d.values(): 
  print(value) #22 19 69 
 

2.3.4 Dictionary/Set Comprehension 
• Transform a set into a dictionary by applying f(x) and g(x) on every 

element in the set to obtain key and value, respectively: 
d3 = {f(x):g(x) for x in s} #s being a set 
• Transform a set into a dictionary, only if the element satisfies h(x): 
d4 = {f(x):g(x) for x in s if h(x)} 
• Dictionary comprehension with multiple variables: 
d5 = {f(x):g(y) for x, y in h(z)} 
#h must return a list of tuples, e.g.: zip, d.items. In #the 
case of d.items, we are applying f(x) on the keys #and g(y) 
on the values of the dictionary. 
• Example: Multiply the value of every odd key in a dictionary by 2: 
d6 = {k:2*v for k, v in d.items() if k % 2 == 1} 
# Dict from zipped stuff: 
d = {x ** 2 : y **3 for x,y in zip(range(5), [4,3,2,1]) if y 
> 1} print(d) # {0:64, 1:27, 4:8} 
• 2D LIST OF DICT 
memo = [[{} for _ in range(n+1)] for _ in range(n+1)]  

3  
Numpy is a Python package (equivalent to a C++ library) which supports 
operations with n-dimensional arrays and various computational methods. 
(fixed size and only one type. True multidimensionality instead of nested). 
 
Import the Numpy package: 
import numpy as np 
 
Now you can refer to functions/classes from Numpy using: "np". 

3.1 Numpy Arrays 
Numpy arrays are like Python lists. Below is a summary of the key 
differences. 

Lists Numpy Arrays 
Variable size Fixed size 
Different element types Single element type 
Mathematical operations on 
single elements only 

Mathematical operations on whole 
arrays 

Primarily 1D Multi-dimensional 
 
3.1.1 Declaring Numpy Arrays 
• Using sequences (ordered containers): 
l = [1, 2, 3, 4]  
a = np.array(l) 

#array([1,2,3,4]) 
b = np.array(range(2,10,3)) 
#array([2,5,8]) 
c = np.array([[1,2],[3,4]]) 
#array([[1,2], 
        [3,4]]) 
• With random numbers in [0,1) 
R = np.random.random(10) 
#a numpy array with 10 random values between 0 and 1 
• With random numbers: 
R = np.random.uniform(-1,1,5) 
#a numpy array with 5 random values between -1 and 1 
• With random integers: 
R = np.random.randint(1,7,10) 
#a numpy array with 10 random values between 1 and 6 
• Using np.arange (stop is not inclusive): 
R = np.arange(2,10,3) #array([2,5,8]) 
#the same output as np.array(range(2,10,3)) 
#np.arange(start, stop, step) 
#np.arange(start,stop) -> step = 1 
#n.arange(stop) -> start = 0, step = 1 
 
• Using linspace (stop is inclusive): 
R = np.linspace(start,stop,num) 
#a numpy array with num equally spaced elements  
#between start and stop. Stop is inclusive 
#Step size = (stop-start)/(num-1) 
 

3.1.2 Numpy Array Operations 
• Return the number of elements: 
a = np.arange(10) 
a.size #=10 
• Accessing elements (1D array) 
a[5] #=5 
• Accessing elements (2D array): 
A = np.array([[1,2,3],[4,5,6]]) 
A[1,2] #=A[1][2]=6 
A[:,2] #array([3,6]) 
A[1,:] #array([4,5,6]) 
 

3.1.3 Numpy Array Slicing 
• Slicing is dependent on the dimensions of the matrix. For 1D 

arrays: 
A = np.arange(10) #[0,1,2,3,4,5,6,7,8,9] 
A[2:5:2] #array([2,4]) 
• For 2D arrays (matrices): 
A = np.array([[1,2,3], 
      [4,5,6], 
              [7,8,9]]) 
A[0:2,1:3] #array([2,3], 
                   [5,6]) 
 
3.1.4 Numpy Array Statistics 
a = np.linspace(-4,-2,3) #array([-4,-3,-2]) 
• Minimum of all elements: 
a.min() #-4  
• Maximum of all elements: 
a.max() #-2 
• Sum of all elements: 
a.sum() #-9  
• Average of all elements: 
np.mean(a) #-3 
• Standard deviation of all elements: 
np.std(a) #0.81  
 

3.1.5 Mathematical Operations on Numpy Arrays 
• Generally mathematical operations are carried out element-wise: 
A = np.array([[2,3,4],[6,7,6]]) 
B = np.array([[1,9,1],[2,3,9]]) 
A+1 
#array([[3,4,5], 
       [7,8,7]]) 
A * 2  
#array([[4,6,8], 
       [12,14,12]]) 
A ** 4  
#array([[16,81,256], 

       [1296,2401,1296]]) 
np.sin(A)  
#array([[0.909,0.141,-0.756], 
       [-0.279,0.657,-0.279]]) 
A + B  
#array([[3,12,5], 
        [8,10,15]]) 
A * B  
#array([[2,27,4], 
       [12.21,54]]) 
np.sum(A, axis = 0)  
#= A.sum(axis = 0) -> array([8,10,10]) 
np.sum(A, axis = 1)  
#= A.sum(axis = 1) -> array([9,19]) 
 

3.1.6 Matrix Operations on Numpy Arrays 
• Given that the dimensionality of two matrices is correct, one is able to 

multiply them using @: 
A = np.array([[2,3,4],[6,7,6]]) 
A @ np.array([[1, 4], [3, 4], [4,6]])  
#array([[27, 44],  
        [51, 88]]) 
• Using the dot() function to multiply two matrices: 
A.dot(np.array([[1,4],[3,4],[4,6]])  
#array([[27, 44],  
        [51, 88]]) 
• Using the dot() function to find the scalar product of two vectors: 
a = np.array([1,2,3]) 
b = np.array([3,4,6]) 
a.dot(b) #29 
 

3.1.7 Filtering Numpy Arrays 
• Filter a numpy array using the subscript operator: 
a = np.arange(7) #array([0,1,2,3,4,5,6]) 
f = a % 2 == 0 
a[f] #array([0,2,4,6]) 
 

4 Pandas   
Pandas is a Python package which supports working with tabulated data. It 
describes itself as an open-source data analysis and manipulation tool. 
 
Having pandas installed, one can use: 
import pandas as pd 
 

4.1 Using Pandas to read a CSV File 
• To read a CSV file stored in the same directory as your code, use: 
climate = pd.read_csv("climate.csv", sep=",", 
index_col=0, usecols=["time", …]) 
#"sep" -> what characters values in the csv #file are 
#separated by. "index_col" -> what the index column will 
#be. "usecols" -> what columns of the csv data will be 
#selected. 
 

4.2 Pandas Dataframe 
A dataframe can be thought of as a 2D list (list within a list) supporting 
access in more semantic, meaningful ways compared to using indices. 
Visualized, a dataframe may look something like the following:  

 
climate 

The leftmost column is known as the "index column".   
 

4.2.1 Changing the Index Column 
• Change the index column by using (creates a copy): 
climate2 = climate.set_index("time") 

 
climate 

4.2.2 Renaming Columns  
• Using the "rename" function: 
climate = climate.rename(columns={"time":"date", …} 
#renames the time column as "date". Add any entries in #the 
form of: "old_index_name":"new_index_name" 
• Directly set column names: 
data.columns = ["Date", "January", "February", …] 
#needs to be the same length as the number of columns 
 
4.2.3 Accessing Dataframe Elements 
• Access a single column (type: Series): 
climate["feb"] 
#gets the column "feb" 
• Access multiple columns (type: Dataframe): 
climate[["jan", "mar"]] 
#gets the columns "jan" and "mar" 
• Access a single row, using an index (type: Series): 
climate.iloc[3] 
#gets row 3 
• Multiple rows (type: Dataframe): 
climate[1:4] 
#gets rows 1 to 3 
• Access to a subtable using indices (type: Dataframe): 
climate.iloc[4:7,1:2] 
#gets rows 4,7 with data only from column 1 
• Access to a subtable using index column values and column name (type: 

Dataframe): 
climate2 = climate.set_index("time") 
climate2.loc[1864:1868,"jan":"mar"] 
#includes the rows labeled with 1866 until and including 
#1868, the columns from "jan" until and including "mar" 
• Access to a single element: 
climate["jan"][3] 
#gets the element in column "jan" in row 3 
 
4.2.4 Filtering Dataframes 
• Filter rows: 
climate[climate["jan"]>2] 
#filters out the rows with values in the "jan" column #less 
than 2 
• Example: All entries in "jan" with values more than 2: 
climate["jan"][climate["jan"]>2] 
 

4.2.5 Dealing with Invalid Data 
• Convert all the values in a column to numeric: 
data[column] = pd.to_numeric(data[column], errors="coerce") 
#converts all the values to numeric values. #errors="coerce" 
-> converts values which cannot be #converted to NaN. 
• Delete all rows containing NaN entries: 
data.dropna(axis = 0, how="any") 
#how="any" -> delete row if any value is NaN. 
#how="all" -> delete row if all values are NaN 
#axis = 1 -> delete column instead of row 
• Fill all entries containing NaN with a value: 
data.fillna(0) #fill any NaN entries with 0 



 
4.2.6 Modifying Dataframes 
• Add a column: 
climate["new_col"] = climate["time"] + climate["jan"]  
#"new_col" is a new column who’s values are #those of the 
"time" and "jan" column added 
• Delete a column: 
climate = climate.drop(columns=["time"]) 
#delete the "time" column 
• Add a row: 
d = {"mar":34, "jan":23} 
climate.append(d, ignore_index=True) 
#adds another row with the values 34 for "mar" and 23 for 
#"jan". Other entries are NaN 
• Delete a row: 
climate = climate.drop(climate.index[0])  
#deletes row 0 
• Transpose the dataframe: 
climate = climate.T 
 
4.2.7 Analysing Data in Dataframes 
• Sum of all the entries in each column (type: Series): 
climate.sum() 
• Maximum of all the entries in each column (type: Series): 
climate.max() 
• Create a dataframe summarizing the max and sum for each column: 
climate.agg(["max","sum"]) 
#A dataframe containing the same columns as climate 
#with row 0 containing the max of the column and row 1 
#containing the sum of the column. The strings in the  
#list should be names of valid pandas Series functions.  
• Get statistical information for each column (type: Dataframe): 
climate.describe() 
#includes a variety of statistical measures 
• Sort a dataframe according to entries in a specific column(s): 
climate = climate.sort_values(["time", "jan"], 
ascending=False) 
#sorts the rows by "time" in descending order. If two 
#entries for "time" are equal, then the rows are sorted #by 
"jan" 
• Split a dataframe into groups based on a specified column and perform a 

computation on each group: 
data.groupby("column").sum()  
#groups data based on the entries for "column" and 
#calculates the sum for each group. 
data.groupby("column").max() 
#groups data based on the entries for "column" and 
#calculates the max for each group. 
 

5 Matplotlib  
Matplotlib is a Python package allowing you to visualize a variety of things: 
from functions to animations. To import matplotlib, use: 
import matplotlib.pyplot as plt 
(not relevant for exam so far) 
Now you can refer to classes and functions from the package using "plt". 
 

5.1 Line Plots 
• To graph two numpy arrays, one representing the x values and the other 

representing the corresponding y values: 
import matplotlib.pyplot as plt 
import numpy as np 
 
X = np.linspace(0,2*np.pi,100) 
Y = np.sin(X) 
 
fig, ax = plt.subplots() 
ax.plot(X,Y) 
 

5.2 Scatter Plots 
• To graph two numpy arrays, one representing the x values and the other 

representing the corresponding y values: 
X = np.arange(1,9) 
Y = np.array([1,2,3,1,2,3,1,2]) 

 
fig, ax = plt.subplots() 
ax.scatter(X,Y) 
 

5.3 Histogram Plots 
• To plot a histogram, use the following template: 
fig, ax = plt.subplots() 
X = np.random.randint(0, 100, 500) 
# low: 0, high: 100, size: 500 
ax.hist(X, bins=10) 
plt.show() 
 

5.4 Graph Styling 
fig, ax = plt.subplots() 
 
• To add a title, use: 
ax.set_title("title") 
• To set the x-label: 
ax.set_xlabel("x label name") 
• To set the y-label: 
ax.set_ylabel("y label name") 
• To add a legend: 
ax.legend() 
#requires that you labeled your plots, i.e.: when calling 
#ax.plot(X,Y, label="name of function"). 

6 Algorithms  
Algorithms are set a of instructions to solve specific problems. The most 
common problems we look at in computer science involve sorting and 
searching for elements in data. 

6.1 Measuring Performance 
6.1.1 Big O Notation 
To measure the performance of an algorithm, we use big O notation. 
Let g be the relationship time vs input size for an algorithm. 
 
• If g does not grow faster than c*f: 
𝒈 = 𝓞(𝒇) # upper limit / worst case 
• If g grows about the same as c*f: 
𝒈 = 𝚯(𝒇) #g~c*f, where c is a constant 
• If g does not grow slower than c*f: 
𝒈 = 	𝛀(𝒇) # best case 
Mathematical definitions: 

𝒪(𝑔) = {	𝑓 ∶ 	ℕ	 ⟶ 	ℝ	|	∃𝑐 > 0, ∃𝑛! 	 ∈ 	ℕ ∶ 	∀𝑛	 ≥ 	𝑛! ∶ 0	 ≤ 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)} 

Θ(𝑔) = {	𝑓 ∶ 	ℕ	 ⟶ 	ℝ	|	∃𝑐 > 0, ∃𝑛! 	 ∈ 	ℕ ∶ 	∀𝑛	 ≥ 	𝑛! ∶ 0	 ≤
1
𝑐 ∙ 𝑔

(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)} 
Ω(𝑔) = {	𝑓 ∶ 	ℕ	 ⟶ 	ℝ	|	∃𝑐 > 0, ∃𝑛! 	 ∈ 	ℕ ∶ 	∀𝑛	 ≥ 	𝑛! ∶ 0	 ≤ 𝑐 ∙ 𝑔(𝑛) ≤ 𝑓(𝑛)} 

6.1.2 Asymptotic Growth of Functions 
• Functions in increasing asymptotic growth: 
1. log	(𝑛) 
2. √𝑛 
3. 𝑛 
4. 𝑛 ∙ log	(𝑛) 
5. 𝑛! 
6. 2" 
7. 𝑛! 
8. 𝑛" 

 

6.1.3 Code Runtime Analysis 
To be able to analyze the time complexity of code, we must make certain 
assumptions: 
• Comparisons have a ‘time cost’ of 1: 
if x==1 #has a cost of 1 
if x>1 #has a cost of 1 
• Mathematical operations have a cost of 1: 
6 + 4 #has a cost of 1 
• Assignment has a cost of 1: 
x = 69 #has a cost of 1 
• In general, operations on fundamental types have a cost of 1. 

• Example of runtime analysis (selection sort): 
(almost always f() in questions O(1), not guaranteed!) 
def sort(a): 
  n = len(a) 
  for i in range(n): 
    mini = i 
    for j in range(i+1,n): 
      if a[j] < a[min]: 
        mini = j 
    a[mini], a[i] = a[i], a[mini] 
 

𝑡𝑖𝑚𝑒(𝑛) = 1 +8(1 + ( 8 2) + 1
"#$

%&'($

)
"#$

'&)

 

=
𝑛(𝑛 − 1)

2
 

= Θ(𝑛!) 
 

 
Examples: 

 

  
6.1.4 Useful Formulas 
∑ 1"#$
'&) = 𝑛    ∑ 𝑖"

'&) = "∙("($)
!

    

∑ 𝑖!"
'&) = "∙("($)(!"($)

-
 ∑ 2'./0(")

'&) = 𝑛<21234"("($)5 − 1= 
∑ 𝑖6"#$
'&) = 𝜃(𝑛6($) log(𝑛7) = 𝑏 ∙ log(𝑛)  

 
 

6.1.5 Telescoping & Master Theorem 
Master Theorem  Telescoping  

  

6.2 Sorting Algorithms 

6.2.1 Invariants 
When it comes to algorithms that involve loops, there is usually a 
condition called the invariant. This invariant fulfils: 
1. Initialization: the condition is met before the loop. 
2. Continuation: the condition holds at each iteration of the loop. 
3. Termination: the condition holds at the end of the loop. 
 
An algorithm involving a loop and having an invariant is said to be correct 
if the invariant fulfils the above. 
 

6.2.2 Divide and Conquer 
Divide and conquer is type of algorithm involving the process of recursively 
splitting the problem into two or more equally sized subproblems of the 
same type. 
 
Examples: mergesort, quicksort. 
 

6.2.3 Selection Sort ✅ 
Selection sort iterates through the list, repeatedly finds the smallest 
element, and swaps it to its final position (current position in iter. ). code: 

 
Case Description Runtime 
Worst-case A is reverse sorted. Θ(𝑛!) 

 
Average-case  - Θ(𝑛!) 
Best-case A is already sorted Θ(𝑛) 

 
Comparisons: Worst, Best & Average: 𝜃(𝑛#) 
Swaps: Worst & Average: 𝜃(𝑛), Best: 𝜃(1) 

6.2.4 Insertion Sort 
Sort an array of values by taking the next value in the array and putting it in 

the right position. code: 
 

 
Case Description Runtime 
Worst-case A is reverse sorted. Θ(𝑛!) 
Average-case  - Θ(𝑛!) 
Best-case A is already sorted Θ(𝑛) 

Comparisons: Worst & Average: 𝜃(𝑛#), Best: 𝜃(𝑛) 
Swaps: Worst & Average: 𝜃(𝑛#), Best: 𝜃(1) 

6.2.5 Merge Sort 
Sort an array by splitting it into smaller subarrays (divide and conquer) and 
rearranging them to form a sorted array. code: 

 

 
Uses additional Θ(𝑛) storage for subarrays.  

Case Description Runtime 

n = size of input   a= 
number of subproblems in 
the recursion 
n/b = size of each 
subproblem. All 
subproblems are assumed  
to have the same size. f(n) 
= 𝜃(𝑛! log" 𝑛) cost of the 
work done outside the 
recursive call,  
which includes the cost of 
dividing the problem and 
cost of merging the 
solutions (e.g. a linear 
operation d = 1) O^d 
 



All cases - Θ(𝑛 ∙ log	(𝑛)) 
 

6.2.6 Quick Sort 
A divide and conquer algorithm which recursively splits the array into two 
parts: one which only contains elements bigger than the pivot and the 
other containing only elements smaller. code: 
 
 
 
 
 

 
 

Case Description Runtime 
Worst-case Pivot is the 

min/max value. 
Θ(𝑛!) 

Average-case  Pivot is chosen 
randomly. 

Θ(𝑛 ∙ log	(𝑛)) 

Best-case Pivot is always the 
median of the 
array. 

Θ(𝑛 ∙ log	(𝑛)) 

 
Pivot is often the median of three elements: 
Pivot = Median3(A[l],A[(l+r)//2],A[r]) 

6.2.7 Heapsort 
A sorting algorithm which converts an array into a heap (see 7.2) and 
creates a sorted array from the heap. Pseudocode: 

 
# after we got max heap, swap smallest with biggest, draw 
tree so you can sift down the element so the largest is on 
top again. 

Case Description Runtime 
All - Θ(𝑛 ∙ log	(𝑛)) 

 

6.3 Searching Algorithms 
6.3.1 Linear Search 
Search for the index of a specific element in an unsorted array. Code: 

 
Case Description Runtime 
Worst-case b is at the end of 

the array. 
Θ(𝑛) 

Average-case  - Θ(𝑛) 

Best-case b is at the 
beginning. 

Θ(1) 

 

6.3.2 Binary Search 
Search for the index of a specific element in a sorted array. Code: 

 
 

Case Description Runtime 
Worst-case b is the max/min 

value. 
Θ(log	(𝑛)) 

Average-case - Θ(log(𝑛)) 
Best-case b is exactly the 

median value. 
Θ(1) 

 

7 Data Structures 
Data structures are ways of organizing and storing data for efficient access 
and manipulation. 
 
A note on BSTs: a binary tree is a tree with at most 2 children. Binary trees 
can be: 
• Full: every node has 0 or 2 children. 
• Complete: every level except for the lowest is filled. Lowest level is filled 

from left to right. 
• Perfect: every level is completely filled. 

7.1 FIFO/LIFO (Stack) 
Some data structures can be categorized as FIFO (first in, first out) or LIFO 
(last in, first out). 
 
FIFO data structures offer fast access to the first element that was inserted. 
 
LIFO data structures offer fast access to the last element that was inserted. 
 
FIFO example: queue 

7.2  
LIFO example: stack

 

 

7.3 Binary Search Trees (BSTs) 
A binary search tree is a binary tree which fulfils the following: 
1. Every node v stores a key 

2. Keys in the left subtree are smaller than v.key 
3. Keys in the right subtree are larger than v.key 

 
A binary search tree 

 

7.3.1 Height of a BST 
The height of a BST is defined as the maximum depth one must recurse to 
reach a node with no children. Code: 

 
 

7.3.2 Search for a Node 
Return the node with a specific key.  
# following code is based upon the class implementation

 
Case Description Runtime 
Worst-case The tree is 

degenerated 
Θ(𝑛) 

Average-case The tree is 
balanced 

Θ(log(𝑛)) 

Best-case Key is the root of 
the tree 

Θ(1) 

 

7.3.3 Insert a Node 
Add a node with a specific key to the tree. 

 
Case Description Runtime 
Worst-case The tree is 

degenerated 
Θ(𝑛) 

Average-case The tree is 
balanced 

Θ(log(𝑛)) 

Best-case The tree is empty Θ(1) 
 

7.3.4 Remove a Node 
1. If a node has no children, simply delete the node by setting the variable 

to None 
2. If a node has one child, replace the node with its child. 
3. If a node has two children, replace the node with its symmetric 

successor – the next biggest element. Code: 
 

 
 

 
 



Case Description Runtime 
All Runtime is 

dominated by 
finding the 
successor. 

𝒪(ℎ) 
h is the height of 
the tree 

 

7.3.5 Traversal ⏭ 
There are different ways to traverse over a BST: 
 
1. Inorder traversal (will always print elements in ascending order): 

 
 
2. Preorder traversal: 

 
3. Postorder traversal: 

 
 

Case Description Runtime 
All Each edge is 

traversed twice and 
the number of 
edges is Θ(n) 

Θ(n) 
 
 

 

7.3.6 Traversal Rules 
• Given an inorder traversal: there is no possible representation of the tree 

if the sequence is not in ascending order. Representation is not unique. 
Example: 1 2 4 3 has no representation as a BST. 
• Given a preorder traversal: there is no possible representation of the tree 

if there is not a way to (recursively for the new subsequences as well) 
place the first number in the sequence so that the numbers to the left are 
smaller and that the numbers to the right are greater. Representation is 
unique. 

Example: 4 3 1 2 8 6 5 7 
3 1 2 4 8 6 5 7  
1 2 3, 6 5 7 8 
1 2, 5 6 7 -> valid 
• Given a postorder traversal: there is no possible representation of the tree 

if there is not a way to (recursively for the new subsequences as well) 
place the last number in the sequence so that the numbers to the left are 
smaller and the numbers to the right are greater. Representation is 
unique. 

Example: 1 3 2 5 6 8 7 4 
1 3 2 4 5 6 8 7 
1 2 3, 5 6 7 8 
5 6 -> valid 
 

7.3.7 Tree Traversal - Trick 

 

7.4 (Max) Heaps 

A heap is a binary tree which fulfils the following: 
1. It is complete (see 7). 
2. If there are any gaps in the tree, they’re on the last level to the right 

(definition of complete, see 7). 
3. Key of parent is always bigger than the one of its children. 
 
It is a good data structure to use when one wants efficient 
access to the max/min at all times. 

 
A max heap / Heap as an Array 

7.4.1 Implementation of a Heap as Array 
Given an element with index i, with first index = 0: 
• Children of i: {2i+1, 2i+2} 
• Parent of i: i-1//2 
With first index = 1: 
• Children of i: {2i, 2i+1} 
• Parent of i: i//2 
7.4.2 Height of a Heap 
• Given n elements: 

𝐻(𝑛) = ⌈log!(𝑛 + 1)⌉ 

7.4.3 Insert an Element 
Insert an element by placing it in the first free place on the lowest level of 
the heap. Iteratively swap the element with its parent until the heap 
conditions are fulfilled (Chapter 7.2).  
The Code snippets of 7.4 will work by themselves (independent of 6.2.7) 
 

 
 

 
Case Description Runtime 
All In the worst case, inserting an element 

will involve log(𝑛) swaps. 
𝒪(log(𝑛)) 

 

7.4.4 Remove the Maximum (Max-Heap) 
Replace the maximum with the rightmost element in the lowest level and 
iteratively swap the replacement element in direction of the greater child 
(smaller child for min-heaps) 
 

 

 
 

Case Description Runtime 
All In the worst case, removing an element 

will involve log(𝑛) swaps. 
𝒪(log(𝑛)) 

7.4.5 Heapify an Array 
Property: the leaves of a heap fulfill the heap condition trivially -> only 
need to “heapify” the first n/2 elements. 
 

 
def SiftDown(a, i, m): REQUIRED! see 7.4.4 
 

Case Description Runtime 
All - Θ(n) 

 

7.4.6 Sorting a heap 
If "a" is a heap, one can efficiently sort the array: 

 
Case Description Runtime 
All SiftDown traverses 

at most log	(𝑛) 
nodes. Sorting the 
array requires n 
calls to SiftDown. 

Θ(𝑛 ∙ log	(𝑛)) 
 

Testing 

 

7.5 Vectors/Lists 

 
• Ordered data. 
• Fast Access via index. 
• Slow for updates. 

Operation Time Complexity 
Index Access 𝒪(1) 
Search (in) 𝒪(n) 
Sorted Search 𝒪(log(𝑛)) 
Insertion 𝒪(𝑛) 
Removal 𝒪(n) 

 

7.6 Linked Lists 

 
• Ordered data. 
• Fast updates at the front of the linked list. 

Operation Time Complexity 
Access 𝒪(𝑛) 

Search (in) 𝒪(𝑛) 
Insertion (head) 𝒪(1) 
Removal (head) 𝒪(1) 
Insertion (after value) 𝒪(𝑛) 
Insertion (after value) 𝒪(𝑛) 

 

7.7 Hash Tables 
Hash tables are a data structure which allow fast access to elements. 
• Unsorted, unordered data. 
• Fast search. 
 
The idea behind the implementation is that one uses a “hashing function” 
to obtain an index/address from the element, and to store the element 
there. 
 

Operation Best Case 
Complexity 

Worst Case 
Complexity 

Search 𝒪(1) 𝒪(𝑛) 
Insertion 𝒪(1) 𝒪(𝑛) 
Removal 𝒪(1) 𝒪(𝑛) 

 

7.7.1 Collision Handling 
With probing: next available index is chosen. 
• Problem: entry at calculated index may not contain element. 
With chaining: a linked list at every entry. 
 

7.7.2 Properties of a Hash Function 
• Consistent (always same output for given input). 
• As collision-free as possible. 

7.7.3 Hash Table manual 
There most likely will be one or two hash functions given, if after the first 
one we have a collision we go to the next one and add from where we got 
the collisions the amount of steps we’ve newly calculated 

7.8 Quadtrees 
A quadtree is a type of tree with 4 children. In this course, the application 
of a quadtree is mainly graphical. 
 

 
A QuadTree with max_cap =2 

 
Example of a quadtree implementation: 

 



 

 

 

 
7.8.1 Search for Number of Points within Rectangle 

 
Time complexity: 𝒪(log(𝑛)) 

8 Programming Concepts 
8.1 Classes and Objects (OOP) 
Classes: 
• Bundling of data that belongs together contentwise. 
• Definition of a new type. 

Data: 
• Stored in variables of the class (attributes). 
• Default values can be declared in the class (see 1.5.2). 
Object: 
• Instance of a class 
 

8.1.1 Example Implementation 

 
8.1.2 Magical Methods 
Magical methods allow you to overload operators in python. Below is a 
table of magical methods you can define. 
Comparisons: 

Operation Meaning Magical Method 
< Less than __lt__ 

<= Less than or equal __le__ 
> Greater than __gt__ 
>= Greater than or 

equal 
__ge__ 
 

== Equal to __eq__ 
!= Not equal to __ne__ 

 
Relational Operations: 

Operation Meaning Magical Method 
+, += Addition __add__, 

__iadd__ 
- Subtraction __sub__ 
* Multiplication __mul__ 
/ Division __truediv__ 

 
// Integer division __floordiv__ 
% Modulo __modulo__ 

** Exponentiation __pow__ 
 
Others: 

Operation Meaning Magical Method 
print() overload print() __str__ 
- Negation __neg__ 
Classname() Constructor __init__ 

 
 

8.1.3 Inheritance 

Through inheritance a class can “inherit” all the attributes and the methods 
of the class it is inheriting from. 
Example: 

 

8.2 Compiled vs Interpreted 
Compiled (C++): 
• Program code is translated to assembly. 
• Assembly is executed. 
• Single translation, with optimizations. 
• Usually, higher performance 
Interpreted (Python): 
• Program code executed together with translation. 
• Translation is repeated each time. 
• Quick and easy to make minor changes. 
 

8.3 Static vs Dynamically Typed 
C++ is statically typed: 
• Each element has a type defined by the programmer. 
• Types used fitting together correctly is checked at compilation, yielding 

compile time errors (happen during the program itself) if wrong.  
Python is dynamically typed: 
• Elements have no type in advance. 
• At runtime the type is chosen. 
• Type changeable at runtime. 
• Depending on the type when executing, there may be runtime errrors 

(happen during the program). 
• Errors are more difficult to debug, do not happen all the time. 
 

8.4 Generic Programming 
The goal of generic programming is to make code as widely usable as 
possible (no need for new functions for different types). 
 
Can be done with templates in C++. 
 
No need to do anything in Python thanks to dynamic typing. 

8.5 Functional Programming 
The central idea is to pass functions as parameters to functions. Example 
where we pass a function to “map”: 

 
8.5.1 Lambda Functions 
Lambda functions are small functions without a specific name, useful to 
pass into a function as parameter. 
 
lambda arguments : expression 
• Lambda with one argument:  

 
• Lambda with multiple arguments: 

 
8.5.2 Examples of Functions that Accept Functions 
• map(func, it) – applies a function on each element of a container. 

 
• filter(func, it) – removes any elements that don’t fulfil a 

condition. 

 
• reduce(func,it) – recursively reduce a container to a single value 

by applying a function to two elements. 

 

9 Dynamic Programming (DP) 
DP is a problem-solving strategy: 
• It is generally a “bottom-up” strategy – we iteratively solve smaller 

problems to solve progressively bigger problems. 
• It is faster than recursion because we avoid recalculating known solutions. 
• We store answers to smaller problems in a table.  
In dynamic programming, a "top-down" approach usually refers 
to memoization 
On the other hand, a "bottom-up" approach usually refers to 
tabulation 

 

9.1 Where can we use DP? 
Problems need to have: 
• Optimal substructure – the answer of the problem depends on the 

answer of some smaller subproblems. 



• Overlapping subproblems – in calculating the answer of a problem, we 
often recalculate the answer to the same subproblems. 

 
Example: Fibonacci 
fib(n) = fib(n-1) + fib(n-2) #Optimal substructure 
 

 
Recursion tree for fib(6) 

 

9.2 DP Implementation of Fibonacci 

 

9.3 Solving Strategy 
1. Find the first solution, using brute force or the recursive 

implementation. Draw a tree or visualize the process. 
2. Analyze the solution – look for repeating subproblems. Then look for 

an optimal substructure to your solution – how does the answer of the 
problem depend on the answer of the subproblems? (Find relationship 
of subp.) 

3. Think about how to store the answers of the subproblems. Should it be a 
list? A table? 

4. Flip the recursive implementation around to implement a bottom-up, 
iterative solution. 

EXAMPLES IN APPENDIX 

10 Machine Learning (ML) 
(Supervised) Machine learning is the use of “models” to create functions 
which map inputs to desired outputs. Generally, there are two areas: 
1. Regression: given some input values, what is the output value? Example: 

given a house has 5 bedrooms, 1000 square meters, 3 bathrooms and is 
50m from the nearest train station, what is its price? 

2. Classification: given some input values, to what 
group does the input belong to? Example: given 
the temperature is 5 degrees and it is cloudy, will 
it rain? 

 
An existing package for many ML algorithms is 
sklearn. 

10.1 General Procedure 
• Select a model, using a technique such as cross validation. 
• Read the data, using pandas. 
• Split data into test set and train set. 
(X (input features) and y (target) need to be provided below) 
Split the dataset into training and testing sets 

  
#0.3 of the data will be used in validation 
• Train the model. 

 
• Validate the model to rate how well it performed. 

 

10.2 Validation Metrics 
• Accuracy score #	?3@@A?B2C	?26DD'E'AF

B3B62	"GH7A@
. 1 is the best score, 0 is the worst. 

from sklearn.metrics import accuracy_score 
• R2 score. 1 is the best score, the more negative the worse. 
from sklearn.metrics import r2_score 
• Mean squared error. 0 is the best score. The bigger the worse. 
from sklearn.metrics import mean_squared_loss 
 
For classification tasks (discrete categories), use accuracy_score. For 
regression tasks (continuous variables), use metrics like 
mean_squared_error or R-squared for evaluation. 

10.3 Classification  
10.3.1 Decision Tree Classifier 
Given: some data X, and labels y. Constructs a decision tree to divide up the 
data based on its features.  
# Before Split the dataset into training and testing sets 

 
Example: 

 

10.4 Regression 
10.4.1 Linear Regression 
Given: some data X, and labels y. Constructs a linear model 𝑤I𝑥 + 𝑏) so 
that the loss function (residual sum of squares) is minimized for the data 
provided. 

 
10.4.2 Logistic Regression 

Logistic Regression is a statistical method used for modeling the 
probabilities of binary outcomes 

10.5 Neural Networks 
A neural network is an ML algorithm which is incredibly powerful because it 
can be used for both regression (Predicts continuous values.) and 

classification (Predicts discrete values (labels or categories)). It is comprised 
of layers of neurons, where the output of each neuron is made non-linear 
through an activation function. 

 
Example classification: 

 
 
Example regression: 

 

10.6 ML Theory Overview 
1. Underfitting and Overfitting: 
    - Underfitting: Model too simple; performs poorly on training/test data. 
    - Overfitting: Model too complex; captures noise, good on training but bad on test data. 
2. K-fold Cross Validation: 
    - Splits training data into 'K' parts. Model trains on K-1 parts and tests on 1. Repeated K 
times. Averages used for performance. 
3. Grid Search: 
    - Tunes hyperparameters by testing all combinations within a range. Uses cross-
validation to identify the best. 
4. Convolutional Neural Networks (CNNs): 
    - For image recognition tasks: 
        - Filters: Extract features by moving over the image. 
        - Pooling: Downsamples to reduce dimensions. 
        - Fully Connected Layers: Final layers for prediction output. 
5. Non-Numerical Data Encoding: 
    - Ordinal Encodin: Maps categories to ordered integers. E.g., Low -> 1, Medium -> 2. 
    - Mean Encoding: Assigns each category a value based on the average target variable. 
Beware of overfitting. 
    - One-hot Encoding: Creates binary columns for each category value, marking presence 
(1) or absence (0). 
6. Clustering: 
    - Categorizes data into groups based on similarity, without prior labels. 
        - K-means: Divides data into 'K' groups by minimizing intra-cluster distances. 
        - Hierarchical: Produces a tree of clusters. Can merge (agglomerative) or split 
(divisive) groups. 
7. Loss Function: 
    - Assesses model prediction accuracy. Goal is minimization. Examples: Mean Squared 
Error (regression), Cross-Entropy (classification). 
8. Dimension Reduction: - Techniques to lower feature count, preserving essential data 
characteristics.  

10.6.1 Common sorting algorithms 
• Bubble sort O(n2) 
# “bubbles” items on top by going through the array again 
and again and taking the biggest element to the top position 
it belongs 
• Insertion sort O(n2) / if sorted O(n) Chap. 6.2.4 
# Will move right to left taking the next element as far 
left until it is the next biggest too the one on the left 
• Selection sort O(n2) / always O(n2) Chap. 6.2.3 
Finds smallest element in the array and exchanges it with 
the element at the beginning (current start index) 
• Merge Sort (Divide and conquer) / O(n*log(n)) Chap. 6.2.5 

# Divides (goes for midpoints splice) , sorts, reassembles 
(merge function)  
Requires extra space as it doesn’t sort in place => if 
issue: Quicksort 

 
• Quicksort (divide and conquer with pivot)  / O(n*log(n)) Appendix 
# Quick Sort, another Divide and Conquer algorithm, uniquely 
partitions the array around a chosen 'pivot' element, 
placing smaller elements before and larger ones after. ( 
Space complexity: O(log(n)) ) 

 
• Heapsort O(n*log(n)) Chap. 6.2.7 and 7.4 (min, max) 
Heap Sort manipulates data using a binary heap data 
structure (construction phase), continually removing the 
largest element from the heap (extraction phase) and 
reconstructing it, resulting in a sorted array. Space 
Complexity O(n). 
n*log(n) also called quasilinear, of not too big dataset 
SORTING ALGORITHMS TIME COMPLEXITY OVERVIEW 

  

11 Appendix 
11.1.1 Code Snippet Overview 
(Not directly in Appendix below) : mergeSort 6.2.5 
1D DP: chap 9.2 Fibonacci 
Sorting Algos Code locations are referenced in 10.6.1 
For main Topics: 
[6.3 SearchAlgo],[7.3 Binary Search Tree],[7.8 Quadtrees],[8.1.1 OOP],[8.1.3 
Inheritance] 
CODE (codes in black boxes not under correct chap. (space reasons)) 
PANDAS EXAMPLE 



 
Bubble Sort 

 
Quick Sort 

 
Dict comprehension  

 
3D Memoization Example 

 

 
Python Linked lists 

 
ML 

ML General Blueprint 

 

 
Grind search:  

 

 
DP 

 

 

 

 
Binomial Coefficient 

 

 
Binary Insertion Sort   Farthest Point 
 
 
 
 
 
 
 
 
 
 
 
 



11.1.2 String manipulation terms 
A subsequence is a sequence derived from another by deleting some elements but 
preserving order, not necessarily containing adjacent elements. 
A substring is a subsequence with adjacent elements.  
A palindrome is a sequence or subsequence, including substrings, that reads the same 
forwards and backwards. 

11.1.3 Additional Information 
An AVL tree is a type of self-balancing binary search tree in computer science. It maintains 
balance by ensuring the heights of the left and right subtrees of any node differ by at 
most one. This leads to efficient insertions, deletions, and look-ups, all with a time 
complexity of O(log n), making AVL trees useful in databases and file systems. 
Greedy Algorithm: A greedy algorithm is any algorithm that follows the problem-solving 
heuristic of making the locally optimal choice at each stage. // Theory BAUG: Tree traversal 
O(n) // Inserting into AVL tree O(log(n)) 
 

11.1.4 APPENDIX 2. Note to the reader 
This is a revised version of the original summary, kindly provided by Julian 
Lotzer and Daniel Steinhauser. The new code snippets were created using 
VSC in the high-contrast light theme and (most of them) tested. In case 
some code snippets shouldn’t work, please contact me:  
lehmannni@ethz.ch  
(No responsibility is taken by the author for the correctness of the additional 
code snippets) 
 
Tip for future versions: Add more ML theory. In the exam, there were 
questions regarding filters (chapter about CNN’s) and principal component 
analysis. See exam collection: Info II exam 2023 D-MAVT. 
 
It’s recommended to print this cheat sheet using a printer on high-quality 
settings, like an HP OfficeJet Pro, due to the small font size.  
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