
ZF CompSci II D-MAVT
Julian Lotzer – jlotzer@student.ethz.ch

Daniel Steinhauser – dsteinhauser@student.ethz.ch

Version: 01.09.2023 Extended Version (by lehmannni @ co.)

T h i s s u m m a r y i s b a s e d o n t h e D - M A V T C o m p u t e r S c i e n c e I I
l e c t u r e s b y D r . R a l f S a s s e a n d D r . C a r l o s C o t r i n i . T h e Z F i s

c o n s t a n t l y u p d a t e d , a s t h e l e c t u r e t a k e s p l a c e f o r t h e f i r s t t i m e i n
t h i s f o r m . N o g u a r a n t e e c a n b e g i v e n f o r c o r r e c t n e s s o r

c o m p l e t e n e s s . Y o u w i l l f i n d t h e n e w e s t v e r s i o n o n
h t t p s : / / n . e t h z . c h / ~ d s t e i n h a u s e r / o r h t t p s : / / n . e t h z . c h / ~ j l o t z e r /

1 General Python
1.1 Reference Semantics and Aliasing
Everything is a pointer:
l1 = [1, 3, 'hi', -4] #l1 -> 1 3 'hi' -4,
l2 = l1

If a copy is needed, use:
import copy
l2 = copy.copy(l2) #shallow copy (1D-Array)
l2 = copy.deepcopy(l2) #deep copy (Multi Dimensional Arrays)

1.2 Data Types
Python dynamically types variables, which means that the variable type can
change during the program's execution
s = 5
print(type(s)) #output: <class 'int'>
s = False
print(type(s)) #output: <class 'bool'>
s = "Hello World"
print(type(s)) #output: <class 'str'>

• To convert the data type:
s = 5.9 #type(s) = <class 'float'>
x = int(s) #type(x) = <class 'int'>
y = str(s) #type(y) = <class 'str'>

1.2.1 Type Hints
• Are not enforced by python, but help make code more legible:
def add_integers(li: list[int]) -> int
 …
#the type annotation after the colon (:) indicates the
#expected type. The type annotation after the arrow
#indicates the expected return type

1.3 Input and Output
• Output (NOTE print(p.value, end = ' ') for no \n)
print("Hello World") #output: Hello World
print("Hello", "World") #output: Hello World
print("Hello", "World", sep = "--")
#output: Hello--World
print("Hello", "World", sep = "--", end = "!")
#output: Hello--World!
• Input
name = input("Enter name: ") #input returns a string
print("Hello", name)
• Input of an integer (str->int conversion):
number = int(input("Enter your number: "))
print("Number:", name)

1.4 Control Flows (if/else, while, for)
• if, elif (else if), else Block
x = int(input("Enter a number: "))

if x < 5 and x >= 0:
 print("too small") #if x between 0 and 5
elif x == 69 or x == 420:
 print("nice") #if x is equal to 69 or 420
elif x < 0:
 pass #do nothing if x negative
else:
 print("big number") #x is positive and the ifs/elifs
conditions don’t hold

• while-loop
x = 0
while x <= 3:
 print(x)
 x += 1
• for-loop over value ranges (see Ranges Chapter 2.2)
for i in range(0,4,1): #range(start, stop, step)
 print(i, end = " ") #output: 0 1 2 3

for i in reversed(range(0,4,1)):
 print(i, end = " ") #output: 3 2 1 0

• for-loop over lists
l=[3,5,25]
for i in l:
 print(i, end = " ") #output: 3 5 25

for i in reversed(l):
 print(i, end = " ") #output: 25 5 3

1.5 Functions
Functions do not have to be declared in a specific order, in contrast to C++
(forward declarations). This means this is completely valid:

def foo():
 return bar()

def bar():
 return 0
1.5.1 Function Declaration
def function(arg1, arg2):
 …
 return value
1.5.2 Default arguments
Using default arguments, it is possible to have "optional" arguments:
def specialprint(data="hello world")
 print(data)
specialprint() #hello world

1.5.3 Global and local variables
Variables that are defined outside of a function are global and can also be
used within the function if they are defined before the function call
(although this should be avoided whenever possible!).
def scaled(x):
 return x*scale #ok, because scale is global

scale = 1.1 #has to be defined before scaled(10)!
print(scaled(10)) #Output: 11

• Making a local variable in a function globally accessible:
def double(x):
 global result #result is defined globally
 result = x*2

double(7) #function call, before print(result)!
print(result) #Output: 14

2 Python Containers

Python containers can be divided into ordered (sequences) and unordered
(collections) containers.

Sequences include tuple (all types), list (all types), range (integers) and str
(characters)
Collections are e.g.: set (non-associative) and dictionary (associative)

2.1 Operations on Containers
• Number of Elements:
len(c)
• Contains element x?
x in c
• Iterate over all elements:
for x in c:
print(x)

2.2 Sequences (ordered containers)
• Tuple with 4 Elements:
t = ("a", 0, -6, 3.3) #t -> "a" 0 -6 3.3,
#Tuple with 1 Element: t = (’a’,)
#empty tuple: t = ()
• List of 4 items:
l = [1, 3, "hi", -4] #l -> 1 3 "hi" -4,
• Range with 4 elements:
r = range(0, 8, 2) #r -> 0 2 4 6,
#Syntax:
#range(start, stop, step)
#range(start,stop) -> step = 1
#range(stop) -> start = 0, step = 1
• String with length 5:
s = "hello" #s -> 'h' 'e' 'l' 'l' 'o'
#you can use both " or ' for strings
IMPORTANT: only list is mutable; tuple, range and string are immutable!

2.2.1 General sequence operations
• Subscript-Operator l[i]:
l = [1, 3, 'hi', -4]
print(l[2]) #output: hi
• Enumeration:
enumerate(iterable, start)
#iterable = iterable container (sequence)
#start (optional) = (optional) enumerate starts counting #at
this number, starts at 0 when omitting start->
#enumerate(iterable)
#the enumerate(iterable, start) function returns a #tuple:
(index, object).
• Enumeration example:
for index, value in enumerate(l):
print(index, value)

#output:
0 1
1 3
2 Hi
3 -4
• Combine sequences s1 and s2 (zip):
z = zip(s1,s2)
#example:
#s1 -> "Lea" "Tim" "Mortis"
#s2 -> 22 19 69
#z -> ("Lea",22) ("Tim",19) ("Mortis",69)
• Output with a for loop:
for name, age in z:
print(name,"->",age)

output:
Lea -> 22
Tim -> 19
Mortis -> 69
• Slicing (partial sequence) of a sequence s:
partseq = s[start:stop:step]
partseq = s[start:stop] #step = 1
partseq = s[:stop:step] #start = 0
partseq = s[start::step] #stop = len(s)
s[::step] # From 0 to len(s) or from len(s)-1 to (and
including!) 0 || if no start -> earlies, no end -> end

2.2.2 Common List Operations

• Access item:
l[i] = value
• Add item at the end:
l.append(value)
• Remove item at location i:
del l[i]
• Reverse list:
l.reverse()
• Create a list of k elements with value v:
l=[v]*k
• To convert a string s to a list of words:
s.split(seperator, maxsplit)
#seperator and maxsplit are optional
#s.split() -> split at all whitespaces
#s.split(", ") -> split at every ", "
#s.split(maxsplit = 10) -> split 10 times at the first 10
#whitespaces -> List will have 11 entries

2.2.3 List Comprehension
• Apply a function f(x) to all items in list l:
l2 = [f(x) for x in l] #z.g. 2*x for f(x)
• Apply a function f(x) to a range:
r2 = [f(x) for x in range(1,6)]
• Apply a function f(x) only to items in list l that satisfy g(x) (filter)

((we could do x for x without a function)):
l3 = [f(x) for x in l if g(x)]
• Example: Read a sequence of numbers:
l = [int(x) for x in input("Input: ").split()]

Unzipping List of Tuples into Two Lists

2.2.4 Common String Operations
• Access element:
s[i]
• Add two strings (concatenating):
s1 = "hello"
s2 = " world"
s3 = s1 + s2 #s3 = "hello world"
• Remove whitespace at beginning and end:
s = " banana "
s=s.strip() #s="banana"
• Convert a string into a list of chars:
s = list(s)
• Example: check if s is a string with content:
type(s) == str and len(s.strip()) #False if empty

2.3 Collections (unordered containers)
• Set with 3 items:
s = {1, 29, 12}
• Dictionary with 3 items:
d = {"Lea":22, "Tim":19, "Mortis":69} #key:value

2.3.1 Set Operations
s = {1, 29, 12} #set create
• Add item:
s.add(69)
• Remove item:
s.remove(29)
• Search for an item:
12 in S #returns a bool

2.3.2 Dictionary Operations
d={"Lea":22, "Tim":19, "Mortis":69} #create dict
• Change item:

https://n.ethz.ch/~dsteinhauser/
https://n.ethz.ch/~jlotzer/

d["Lea"] = 23
• Add item:
d["Peter"] = Use 24 #an unused key
• Delete item:
del d["Mortis"] #delete item
• Search for a key:
"Tim" in d #returns a bool
• To access value at a key:
d["Tim"] #has value 19
• Make two lists into one dictionary:
cities = ["Zurich", "Basel", "Bern"] #list 1
zip code = [8000, 4000, 3000] #list 2
d2 = dict(zip(cities,code)) #dictionary D2

2.3.3 Iterating over a Dictionary
• Iterate over the keys of a dictionary:
for key in d.keys():
 print(key) #Lea Tim Mortis
• Iterate over entries of a dictionary:
for item in d.items():
 print(item) #("Lea",22) ("Tim",19) ("Mortis", 69)
• Iterate over entries, with keys and values separated:
for key, value in d.items():
 print(key+" "+value) #Lea 22 Tim 19 Mortis 69
• Iterate over the values of the dictionary:
for value in d.values():
 print(value) #22 19 69

2.3.4 Dictionary/Set Comprehension
• Transform a set into a dictionary by applying f(x) and g(x) on every

element in the set to obtain key and value, respectively:
d3 = {f(x):g(x) for x in s} #s being a set
• Transform a set into a dictionary, only if the element satisfies h(x):
d4 = {f(x):g(x) for x in s if h(x)}
• Dictionary comprehension with multiple variables:
d5 = {f(x):g(y) for x, y in h(z)}
#h must return a list of tuples, e.g.: zip, d.items. In #the
case of d.items, we are applying f(x) on the keys #and g(y)
on the values of the dictionary.
• Example: Multiply the value of every odd key in a dictionary by 2:
d6 = {k:2*v for k, v in d.items() if k % 2 == 1}
Dict from zipped stuff:
d = {x ** 2 : y **3 for x,y in zip(range(5), [4,3,2,1]) if y
> 1} print(d) # {0:64, 1:27, 4:8}
• 2D LIST OF DICT
memo = [[{} for _ in range(n+1)] for _ in range(n+1)]

3
Numpy is a Python package (equivalent to a C++ library) which supports
operations with n-dimensional arrays and various computational methods.
(fixed size and only one type. True multidimensionality instead of nested).

Import the Numpy package:
import numpy as np

Now you can refer to functions/classes from Numpy using: "np".

3.1 Numpy Arrays
Numpy arrays are like Python lists. Below is a summary of the key
differences.

Lists Numpy Arrays
Variable size Fixed size
Different element types Single element type
Mathematical operations on
single elements only

Mathematical operations on whole
arrays

Primarily 1D Multi-dimensional

3.1.1 Declaring Numpy Arrays
• Using sequences (ordered containers):
l = [1, 2, 3, 4]
a = np.array(l)

#array([1,2,3,4])
b = np.array(range(2,10,3))
#array([2,5,8])
c = np.array([[1,2],[3,4]])
#array([[1,2],
 [3,4]])
• With random numbers in [0,1)
R = np.random.random(10)
#a numpy array with 10 random values between 0 and 1
• With random numbers:
R = np.random.uniform(-1,1,5)
#a numpy array with 5 random values between -1 and 1
• With random integers:
R = np.random.randint(1,7,10)
#a numpy array with 10 random values between 1 and 6
• Using np.arange (stop is not inclusive):
R = np.arange(2,10,3) #array([2,5,8])
#the same output as np.array(range(2,10,3))
#np.arange(start, stop, step)
#np.arange(start,stop) -> step = 1
#n.arange(stop) -> start = 0, step = 1

• Using linspace (stop is inclusive):
R = np.linspace(start,stop,num)
#a numpy array with num equally spaced elements
#between start and stop. Stop is inclusive
#Step size = (stop-start)/(num-1)

3.1.2 Numpy Array Operations
• Return the number of elements:
a = np.arange(10)
a.size #=10
• Accessing elements (1D array)
a[5] #=5
• Accessing elements (2D array):
A = np.array([[1,2,3],[4,5,6]])
A[1,2] #=A[1][2]=6
A[:,2] #array([3,6])
A[1,:] #array([4,5,6])

3.1.3 Numpy Array Slicing
• Slicing is dependent on the dimensions of the matrix. For 1D

arrays:
A = np.arange(10) #[0,1,2,3,4,5,6,7,8,9]
A[2:5:2] #array([2,4])
• For 2D arrays (matrices):
A = np.array([[1,2,3],
 [4,5,6],
 [7,8,9]])
A[0:2,1:3] #array([2,3],
 [5,6])

3.1.4 Numpy Array Statistics
a = np.linspace(-4,-2,3) #array([-4,-3,-2])
• Minimum of all elements:
a.min() #-4
• Maximum of all elements:
a.max() #-2
• Sum of all elements:
a.sum() #-9
• Average of all elements:
np.mean(a) #-3
• Standard deviation of all elements:
np.std(a) #0.81

3.1.5 Mathematical Operations on Numpy Arrays
• Generally mathematical operations are carried out element-wise:
A = np.array([[2,3,4],[6,7,6]])
B = np.array([[1,9,1],[2,3,9]])
A+1
#array([[3,4,5],
 [7,8,7]])
A * 2
#array([[4,6,8],
 [12,14,12]])
A ** 4
#array([[16,81,256],

 [1296,2401,1296]])
np.sin(A)
#array([[0.909,0.141,-0.756],
 [-0.279,0.657,-0.279]])
A + B
#array([[3,12,5],
 [8,10,15]])
A * B
#array([[2,27,4],
 [12.21,54]])
np.sum(A, axis = 0)
#= A.sum(axis = 0) -> array([8,10,10])
np.sum(A, axis = 1)
#= A.sum(axis = 1) -> array([9,19])

3.1.6 Matrix Operations on Numpy Arrays
• Given that the dimensionality of two matrices is correct, one is able to

multiply them using @:
A = np.array([[2,3,4],[6,7,6]])
A @ np.array([[1, 4], [3, 4], [4,6]])
#array([[27, 44],
 [51, 88]])
• Using the dot() function to multiply two matrices:
A.dot(np.array([[1,4],[3,4],[4,6]])
#array([[27, 44],
 [51, 88]])
• Using the dot() function to find the scalar product of two vectors:
a = np.array([1,2,3])
b = np.array([3,4,6])
a.dot(b) #29

3.1.7 Filtering Numpy Arrays
• Filter a numpy array using the subscript operator:
a = np.arange(7) #array([0,1,2,3,4,5,6])
f = a % 2 == 0
a[f] #array([0,2,4,6])

4 Pandas
Pandas is a Python package which supports working with tabulated data. It
describes itself as an open-source data analysis and manipulation tool.

Having pandas installed, one can use:
import pandas as pd

4.1 Using Pandas to read a CSV File
• To read a CSV file stored in the same directory as your code, use:
climate = pd.read_csv("climate.csv", sep=",",
index_col=0, usecols=["time", …])
#"sep" -> what characters values in the csv #file are
#separated by. "index_col" -> what the index column will
#be. "usecols" -> what columns of the csv data will be
#selected.

4.2 Pandas Dataframe
A dataframe can be thought of as a 2D list (list within a list) supporting
access in more semantic, meaningful ways compared to using indices.
Visualized, a dataframe may look something like the following:

climate

The leftmost column is known as the "index column".

4.2.1 Changing the Index Column
• Change the index column by using (creates a copy):
climate2 = climate.set_index("time")

climate

4.2.2 Renaming Columns
• Using the "rename" function:
climate = climate.rename(columns={"time":"date", …}
#renames the time column as "date". Add any entries in #the
form of: "old_index_name":"new_index_name"
• Directly set column names:
data.columns = ["Date", "January", "February", …]
#needs to be the same length as the number of columns

4.2.3 Accessing Dataframe Elements
• Access a single column (type: Series):
climate["feb"]
#gets the column "feb"
• Access multiple columns (type: Dataframe):
climate[["jan", "mar"]]
#gets the columns "jan" and "mar"
• Access a single row, using an index (type: Series):
climate.iloc[3]
#gets row 3
• Multiple rows (type: Dataframe):
climate[1:4]
#gets rows 1 to 3
• Access to a subtable using indices (type: Dataframe):
climate.iloc[4:7,1:2]
#gets rows 4,7 with data only from column 1
• Access to a subtable using index column values and column name (type:

Dataframe):
climate2 = climate.set_index("time")
climate2.loc[1864:1868,"jan":"mar"]
#includes the rows labeled with 1866 until and including
#1868, the columns from "jan" until and including "mar"
• Access to a single element:
climate["jan"][3]
#gets the element in column "jan" in row 3

4.2.4 Filtering Dataframes
• Filter rows:
climate[climate["jan"]>2]
#filters out the rows with values in the "jan" column #less
than 2
• Example: All entries in "jan" with values more than 2:
climate["jan"][climate["jan"]>2]

4.2.5 Dealing with Invalid Data
• Convert all the values in a column to numeric:
data[column] = pd.to_numeric(data[column], errors="coerce")
#converts all the values to numeric values. #errors="coerce"
-> converts values which cannot be #converted to NaN.
• Delete all rows containing NaN entries:
data.dropna(axis = 0, how="any")
#how="any" -> delete row if any value is NaN.
#how="all" -> delete row if all values are NaN
#axis = 1 -> delete column instead of row
• Fill all entries containing NaN with a value:
data.fillna(0) #fill any NaN entries with 0

4.2.6 Modifying Dataframes
• Add a column:
climate["new_col"] = climate["time"] + climate["jan"]
#"new_col" is a new column who’s values are #those of the
"time" and "jan" column added
• Delete a column:
climate = climate.drop(columns=["time"])
#delete the "time" column
• Add a row:
d = {"mar":34, "jan":23}
climate.append(d, ignore_index=True)
#adds another row with the values 34 for "mar" and 23 for
#"jan". Other entries are NaN
• Delete a row:
climate = climate.drop(climate.index[0])
#deletes row 0
• Transpose the dataframe:
climate = climate.T

4.2.7 Analysing Data in Dataframes
• Sum of all the entries in each column (type: Series):
climate.sum()
• Maximum of all the entries in each column (type: Series):
climate.max()
• Create a dataframe summarizing the max and sum for each column:
climate.agg(["max","sum"])
#A dataframe containing the same columns as climate
#with row 0 containing the max of the column and row 1
#containing the sum of the column. The strings in the
#list should be names of valid pandas Series functions.
• Get statistical information for each column (type: Dataframe):
climate.describe()
#includes a variety of statistical measures
• Sort a dataframe according to entries in a specific column(s):
climate = climate.sort_values(["time", "jan"],
ascending=False)
#sorts the rows by "time" in descending order. If two
#entries for "time" are equal, then the rows are sorted #by
"jan"
• Split a dataframe into groups based on a specified column and perform a

computation on each group:
data.groupby("column").sum()
#groups data based on the entries for "column" and
#calculates the sum for each group.
data.groupby("column").max()
#groups data based on the entries for "column" and
#calculates the max for each group.

5 Matplotlib
Matplotlib is a Python package allowing you to visualize a variety of things:
from functions to animations. To import matplotlib, use:
import matplotlib.pyplot as plt
(not relevant for exam so far)
Now you can refer to classes and functions from the package using "plt".

5.1 Line Plots
• To graph two numpy arrays, one representing the x values and the other

representing the corresponding y values:
import matplotlib.pyplot as plt
import numpy as np

X = np.linspace(0,2*np.pi,100)
Y = np.sin(X)

fig, ax = plt.subplots()
ax.plot(X,Y)

5.2 Scatter Plots
• To graph two numpy arrays, one representing the x values and the other

representing the corresponding y values:
X = np.arange(1,9)
Y = np.array([1,2,3,1,2,3,1,2])

fig, ax = plt.subplots()
ax.scatter(X,Y)

5.3 Histogram Plots
• To plot a histogram, use the following template:
fig, ax = plt.subplots()
X = np.random.randint(0, 100, 500)
low: 0, high: 100, size: 500
ax.hist(X, bins=10)
plt.show()

5.4 Graph Styling
fig, ax = plt.subplots()

• To add a title, use:
ax.set_title("title")
• To set the x-label:
ax.set_xlabel("x label name")
• To set the y-label:
ax.set_ylabel("y label name")
• To add a legend:
ax.legend()
#requires that you labeled your plots, i.e.: when calling
#ax.plot(X,Y, label="name of function").

6 Algorithms
Algorithms are set a of instructions to solve specific problems. The most
common problems we look at in computer science involve sorting and
searching for elements in data.

6.1 Measuring Performance
6.1.1 Big O Notation
To measure the performance of an algorithm, we use big O notation.
Let g be the relationship time vs input size for an algorithm.

• If g does not grow faster than c*f:
𝒈 = 𝓞(𝒇) # upper limit / worst case
• If g grows about the same as c*f:
𝒈 = 𝚯(𝒇) #g~c*f, where c is a constant
• If g does not grow slower than c*f:
𝒈 = 	𝛀(𝒇) # best case
Mathematical definitions:

𝒪(𝑔) = {	𝑓 ∶ 	ℕ	 ⟶ 	ℝ	|	∃𝑐 > 0, ∃𝑛! 	 ∈ 	ℕ ∶ 	∀𝑛	 ≥ 	𝑛! ∶ 0	 ≤ 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)}

Θ(𝑔) = {	𝑓 ∶ 	ℕ	 ⟶ 	ℝ	|	∃𝑐 > 0, ∃𝑛! 	 ∈ 	ℕ ∶ 	∀𝑛	 ≥ 	𝑛! ∶ 0	 ≤
1
𝑐 ∙ 𝑔

(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)}
Ω(𝑔) = {	𝑓 ∶ 	ℕ	 ⟶ 	ℝ	|	∃𝑐 > 0, ∃𝑛! 	 ∈ 	ℕ ∶ 	∀𝑛	 ≥ 	𝑛! ∶ 0	 ≤ 𝑐 ∙ 𝑔(𝑛) ≤ 𝑓(𝑛)}

6.1.2 Asymptotic Growth of Functions
• Functions in increasing asymptotic growth:
1. log	(𝑛)
2. √𝑛
3. 𝑛
4. 𝑛 ∙ log	(𝑛)
5. 𝑛!
6. 2"
7. 𝑛!
8. 𝑛"

6.1.3 Code Runtime Analysis
To be able to analyze the time complexity of code, we must make certain
assumptions:
• Comparisons have a ‘time cost’ of 1:
if x==1 #has a cost of 1
if x>1 #has a cost of 1
• Mathematical operations have a cost of 1:
6 + 4 #has a cost of 1
• Assignment has a cost of 1:
x = 69 #has a cost of 1
• In general, operations on fundamental types have a cost of 1.

• Example of runtime analysis (selection sort):
(almost always f() in questions O(1), not guaranteed!)
def sort(a):
 n = len(a)
 for i in range(n):
 mini = i
 for j in range(i+1,n):
 if a[j] < a[min]:
 mini = j
 a[mini], a[i] = a[i], a[mini]

𝑡𝑖𝑚𝑒(𝑛) = 1 +8(1 + (8 2) + 1
"#$

%&'($

)
"#$

'&)

=
𝑛(𝑛 − 1)

2

= Θ(𝑛!)

Examples:

6.1.4 Useful Formulas
∑ 1"#$
'&) = 𝑛 ∑ 𝑖"

'&) = "∙("($)
!

∑ 𝑖!"
'&) = "∙("($)(!"($)

-
 ∑ 2'./0(")

'&) = 𝑛<21234"("($)5 − 1=
∑ 𝑖6"#$
'&) = 𝜃(𝑛6($) log(𝑛7) = 𝑏 ∙ log(𝑛)

6.1.5 Telescoping & Master Theorem
Master Theorem Telescoping

6.2 Sorting Algorithms

6.2.1 Invariants
When it comes to algorithms that involve loops, there is usually a
condition called the invariant. This invariant fulfils:
1. Initialization: the condition is met before the loop.
2. Continuation: the condition holds at each iteration of the loop.
3. Termination: the condition holds at the end of the loop.

An algorithm involving a loop and having an invariant is said to be correct
if the invariant fulfils the above.

6.2.2 Divide and Conquer
Divide and conquer is type of algorithm involving the process of recursively
splitting the problem into two or more equally sized subproblems of the
same type.

Examples: mergesort, quicksort.

6.2.3 Selection Sort ✅
Selection sort iterates through the list, repeatedly finds the smallest
element, and swaps it to its final position (current position in iter.). code:

Case Description Runtime
Worst-case A is reverse sorted. Θ(𝑛!)

Average-case - Θ(𝑛!)
Best-case A is already sorted Θ(𝑛)

Comparisons: Worst, Best & Average: 𝜃(𝑛#)
Swaps: Worst & Average: 𝜃(𝑛), Best: 𝜃(1)

6.2.4 Insertion Sort
Sort an array of values by taking the next value in the array and putting it in

the right position. code:

Case Description Runtime
Worst-case A is reverse sorted. Θ(𝑛!)
Average-case - Θ(𝑛!)
Best-case A is already sorted Θ(𝑛)

Comparisons: Worst & Average: 𝜃(𝑛#), Best: 𝜃(𝑛)
Swaps: Worst & Average: 𝜃(𝑛#), Best: 𝜃(1)

6.2.5 Merge Sort
Sort an array by splitting it into smaller subarrays (divide and conquer) and
rearranging them to form a sorted array. code:

Uses additional Θ(𝑛) storage for subarrays.

Case Description Runtime

n = size of input a=
number of subproblems in
the recursion
n/b = size of each
subproblem. All
subproblems are assumed
to have the same size. f(n)
= 𝜃(𝑛! log" 𝑛) cost of the
work done outside the
recursive call,
which includes the cost of
dividing the problem and
cost of merging the
solutions (e.g. a linear
operation d = 1) O^d

All cases - Θ(𝑛 ∙ log	(𝑛))

6.2.6 Quick Sort
A divide and conquer algorithm which recursively splits the array into two
parts: one which only contains elements bigger than the pivot and the
other containing only elements smaller. code:

Case Description Runtime
Worst-case Pivot is the

min/max value.
Θ(𝑛!)

Average-case Pivot is chosen
randomly.

Θ(𝑛 ∙ log	(𝑛))

Best-case Pivot is always the
median of the
array.

Θ(𝑛 ∙ log	(𝑛))

Pivot is often the median of three elements:
Pivot = Median3(A[l],A[(l+r)//2],A[r])

6.2.7 Heapsort
A sorting algorithm which converts an array into a heap (see 7.2) and
creates a sorted array from the heap. Pseudocode:

after we got max heap, swap smallest with biggest, draw
tree so you can sift down the element so the largest is on
top again.

Case Description Runtime
All - Θ(𝑛 ∙ log	(𝑛))

6.3 Searching Algorithms
6.3.1 Linear Search
Search for the index of a specific element in an unsorted array. Code:

Case Description Runtime
Worst-case b is at the end of

the array.
Θ(𝑛)

Average-case - Θ(𝑛)

Best-case b is at the
beginning.

Θ(1)

6.3.2 Binary Search
Search for the index of a specific element in a sorted array. Code:

Case Description Runtime
Worst-case b is the max/min

value.
Θ(log	(𝑛))

Average-case - Θ(log(𝑛))
Best-case b is exactly the

median value.
Θ(1)

7 Data Structures
Data structures are ways of organizing and storing data for efficient access
and manipulation.

A note on BSTs: a binary tree is a tree with at most 2 children. Binary trees
can be:
• Full: every node has 0 or 2 children.
• Complete: every level except for the lowest is filled. Lowest level is filled

from left to right.
• Perfect: every level is completely filled.

7.1 FIFO/LIFO (Stack)
Some data structures can be categorized as FIFO (first in, first out) or LIFO
(last in, first out).

FIFO data structures offer fast access to the first element that was inserted.

LIFO data structures offer fast access to the last element that was inserted.

FIFO example: queue

7.2
LIFO example: stack

7.3 Binary Search Trees (BSTs)
A binary search tree is a binary tree which fulfils the following:
1. Every node v stores a key

2. Keys in the left subtree are smaller than v.key
3. Keys in the right subtree are larger than v.key

A binary search tree

7.3.1 Height of a BST
The height of a BST is defined as the maximum depth one must recurse to
reach a node with no children. Code:

7.3.2 Search for a Node
Return the node with a specific key.
following code is based upon the class implementation

Case Description Runtime
Worst-case The tree is

degenerated
Θ(𝑛)

Average-case The tree is
balanced

Θ(log(𝑛))

Best-case Key is the root of
the tree

Θ(1)

7.3.3 Insert a Node
Add a node with a specific key to the tree.

Case Description Runtime
Worst-case The tree is

degenerated
Θ(𝑛)

Average-case The tree is
balanced

Θ(log(𝑛))

Best-case The tree is empty Θ(1)

7.3.4 Remove a Node
1. If a node has no children, simply delete the node by setting the variable

to None
2. If a node has one child, replace the node with its child.
3. If a node has two children, replace the node with its symmetric

successor – the next biggest element. Code:

Case Description Runtime
All Runtime is

dominated by
finding the
successor.

𝒪(ℎ)
h is the height of
the tree

7.3.5 Traversal ⏭
There are different ways to traverse over a BST:

1. Inorder traversal (will always print elements in ascending order):

2. Preorder traversal:

3. Postorder traversal:

Case Description Runtime
All Each edge is

traversed twice and
the number of
edges is Θ(n)

Θ(n)

7.3.6 Traversal Rules
• Given an inorder traversal: there is no possible representation of the tree

if the sequence is not in ascending order. Representation is not unique.
Example: 1 2 4 3 has no representation as a BST.
• Given a preorder traversal: there is no possible representation of the tree

if there is not a way to (recursively for the new subsequences as well)
place the first number in the sequence so that the numbers to the left are
smaller and that the numbers to the right are greater. Representation is
unique.

Example: 4 3 1 2 8 6 5 7
3 1 2 4 8 6 5 7
1 2 3, 6 5 7 8
1 2, 5 6 7 -> valid
• Given a postorder traversal: there is no possible representation of the tree

if there is not a way to (recursively for the new subsequences as well)
place the last number in the sequence so that the numbers to the left are
smaller and the numbers to the right are greater. Representation is
unique.

Example: 1 3 2 5 6 8 7 4
1 3 2 4 5 6 8 7
1 2 3, 5 6 7 8
5 6 -> valid

7.3.7 Tree Traversal - Trick

7.4 (Max) Heaps

A heap is a binary tree which fulfils the following:
1. It is complete (see 7).
2. If there are any gaps in the tree, they’re on the last level to the right

(definition of complete, see 7).
3. Key of parent is always bigger than the one of its children.

It is a good data structure to use when one wants efficient
access to the max/min at all times.

A max heap / Heap as an Array

7.4.1 Implementation of a Heap as Array
Given an element with index i, with first index = 0:
• Children of i: {2i+1, 2i+2}
• Parent of i: i-1//2
With first index = 1:
• Children of i: {2i, 2i+1}
• Parent of i: i//2
7.4.2 Height of a Heap
• Given n elements:

𝐻(𝑛) = ⌈log!(𝑛 + 1)⌉

7.4.3 Insert an Element
Insert an element by placing it in the first free place on the lowest level of
the heap. Iteratively swap the element with its parent until the heap
conditions are fulfilled (Chapter 7.2).
The Code snippets of 7.4 will work by themselves (independent of 6.2.7)

Case Description Runtime
All In the worst case, inserting an element

will involve log(𝑛) swaps.
𝒪(log(𝑛))

7.4.4 Remove the Maximum (Max-Heap)
Replace the maximum with the rightmost element in the lowest level and
iteratively swap the replacement element in direction of the greater child
(smaller child for min-heaps)

Case Description Runtime
All In the worst case, removing an element

will involve log(𝑛) swaps.
𝒪(log(𝑛))

7.4.5 Heapify an Array
Property: the leaves of a heap fulfill the heap condition trivially -> only
need to “heapify” the first n/2 elements.

def SiftDown(a, i, m): REQUIRED! see 7.4.4

Case Description Runtime
All - Θ(n)

7.4.6 Sorting a heap
If "a" is a heap, one can efficiently sort the array:

Case Description Runtime
All SiftDown traverses

at most log	(𝑛)
nodes. Sorting the
array requires n
calls to SiftDown.

Θ(𝑛 ∙ log	(𝑛))

Testing

7.5 Vectors/Lists

• Ordered data.
• Fast Access via index.
• Slow for updates.

Operation Time Complexity
Index Access 𝒪(1)
Search (in) 𝒪(n)
Sorted Search 𝒪(log(𝑛))
Insertion 𝒪(𝑛)
Removal 𝒪(n)

7.6 Linked Lists

• Ordered data.
• Fast updates at the front of the linked list.

Operation Time Complexity
Access 𝒪(𝑛)

Search (in) 𝒪(𝑛)
Insertion (head) 𝒪(1)
Removal (head) 𝒪(1)
Insertion (after value) 𝒪(𝑛)
Insertion (after value) 𝒪(𝑛)

7.7 Hash Tables
Hash tables are a data structure which allow fast access to elements.
• Unsorted, unordered data.
• Fast search.

The idea behind the implementation is that one uses a “hashing function”
to obtain an index/address from the element, and to store the element
there.

Operation Best Case
Complexity

Worst Case
Complexity

Search 𝒪(1) 𝒪(𝑛)
Insertion 𝒪(1) 𝒪(𝑛)
Removal 𝒪(1) 𝒪(𝑛)

7.7.1 Collision Handling
With probing: next available index is chosen.
• Problem: entry at calculated index may not contain element.
With chaining: a linked list at every entry.

7.7.2 Properties of a Hash Function
• Consistent (always same output for given input).
• As collision-free as possible.

7.7.3 Hash Table manual
There most likely will be one or two hash functions given, if after the first
one we have a collision we go to the next one and add from where we got
the collisions the amount of steps we’ve newly calculated

7.8 Quadtrees
A quadtree is a type of tree with 4 children. In this course, the application
of a quadtree is mainly graphical.

A QuadTree with max_cap =2

Example of a quadtree implementation:

7.8.1 Search for Number of Points within Rectangle

Time complexity: 𝒪(log(𝑛))

8 Programming Concepts
8.1 Classes and Objects (OOP)
Classes:
• Bundling of data that belongs together contentwise.
• Definition of a new type.

Data:
• Stored in variables of the class (attributes).
• Default values can be declared in the class (see 1.5.2).
Object:
• Instance of a class

8.1.1 Example Implementation

8.1.2 Magical Methods
Magical methods allow you to overload operators in python. Below is a
table of magical methods you can define.
Comparisons:

Operation Meaning Magical Method
< Less than __lt__

<= Less than or equal __le__
> Greater than __gt__
>= Greater than or

equal
__ge__

== Equal to __eq__
!= Not equal to __ne__

Relational Operations:

Operation Meaning Magical Method
+, += Addition __add__,

__iadd__
- Subtraction __sub__
* Multiplication __mul__
/ Division __truediv__

// Integer division __floordiv__
% Modulo __modulo__

** Exponentiation __pow__

Others:

Operation Meaning Magical Method
print() overload print() __str__
- Negation __neg__
Classname() Constructor __init__

8.1.3 Inheritance

Through inheritance a class can “inherit” all the attributes and the methods
of the class it is inheriting from.
Example:

8.2 Compiled vs Interpreted
Compiled (C++):
• Program code is translated to assembly.
• Assembly is executed.
• Single translation, with optimizations.
• Usually, higher performance
Interpreted (Python):
• Program code executed together with translation.
• Translation is repeated each time.
• Quick and easy to make minor changes.

8.3 Static vs Dynamically Typed
C++ is statically typed:
• Each element has a type defined by the programmer.
• Types used fitting together correctly is checked at compilation, yielding

compile time errors (happen during the program itself) if wrong.
Python is dynamically typed:
• Elements have no type in advance.
• At runtime the type is chosen.
• Type changeable at runtime.
• Depending on the type when executing, there may be runtime errrors

(happen during the program).
• Errors are more difficult to debug, do not happen all the time.

8.4 Generic Programming
The goal of generic programming is to make code as widely usable as
possible (no need for new functions for different types).

Can be done with templates in C++.

No need to do anything in Python thanks to dynamic typing.

8.5 Functional Programming
The central idea is to pass functions as parameters to functions. Example
where we pass a function to “map”:

8.5.1 Lambda Functions
Lambda functions are small functions without a specific name, useful to
pass into a function as parameter.

lambda arguments : expression
• Lambda with one argument:

• Lambda with multiple arguments:

8.5.2 Examples of Functions that Accept Functions
• map(func, it) – applies a function on each element of a container.

• filter(func, it) – removes any elements that don’t fulfil a

condition.

• reduce(func,it) – recursively reduce a container to a single value

by applying a function to two elements.

9 Dynamic Programming (DP)
DP is a problem-solving strategy:
• It is generally a “bottom-up” strategy – we iteratively solve smaller

problems to solve progressively bigger problems.
• It is faster than recursion because we avoid recalculating known solutions.
• We store answers to smaller problems in a table.
In dynamic programming, a "top-down" approach usually refers
to memoization
On the other hand, a "bottom-up" approach usually refers to
tabulation

9.1 Where can we use DP?
Problems need to have:
• Optimal substructure – the answer of the problem depends on the

answer of some smaller subproblems.

• Overlapping subproblems – in calculating the answer of a problem, we
often recalculate the answer to the same subproblems.

Example: Fibonacci
fib(n) = fib(n-1) + fib(n-2) #Optimal substructure

Recursion tree for fib(6)

9.2 DP Implementation of Fibonacci

9.3 Solving Strategy
1. Find the first solution, using brute force or the recursive

implementation. Draw a tree or visualize the process.
2. Analyze the solution – look for repeating subproblems. Then look for

an optimal substructure to your solution – how does the answer of the
problem depend on the answer of the subproblems? (Find relationship
of subp.)

3. Think about how to store the answers of the subproblems. Should it be a
list? A table?

4. Flip the recursive implementation around to implement a bottom-up,
iterative solution.

EXAMPLES IN APPENDIX

10 Machine Learning (ML)
(Supervised) Machine learning is the use of “models” to create functions
which map inputs to desired outputs. Generally, there are two areas:
1. Regression: given some input values, what is the output value? Example:

given a house has 5 bedrooms, 1000 square meters, 3 bathrooms and is
50m from the nearest train station, what is its price?

2. Classification: given some input values, to what
group does the input belong to? Example: given
the temperature is 5 degrees and it is cloudy, will
it rain?

An existing package for many ML algorithms is
sklearn.

10.1 General Procedure
• Select a model, using a technique such as cross validation.
• Read the data, using pandas.
• Split data into test set and train set.
(X (input features) and y (target) need to be provided below)
Split the dataset into training and testing sets

#0.3 of the data will be used in validation
• Train the model.

• Validate the model to rate how well it performed.

10.2 Validation Metrics
• Accuracy score #	?3@@A?B2C	?26DD'E'AF

B3B62	"GH7A@
. 1 is the best score, 0 is the worst.

from sklearn.metrics import accuracy_score
• R2 score. 1 is the best score, the more negative the worse.
from sklearn.metrics import r2_score
• Mean squared error. 0 is the best score. The bigger the worse.
from sklearn.metrics import mean_squared_loss

For classification tasks (discrete categories), use accuracy_score. For
regression tasks (continuous variables), use metrics like
mean_squared_error or R-squared for evaluation.

10.3 Classification
10.3.1 Decision Tree Classifier
Given: some data X, and labels y. Constructs a decision tree to divide up the
data based on its features.
Before Split the dataset into training and testing sets

Example:

10.4 Regression
10.4.1 Linear Regression
Given: some data X, and labels y. Constructs a linear model 𝑤I𝑥 + 𝑏) so
that the loss function (residual sum of squares) is minimized for the data
provided.

10.4.2 Logistic Regression

Logistic Regression is a statistical method used for modeling the
probabilities of binary outcomes

10.5 Neural Networks
A neural network is an ML algorithm which is incredibly powerful because it
can be used for both regression (Predicts continuous values.) and

classification (Predicts discrete values (labels or categories)). It is comprised
of layers of neurons, where the output of each neuron is made non-linear
through an activation function.

Example classification:

Example regression:

10.6 ML Theory Overview
1. Underfitting and Overfitting:
 - Underfitting: Model too simple; performs poorly on training/test data.
 - Overfitting: Model too complex; captures noise, good on training but bad on test data.
2. K-fold Cross Validation:
 - Splits training data into 'K' parts. Model trains on K-1 parts and tests on 1. Repeated K
times. Averages used for performance.
3. Grid Search:
 - Tunes hyperparameters by testing all combinations within a range. Uses cross-
validation to identify the best.
4. Convolutional Neural Networks (CNNs):
 - For image recognition tasks:
 - Filters: Extract features by moving over the image.
 - Pooling: Downsamples to reduce dimensions.
 - Fully Connected Layers: Final layers for prediction output.
5. Non-Numerical Data Encoding:
 - Ordinal Encodin: Maps categories to ordered integers. E.g., Low -> 1, Medium -> 2.
 - Mean Encoding: Assigns each category a value based on the average target variable.
Beware of overfitting.
 - One-hot Encoding: Creates binary columns for each category value, marking presence
(1) or absence (0).
6. Clustering:
 - Categorizes data into groups based on similarity, without prior labels.
 - K-means: Divides data into 'K' groups by minimizing intra-cluster distances.
 - Hierarchical: Produces a tree of clusters. Can merge (agglomerative) or split
(divisive) groups.
7. Loss Function:
 - Assesses model prediction accuracy. Goal is minimization. Examples: Mean Squared
Error (regression), Cross-Entropy (classification).
8. Dimension Reduction: - Techniques to lower feature count, preserving essential data
characteristics.

10.6.1 Common sorting algorithms
• Bubble sort O(n2)
“bubbles” items on top by going through the array again
and again and taking the biggest element to the top position
it belongs
• Insertion sort O(n2) / if sorted O(n) Chap. 6.2.4
Will move right to left taking the next element as far
left until it is the next biggest too the one on the left
• Selection sort O(n2) / always O(n2) Chap. 6.2.3
Finds smallest element in the array and exchanges it with
the element at the beginning (current start index)
• Merge Sort (Divide and conquer) / O(n*log(n)) Chap. 6.2.5

Divides (goes for midpoints splice) , sorts, reassembles
(merge function)
Requires extra space as it doesn’t sort in place => if
issue: Quicksort

• Quicksort (divide and conquer with pivot) / O(n*log(n)) Appendix
Quick Sort, another Divide and Conquer algorithm, uniquely
partitions the array around a chosen 'pivot' element,
placing smaller elements before and larger ones after. (
Space complexity: O(log(n)))

• Heapsort O(n*log(n)) Chap. 6.2.7 and 7.4 (min, max)
Heap Sort manipulates data using a binary heap data
structure (construction phase), continually removing the
largest element from the heap (extraction phase) and
reconstructing it, resulting in a sorted array. Space
Complexity O(n).
n*log(n) also called quasilinear, of not too big dataset
SORTING ALGORITHMS TIME COMPLEXITY OVERVIEW

11 Appendix
11.1.1 Code Snippet Overview
(Not directly in Appendix below) : mergeSort 6.2.5
1D DP: chap 9.2 Fibonacci
Sorting Algos Code locations are referenced in 10.6.1
For main Topics:
[6.3 SearchAlgo],[7.3 Binary Search Tree],[7.8 Quadtrees],[8.1.1 OOP],[8.1.3
Inheritance]
CODE (codes in black boxes not under correct chap. (space reasons))
PANDAS EXAMPLE

Bubble Sort

Quick Sort

Dict comprehension

3D Memoization Example

Python Linked lists

ML

ML General Blueprint

Grind search:

DP

Binomial Coefficient

Binary Insertion Sort Farthest Point

11.1.2 String manipulation terms
A subsequence is a sequence derived from another by deleting some elements but
preserving order, not necessarily containing adjacent elements.
A substring is a subsequence with adjacent elements.
A palindrome is a sequence or subsequence, including substrings, that reads the same
forwards and backwards.

11.1.3 Additional Information
An AVL tree is a type of self-balancing binary search tree in computer science. It maintains
balance by ensuring the heights of the left and right subtrees of any node differ by at
most one. This leads to efficient insertions, deletions, and look-ups, all with a time
complexity of O(log n), making AVL trees useful in databases and file systems.
Greedy Algorithm: A greedy algorithm is any algorithm that follows the problem-solving
heuristic of making the locally optimal choice at each stage. // Theory BAUG: Tree traversal
O(n) // Inserting into AVL tree O(log(n))

11.1.4 APPENDIX 2. Note to the reader
This is a revised version of the original summary, kindly provided by Julian
Lotzer and Daniel Steinhauser. The new code snippets were created using
VSC in the high-contrast light theme and (most of them) tested. In case
some code snippets shouldn’t work, please contact me:
lehmannni@ethz.ch
(No responsibility is taken by the author for the correctness of the additional
code snippets)

Tip for future versions: Add more ML theory. In the exam, there were
questions regarding filters (chapter about CNN’s) and principal component
analysis. See exam collection: Info II exam 2023 D-MAVT.

It’s recommended to print this cheat sheet using a printer on high-quality
settings, like an HP OfficeJet Pro, due to the small font size.

mailto:lehmannni@ethz.ch

