

Optimal Fixed Charges for Future Electricity Tariffs

Quentin Lété Joint work with Gabriela Hug Workshop on Future Electricity Tariffs Florence School of Regulation 21st June 2023

1. Motivation and Context

2. Model

3. Case study data

4. Results: optimal fixed charges for the transition

Distribution grid at the energy transition era

Before:

Now:

Bottom line in this context: Necessity to make tariffs more cost reflective.

ETHZÜrich Power Systems Laboratory

2/20

Make tariffs more cost reflective

In theory, 3 components in an efficient retail tariff:

1. Fully granular distribution electricity price (location & time)

2. Forward-looking peak-coincident charge (scarcity price on grid infrastructure)

3. Fixed charge (independent on consumption) to recover residual DSO costs

Challenges

Every compoment leads to significant challenges:

Granular price	Peak-coincindent charge	Fixed charge
Risk for prosumers	Variable	Fairness
Location differentiation	Hard to forecast	Risk of grid defection

In this work:

- 1. We develop a model that describes this ideal pricing.
- 2. Focus on the description of the equilibrium, not how to reach it.
- 3. Discuss the implications regarding fixed charges.

1. Motivation and Context

2. Model

3. Case study data

4. Results: optimal fixed charges for the transition

An economic long-term equilibrium problem

Consumers:

max Utility from consuming electricity s.t. Consumption limit

DSO:

- max Revenue from selling electricity Costs of electricity on wholesale market – Investment costs in infrastructure
 - s.t. Technical grid constraints

Prosumers:

max Utility – Investment costss.t. Consumption and production limits

Walrasian market operator (regulator):

Determine prices such that market clears

The DSO utility maximizing problem

Simplest model of a DSO:

$$\max \sum_{t \in T} (\pi_t^{\text{retail}} - \pi_t^{\text{wholesale}}) z_t - C^z Z$$

s.t. $Z - z_t \ge 0, \ [\beta_t^+]$
 $Z + z_t \ge 0, \ [\beta_t^-]$

The DSO optimality conditions

$$\begin{aligned} z_t \text{ free } &\perp -\pi_t^{\text{retail}} + \pi_t^{\text{wholesale}} + \beta_t^+ - \beta_t^- = 0\\ 0 &\leq Z \perp C^z - \sum_t \beta_t^+ - \sum_t \beta_t^- \geq 0\\ 0 &\leq \beta_t^+ \perp Z - z_t \geq 0\\ 0 &\leq \beta_t^- \perp Z + z_t \geq 0 \end{aligned}$$

- Granular price (π_t^{retail})
- Peak-coincident charge (β_t^+, β_t^-)

 \rightarrow In the nicest case (convexity, perfect competition), we recover the two first element of the ideal pricing.

What about fixed charges?

They come from one of the imperfection, namely non-convexity, due to fixed costs or lumpy infrastructure investment.

In the simplest form:

$$\begin{array}{l} \max \ \sum_{t \in T} (\pi_t^{\text{retail}} - \pi_t^{\text{wholesale}}) z_t - C^z Z u \\ \text{s.t.} \ Z u - z_t \geq 0, \ [\beta_t^+] \\ \ Z u + z_t \geq 0, \ [\beta_t^-] \\ u \in \{0, 1\} \end{array}$$

 \rightarrow We are now in the setting of pricing with non-convexity

IP pricing

- Possible to obtain an equilibrium by adding one commodity per indivisibility.
- Let u^* be the value of u at the social optimal.
- New "market clearing" constraint added:

 $u = u^* \ [\rho]$

 \rightarrow Problem: This leads to a trivial non revenue adequate solution.

Solution: connection variables for prosumers

Prosumer *i*'s utility maximizing problems become:

 $\max \ utility_i(x)$ s.t. $x \in C(v)$ $v \in \{0, 1\}$

where:

- C(1) = feasibility set when prosumer is connected to the network.
- C(0) = feasibility set when disconnected.

Applying IP pricing

Add a new "market clearing" constraint:

$$v_i = v_i^* [\lambda_i]$$

• Fixed charge (λ_i)

The prosumer's problem becomes:

 $\max \ utility_i(x) - \lambda_i v_i$ s.t. $x \in C(v)$

 \rightarrow This endogenizes the computation of fixed charges while accounting for grid defection.

Selecting a desirable solution

 \rightarrow Move to the dual space

 $\begin{array}{l} \max \;\; \mathsf{Fairness}\; \mathsf{measure}(\lambda) \\ \mathsf{s.t.}\; \rho + \sum_i \lambda_i = 0 \\ \mathsf{Dual}\; \mathsf{welfare} \leq \mathsf{Optimal}\; \mathsf{welfare} \\ \mathsf{Dual}\; \mathsf{constraints} \end{array}$

where Fairness measure could be: $-\sum_i (\lambda_i - \frac{\sum_i \lambda_i}{|I|})^2$

1. Motivation and Context

2. Model

3. Case study data

4. Results: optimal fixed charges for the transition

Representative synthetic distribution network in Switzerland

- Hourly load from 50 households, statistically representative of the population (based on LoadProfileGenerator, Noah Pflugradt)
- Rather high Swiss long-term elasticity (average of -1.35, Filippini (2011)) randomly distributed among households

- PV and Storage maximum capacity randomly distributed among household
- Wholesale prices taken from the results of Nexus-e

1. Motivation and Context

2. Model

3. Case study data

4. Results: optimal fixed charges for the transition

Fairness measure evolution

Fixed charge distribution

1. Motivation and Context

2. Model

3. Case study data

4. Results: optimal fixed charges for the transition

Conclusion

Summary

- We build a model that computes the long-term equilibrium under ideal tariff.
- The model endogenizes the computation of fixed charges, accounting for grid defection and fairness.

Take-home messages

- Optimal fairness measure cannot be reached.
- Fairness decreases with unfolding of the energy transition.

Extensions and future work

- Explore other fairness measure.
- Introduce network constraints and investment.

Thank you

Power Systems Laboratory Quentin Lété qulete@ethz.ch https://qlete.github.io