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Abstract—In this paper, we present a two-stage
model of zonal electricity markets with day-ahead
market clearing and real-time re-dispatch and bal-
ancing that accounts for transmission line switching
at both stages. We show how the day-ahead problem
with switching can be formulated as an adaptive
robust optimization problem with mixed integer re-
course and present a new algorithm for solving the
adversarial max-min problem that obeys the struc-
ture of an interdiction game. We apply the model on
a realistic instance of the Central Western European
system and comment on the impacts of both proactive
and reactive transmission switching on the operating
costs of the system.

Part I presents day-ahead models of a short-term
zonal electricity market with switching, and describes
our algorithmic approach for solving these models
efficiently.

Part II describes variants of the real-time model,
and presents the results of our case study on the
Central Western European market.

Index Terms—Transmission switching, Zonal elec-
tricity market, Robust optimization

I. Introduction
The European day-ahead electricity market is orga-

nized as a zonal market. In a zonal design, the nodes
of the network are aggregated into a set of zones and
the market clears with a unique price for each zone. The
market clearing model does not account explicitly for the
network constraints within a zone. Instead, it constrains
the net positions (i.e. exports - imports) of each zone or
the inter-zonal exchanges of power.

There is a long history of papers about zonal pricing,
discussing its merits and drawbacks and describing its
practical implementations. The development of this lit-
erature was triggered by the liberalization of the electric
power sector that revealed the challenges of transmission
pricing. These challenges were debated in the early
stages of US market deregulation [1], [2]. In Europe,
an early trigger for the literature on zonal pricing was
the deregulation of the Nordic system, see Bjørndal and
Jørnsten [3]. This early research focused on the challenge
of defining zones and proposed practical computational
approaches for improving the method that was in place
at the time in the Norwegian market. Transmission
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capacity allocation became a central topic in subsequent
EU market design discussions, we refer the reader to
Ehrenmann and Smeers [4]. In [4], the authors high-
light certain key challenges that are inherent to zonal
market design proposals. Since then, the debates on the
relative advantages and disadvantages of zonal pricing
have remained vigorous, and new contributions have
been inspired by the successive reforms of the European
zonal market. The interested reader is referred to [5] for
a comprehensive literature review on zonal pricing, that
would be outside the scope of this paper.

One recurrent observation that previous work on
zonal pricing highlights is that there is no unique or
obvious way of organizing a zonal aggregation. Conse-
quently, different methods have been proposed. The orig-
inal market coupling model that was used for European
day-ahead market clearing was the so-called Available-
Transfer-Capacity Market Coupling (ATCMC) model.
This is effectively a transportation network model; it
amounts to defining a set of inter-connectors between
each pair of adjacent zones and setting a limit on the
maximum electricity exchange that can take place on
these inter-connectors. In other words, the model en-
forces box constraints on the amount of power exchange
between zones.

In recent years, the European day-ahead zonal model
has been revisited in an effort to improve the effi-
ciency of the zonal design. As an alternative to the
ATC model, the so-called Flow-Based Market Coupling
(FBMC) model has been adopted. The idea of the
flow-based model is to define polyhedral constraints on
the zonal net injections of the market clearing model.
The goal in adopting FBMC, which is a more general
network model than ATCMC, is to increase operational
efficiency by increasing the set of feasible trades that
can be concluded in the day-ahead market. Flow-based
market coupling went live in the Central Wastern Europe
(CWE) area in May 2015. Recent research by Aravena
[6] raises questions about whether the introduction of
FBMC indeed increases short-term operational efficiency
relative to ATCMC. Aravena analyzes the implication
of both designs on both the day-ahead commitment
of thermal resources, as well as real-time operations,
when the physical constraints of the network need to
be satisfied.

The assessment of short-term operational efficiency
hinges on the degree of operational flexibility that is
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afforded to the system operator. A recurrent argument
in favor of the zonal design is that its efficiency can
be significantly improved by considering the possibility
to actively configure the network using active network
management measures, such as transmission switching1.
Our interest in this paper is to provide a quantitative
framework for substantiating this argument.

Our two-part paper presents a modeling and algo-
rithmic framework for analyzing zonal markets with
switching, and also develops a policy analysis using
a simulation model of the Central Western European
market. Although there is a strong link between the
two parts, we have organized it so that each part is
self-contained. Part I presents the model that we have
employed for analyzing transmission switching in a zonal
market, as well as the algorithmic procedures that we
have developed for tackling the problem. Part II focuses
on numerical results and policy insights.

Part I is organized as follows: Section II reviews
the literature concerning the modeling of short-term
electricity markets and the algorithmic approaches for
solving the class of problems that emerge from zonal
modeling. Section III presents the two-stage models of
zonal electricity markets which are considered in the
present analysis. In section IV, we present the algo-
rithm that we have developed for solving the day-
ahead market-clearing model with proactive switching.
First, we show how this problem can be modeled as
an adaptive robust optimization problem with mixed
integer recourse (AROMIP). Then, we develop a new
approach for solving the adversarial max-min subprob-
lem corresponding to robustness to N-1 contingencies,
and we show how this algorithm can be inserted into a
column-and-constraint generation procedure for solving
the AROMIP. Finally, section V discusses the conclu-
sions of the analysis.

II. Literature review
A. Transmission switching

The co-optimization of topology along with genera-
tion dispatch in the Optimal Power Flow (OPF) problem
as a means of reducing operating cost has received con-
siderable attention by the research community. O’Neill
et al. formulated the problem of employing transmission
switching in order to improve operational efficiency as a
mathematical optimization problem in [7], and dubbed
the term optimal transmission switching. Fisher et al.
[8] demonstrate how this problem can be formulated as
an MILP if we consider the DC approximation of power
flow. Hedman et al. [9] focus on quantifying these gains
when the N-1 security criterion is accounted for. This
early literature on transmission switching considered a
dispatch model. Therefore, they only focused on the
benefits of switching as an option to be considered in

1It is worth noting that transmission switching is employed
extensively in Europe, much more so than in US system operations.

dispatch, where commitment decisions are assumed to
be fixed. These studies are not directly relevant in the
context of our paper which is focused on the interaction
of switching with unit commitment.

It is only in subsequent work [10] that the inter-
actions of switching with day-ahead unit commitment
were considered in the literature. However, these models
are also not directly applicable to our context, since
they represent a nodal transmission model. Instead, the
novelty of our work is in considering a zonal transmission
model, which is the predominant network model that
is used in European day-ahead market clearing. The
introduction of the zonal network representation, and
its interaction with unit commitment, introduces a host
of modeling and computational challenges, that are the
focus of the present paper.

B. Modeling of the European electricity market
In addition to the different representation of network

constraints in day-ahead, the European design differs
with respect to several other aspects from the US de-
sign. Accounting for these differences requires a different
modeling set-up. This paper builds off of recent research
on developing a precise model of the day-ahead and
real-time operation of the European electricity market.
Aravena and Papavasiliou [11] develop a hierarchy of
European electricity market models that are targeted
at accounting for unit commitment and the separation
between energy and reserves. Based on this work, Han
and Papavasiliou [12] develop a model of the European
market that accounts for transmission switching. Al-
though their model is highly simplified (the representa-
tion of day-ahead flow scheduling is inaccurate, security
criteria are not accounted for directly, the simultane-
ous optimization of unit commitment and switching is
treated heuristically), this first analysis demonstrates
encouraging results by demonstrating that transmission
switching can lead to significant cost savings in a zonal
market when re-dispatch and balancing are perfectly
coordinated in real time.

C. Robust optimization
Accounting for the N-1 security criterion introduces

significant complexity to the problem at hand. We review
here some previous work that relates to our problem
either from a modeling or from an algorithmic point
of view. The goal is not to be exhaustive. Sun and
Lorca [13] provide an in-depth review of modeling and
algorithmic approaches for robust optimization in power
systems. A common attribute of the papers cited below
is that they tackle a certain class of robust optimization
problems. We distinguish models and algorithms for
adaptive and reactive robust optimization. In both cases,
the recourse problem can be continuous or include inte-
ger restrictions. This structure is represented in Figure
1.
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Figure 1: Decomposition of robust optimization into the different subproblems and the papers associated to each
case. We also use a color code to distinguish the modeling and algorithmic contributions.

Street et al. [14] propose a formulation of the OPF
problem with N-k robustness as an Adaptive Robust
Optimization (ARO) problem and present a cutting
plane algorithm for solving it. The algorithm is inspired
by dual methods for ARO that rely on Benders decom-
position. Similarly, Aravena [6] proposes a cutting plane
approach for solving the day-ahead market clearing
problem of a zonal market clearing model, which respects
the N-1 security criterion and the European rules for
setting day-ahead prices. A new layer of complexity is
added to these two models when we consider transmis-
sion switching as a recourse action. In this setting, the
aforementioned approaches that rely on Benders decom-
position cannot be used due to the presence of integer
variables in the inner problem. An algorithm for attack-
ing this class of problems has been proposed recently
by Zhao and Zeng [15]. Their idea is to consider only a
subset of the possible integer values in the inner problem,
which results in an LP formulation that can be dualized.
Promising candidate integer values are identified and
added in a sequential manner. This approach has been
applied to the optimal power flow problem with line
interdiction [16]. In a similar spirit, Schumacher et al.
[17] also generate switching variables as needed, in order
to solve the N-2 security-constrained unit commitment
problem with transmission switching.

In parallel to this work, new approaches have been
developed in the literature on interdiction games for
solving robust optimization problems with binary uncer-
tainty and mixed integer recourse. In a survey paper on
the subject, Wood presents a cutting plane algorithm
for solving interdiction games with continuous linear
recourse [18]. This approach has been employed in by
Caprara et al. [19] for solving the bi-level knapsack with
interdiction constraints, which is a particular instance
of an interdiction game with binary recourse. This algo-
rithm has been extended in by Fischetti et al. [20] to a

particular class of interdiction games with mixed integer
recourse, i.e. those with the property of monotonicity.
Most network interdiction games, however, do not satisfy
the property of monotonicity. The line and generator
interdiction game with transmission switching, which is
the problem that we are interested in, is one of them.
To the best of our knowledge, no efficient algorithm
based on this approach has been proposed for solving
the problem.

Our paper combines the modeling and computational
literature cited above by formulating the problem of day-
ahead N-1 market clearing as an ARO with mixed integer
recourse. We use the column-and-constraint generation
algorithm of Zeng and Zhao for solving the outer loop
and present a new approach based on the cutting plane
formulation used in interdiction games for solving the
max-min adversarial subproblem.

D. Contributions
Our present work provides the following contribu-

tions to the literature:
1) We present a model for the organization of a zonal

market that accounts for transmission switching at
both the day-ahead and the real-time stages.

2) We present a new approach for solving the adver-
sarial subproblem (i.e. the max-min stage) of an
adaptive robust optimization problem, which is a
min-max-min problem in its entirety, when it has
the structure of an interdiction game. The adversar-
ial subproblem is a mixed integer recourse problem
with binary uncertainty. We integrate our approach
for the resolution of the max-min adversarial sub-
problem into a known column-and-constraint gen-
eration algorithm for resolving AROMIP. In this
way, we obtain a tractable procedure for solving the
day-ahead market clearing problem with proactive
switching.
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III. Models of transmission switching in zonal
markets

In a zonal market, the nodes of the network are
aggregated into a set of zones. Network constraints inside
a zone are ignored, and there is a unique price for each
zone. Market clearing takes place in two stages. The
zonal market is cleared in the day-ahead stage and re-
sults in the commitment of slow units. Then, as network
constraints have not been represented exactly, and as
the state of the grid evolves between the day ahead and
real time, the system operator conducts re-dispatch (also
referred to as congestion management) and balancing
close to real time, while respecting the commitment of
units determined in the day-ahead stage. This process
ensures the feasibility of the dispatch with respect to
the actual state of the grid at the time of delivery, as
well as the balancing of supply and demand.

In this work, we follow this two-settlement organi-
zation of the market by presenting a two-stage model
with a zonal market clearing in the day ahead and a
re-dispatch and balancing process in real time. Trans-
mission switching can be used in both the first stage
(in which case we refer to proactive switching) and
the second stage (in which case we refer to reactive
switching). The two-stage structure of our model with
the different inputs and outputs of each module is rep-
resented graphically in Fig. 2.

A. Day-ahead market clearing with proactive switch-
ing

We define the net position of a node (resp. zone)
as the difference between the power produced and con-
sumed within that node (resp. zone). Whereas a nodal
market clearing model defines constraints on the net
position of each node, a zonal market clearing model
constrains the zonal net positions. The set of feasible
zonal net positions depends on the chosen topology of
the grid. We index the chosen topology by t in the
sequel.

Extending the formulation in [6], we can write a zonal
market clearing model with transmission switching in its
simplest form as follows:

min
v∈[0,1],p,t

∑
g∈G

PgQgvg (1)

s.t.
∑

g∈G(z)

Qgvg − pz =
∑

n∈N(z)

Qn ∀z ∈ Z (2)

p ∈ Pt (3)

where Qg and Pg correspond to the quantity and price
bid by generator g ∈ G, G(n) is the set of generators
at node n ∈ N , Qn is the forecast demand at node n,
pz corresponds to the net positions of zone z ∈ Z, vg
is the acceptance/rejection decision for the bid placed
by generator g, and G(z), N(z) correspond to the set
of generators and nodes within a zone z. The set Pt

corresponds to the feasible set of net positions for a
particular topology t. In practice, the day-ahead model
(1)-(3) results also in the commitment of slow units that
are allowed to submit block bids. We do not represent
explicitly the binary commitment variables in this model
for simplicity of the exposition.

Note that, in formulation (1)-(3), the control space
is limited to a |Z|-dimensional space, which is much
smaller than an |N |-dimensional space (the control space
in nodal pricing). For instance, in the CWE instance that
we use in our case study, there are 632 buses but only 5
zones.

We adopt the following assumption in the se-
quel:
Assumption 1. We assume that Pt can be described
as a set of linear inequalities which implicate a binary
vector t ∈ {0, 1}|L|, where L is the set of lines in the
network.

This set Pt, that imposes constraints on the net
positions in the day-ahead market, has a central role in
the zonal market model. It is the basic building block
that must be defined in order to characterize the market
and that should be modified in order to account for
new features, such as transmission switching or the N-1
security criterion. In practice, the set Pt is defined by
PTDF-like constraints as follows [6]:

PTSOt =
{
p ∈ R|Z|

∣∣∣∣ ∑
z∈Z

pz = 0,

∑
z∈Z

PTDFcb,z · pz ≤ RAMcb ∀cb ∈ CB
} (4)

Here, cb corresponds to a critical branch, i.e. a branch
that is significantly impacted by cross-zonal exchanges.
The parameter PTDFcb,z is the zone-to-line PTDF from
zone z to line cb, which indicates the change in power
flow on line cb resulting from a unit increase in the
net position of zone z. The parameter RAMcb is the
Remaining Available Margin, a parameter that evaluates
the capacity of line cb that can be used for cross-
border exchanges. These parameters, and the FBMC
method in general, are described in further detail in the
literature [21], as well as in documentation published
by the European transmission system operators (TSOs)
[22], [23].

The following challenges emerge when modeling flow-
based market coupling for the purpose of policy analy-
sis:
1) The flow-based polytope presented above is charac-

terized by parameters (e.g. CB, PTDFcb,z, RAM ,
...), the definition of which differs among TSOs. This
makes it difficult to represent exactly the current
TSO practice, particularly since the market clearing
outcome is sensitive to these parameters [24].

2) The method used in practice faces a circularity
problem: the parameters that are used for defining
the flow-based domain are computed from a forecast
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Figure 2: Block diagram of the two-settlement system used in this work.

of the outcome of the market, which depends itself
on the the value of these parameters.
Instead of building a model that attempts to replicate

the current practice, Aravena [6] proposes a definition of
the flow-based domain that does not depend on arbitrary
parameters. We extend this definition in order to account
for the possibility to use transmission switching while
defining the acceptable set of net positions. This set can
be written as:

Pt =
{
p ∈ R|Z| :

∃(v̄, f, θ, t) ∈ [0, 1]|G| × R|L| × R|N | × {0, 1}|L| :∑
g∈G(z)

Qg v̄g − pz =
∑

n∈N(z)

Qn, ∀z ∈ Z (5a)

∑
g∈G(n)

Qg v̄g −
∑

l∈L(n,·)

fl +
∑

l∈L(·,n)

fl = Qn, (5b)

∀n ∈ N
− tlFl ≤ fl ≤ tlFl, ∀l ∈ L (5c)
fl ≤ Bl(θm(l) − θn(l)) +M(1− tl), ∀l ∈ L (5d)

fl ≥ Bl(θm(l) − θn(l))−M(1− tl), ∀l ∈ L
}

(5e)

Here, Bl is the susceptance of line l ∈ L, Fl is the thermal
limit, and m(l) and n(l) are the adjacent nodes of line l
(in the outgoing and incoming directions respectively),
L(m,n) is the set of lines directed from node m to node
n, fl is the flow through line l, θn is the voltage angle at
node n, and M is a sufficiently large constant.

The interpretation of set Pt is as follows: for every
acceptable vector of net positions p, there should exist
a generator dispatch v̄ that aggregates to this vector of
net positions (Eq. (5a)) while respecting the nodal grid
constraints (Eq. (5b)-(5e)) under transmission switching.
Switching off a line is modeled here by binary variables
tl. If tl = 0, then line l is disconnected. This implies
that the flow on the line must be zero (Eq. (5c)) and
the voltage angles at the two ends of the line must be

independent ((5d) and (5e) become trivially satisfied if
M is large enough).

In this way, the definition of Pt that we use cir-
cumvents the problem of circular definitions and discre-
tionary values for the flow-based polytope. Instead, it is
inspired by the following principles laid out in European
legislation [25], [26]:
1) All feasible trade should be allowed to be cleared

(Regulation (EC) 2009/714, Annex I, Art. 1.7 [25],
Annex I, Art. 1.1, 1.2 and 1.6; Regulation (EU)
2019/943, Art. 7.2.(c) [27]).

2) Cross-zonal capacity should be firm, which implies
that no trade that provably leads to infeasible zonal
net positions should be cleared (Regulation (EU)
2015/1222, Art. 69 [26]).

The domain Pt represents exactly the set of net positions
that respects both principles. The reader is referred to
Aravena [6] for a more detailed description of Pt, as well
as its implications on zonal market clearing.

B. Day-ahead market clearing with proactive switching
and security criterion

In practice, the clearing of the European day-ahead
market needs to respect the N-1 security criterion. We
define N-1 robustness as the ability of a system to serve
demand under any outage of a single transmission line
in the system. The zonal market clearing model, as
presented in (1) - (3), does not respect N-1 security.
The modifications that are required in order to introduce
N-1 security depend on whether the remedial actions
(i.e. the actions that the TSOs resort to in response
to a contingency) are preventive (i.e. applied before the
realization of a contingency) or curative (i.e. applied in
reaction to a contingency). In theory, RAs can be pre-
ventive or curative [23]. In practice, however, re-dispatch
is always used in a preventive way as curative re-
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dispatch is not considered to be safe enough by TSOs2.
Topology measures, in contrast, can be applied both
preventively and curatively. In what follows, we modify
model (1) - (3) in order to account for the N-1 security
criterion with purely preventive dispatch (subsection
III-B1), purely curative re-dispatch (subsection III-B2)
and a hybrid preventive-curative re-dispatch (subsection
III-B3).

Let u ∈ {0, 1}|L| be the vector of contingencies. When
one element of vector u is equal to 1, it means that the
corresponding transmission line is out of service.

1) Preventive re-dispatch: The constraint on the ac-
ceptable net positions with preventive dispatch can be
written as:

p ∈ Pprev
t , (6)

with

Pprev
t =

{
p ∈ R|Z| : ∃ v̄ ∈ [0, 1]|G| :∑
g∈G(z)

Qg v̄g − pz =
∑

n∈N(z)

Qn, ∀z ∈ Z

v̄ ∈ ∩
‖u‖1≤1

Vt(u)
}

and

Vt(u) =
{
v ∈ [0, 1]|G| :

∃(f, θ, t) ∈ R|L| × R|N | × {0, 1}|L| :∑
g∈G(n)

Qgvg −
∑

l∈L(n,·)

fl +
∑

l∈L(·,n)

fl = Qn, ∀n ∈ N

− tlFl ≤ fl ≤ tlFl, ∀l ∈ L
fl ≤ (1− ul)Bl(θm(l) − θn(l)) +M(1− tl), ∀l ∈ L

fl ≥ (1− ul)Bl(θm(l) − θn(l))−M(1− tl), ∀l ∈ L
}

The set Vt(u) corresponds to all dispatch decisions that
respect power flow constraints and line limits under
contingency u, when transmission switching is allowed.
The interpretation of the set Pprev

t is thus the following:
to every acceptable vector of net positions p, there should
exist a generator dispatch v̄ that aggregates to this
vector of net positions, and that respects grid constraints
for every contingency u.

The constraints of the market clearing model under
the N-1 security criterion with preventive dispatch can
be represented through Eqs. (1), (2) and (6).

2) Curative re-dispatch: The flow-based domain with
curative re-dispatch can be described as follows:

p ∈ ∩
‖u‖1≤1

Pcur
t (u) (7)

2This has been initially pointed out by an anonymous reviewer
and confirmed to us during personal communications with G. Maes
(ENGIE)

with

Pcur
t (u) =

{
p ∈ R|Z| :

∃(v̄, f, θ, t) ∈ [0, 1]|G| × R|L| × R|N | × {0, 1}|L| :∑
g∈G(z)

Qg v̄g − pz =
∑

n∈N(z)

Qn, ∀z ∈ Z∑
g∈G(n)

Qg v̄g −
∑

l∈L(n,·)

fl +
∑

l∈L(·,n)

fl = Qn, ∀n ∈ N

− tlFl ≤ fl ≤ tlFl, ∀l ∈ L
fl ≤ (1− ul)Bl(θm(l) − θn(l)) +M(1− tl), ∀l ∈ L

fl ≥ (1− ul)Bl(θm(l) − θn(l))−M(1− tl), ∀l ∈ L
}

The constraints of the market clearing model under the
N-1 security criterion with curative re-dispatch can be
represented through Eqs. (1), (2) and (7).

The interpretation of Eq. (7) is as follows: a vector of
net positions is acceptable if, for every contingency, there
exists a dispatch that respects all grid constraints. Note
the fundamental difference with the case of preventive
re-dispatch: in curative re-dispatch, the dispatch can
be different for every contingency, while in the case of
preventive re-dispatch, the dispatch must be the same for
every contingency. The reader is referred to Appendix
A for an illustrative example of the difference between
a day-ahead model with preventive and curative re-
dispatch.

Mathematically, the main difference between the
flow-based domain described by Eq. (6) and the domain
described by Eq. (7) is that, in Eq. (6), the intersection
over all contingencies is over a set of dimension |G|;
instead, in Eq. (7), the intersection is over a set of dimen-
sion |Z|, which is much smaller. This has computational
implications, as we discuss later.

3) Hybrid preventive-curative re-dispatch: Combin-
ing the two previous models, we can easily extend them
to the case of a re-dispatch that is neither purely preven-
tive nor purely curative: the hybrid preventive-curative
model. A hybrid model corresponds to a dispatch that
is preventive for a subset of contingencies Uprev, and
curative for all other contingencies Ucur = U\Uprev. The
flow-based domain for this hybrid model can be written
as follows:

PFB
hyb =

{
p ∈ R|Z| : ∃ v̄ ∈ [0, 1]|G| :∑
g∈G(z)

Qg v̄g − pz =
∑

n∈N(z)

Qn, ∀z ∈ Z (8a)

v̄ ∈ Vt(u) ∀u ∈ Uprev, (8b)

p ∈ Pcur
t (u) ∀u ∈ Ucur

}
(8c)

Model (8) is a direct extension of the preventive and
the curative cases. Eqs. (8a)-(8b) express the fact that
the acceptable net positions should disaggregate in a
dispatch that is feasible for all contingencies belonging to
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set Uprev, at the same time. Eq. (8c) express the fact that
for any contingency belonging to Ucur, the net positions
disaggregate in a dispatch that is feasible for the grid,
after the realization of that contingency.

C. Real-time re-dispatch and balancing
The goal of the re-dispatch and balancing process is

to modify the day-ahead dispatch so as to balance the
system at minimum cost in real time, while respecting
network constraints. We assume that there is no uncer-
tainty in demand and renewable production. Uncertainty
can only materialize in a transmission line outage. Thus,
we focus on the re-dispatch and balancing actions that
are required (i) in case the zonal day-ahead auction
violates any inter or intra-zonal transmission constraints
and (ii) in case the operator is required to react to a
transmission contingency that may occur between the
day ahead and real time.

We consider various real-time models in part 2, de-
pending on the objective of the TSO and the degree of
coordination among TSOs. The ideal standard in terms
of coordination and cost minimization is the perfectly
coordinated re-dispatch and balancing model which aims
at minimizing real-time cost. We introduce reactive
transmission switching to this model, and formulate it
as an optimization problem as follows:

min
v∈[0,1]
f,θ,t

∑
g∈G

PgQgvg

s.t.
∑

g∈G(n)

Qgvg −
∑

l∈L(n,·)

fl +
∑

l∈L(·,n)

fl = Qn,

∀n ∈ N
− Fltl ≤ fl ≤ Fltl, ∀l ∈ L
fl ≤ Bl(θm(l) − θn(l)) +M(1− tl), ∀l ∈ L
fl ≥ Bl(θm(l) − θn(l))−M(1− tl), ∀l ∈ L

We stress the fact that, although this second-stage real-
time problem is nodal, the day-ahead zonal market clear-
ing drives the real-time behavior because of the fixed unit
commitment decisions that must be respected. We do
not represent here the dependence of real-time dispatch
on day-ahead unit commitment decisions, in order to
simplify the exposition, but enforce this requirement for
the simulations presented in part II.

IV. An algorithm for proactive transmission
switching

In this section, we present an algorithm for solving
the zonal day-ahead market clearing model under N-1
robustness with proactive transmission switching and a
purely curative re-dispatch. We then discuss how the
algorithm can be adapted to the case of a preventive re-

dispatch. The zonal day-ahead market clearing problem
can be written as:

min
v∈[0,1],p,
t∈{0,1}

∑
g∈G

PgQgvg (9)

s.t.
∑

g∈G(z)

Qgvg − pz =
∑

n∈N(z)

Qn, ∀z ∈ Z (10)

p ∈ ∩
‖u‖1≤1

Pt(u) (11)

The difficulty in solving this problem lies in the fact
that its equivalent monolithic formulation is too large to
be solved directly, while the non-convexity of the set of
feasible net positions prevents the use of a cutting plane
approach similar to the one proposed by [6].

Our idea for solving this problem is to rewrite it
as an adaptive robust optimization problem with mixed
integer recourse (AROMIP), and to use a known column-
and-constraint generation (C&CG) algorithm for this
class of problems. The general AROMIP that we con-
sider can be described as follows:

min
x∈X

cx + max
u∈U

min
z,y∈F(u,x)

dy + gz (12)

where X = {x ∈ Rm+ ×Zm+ : Ax ≥ b},F(u,x) = {(z,y) ∈
Zn+ × Rp+ : E(u)y +G(u)z ≥ f(u)−Ru−D(u)x}, and
the uncertainty set U is a bounded binary set in the
form of U = {u ∈ Bq+ : Hu ≤ a}. This formulation
is similar to that of [15]. The only difference is that
we restrict ourselves to a pure binary uncertainty set
U, which corresponds in our case to the set of line
contingencies. We also consider a more general form of
F(u,x), where every parameter (E,G, f,D) can depend
on the realization of uncertainty.

Let us now show how we can reformulate our problem
in the general form (12). First, notice that in problem (9)
- (11) it is equivalent to replace constraint (11) by

d(p, ∩
‖u‖1≤1

Pt(u)) = 0 (13)

where d(p, ∩
‖u‖1≤1

Pt(u)) is the L1 distance of injection p
to the set of net positions.

We then penalize this function in the objective and
show in Proposition 1 that there exists a penalizing
factor λ∗ such that problem (9) - (10), (13) is equivalent
to

min
v∈[0,1],p,t

∑
g∈G

PgQgvg + λ∗
(
d(p, ∩

‖u‖1≤1
Pt(u))

)
(14)

s.t.
∑

g∈G(z)

Qgvg − pz =
∑

n∈N(z)

Qn, ∀z ∈ Z (15)

Proposition 1. Consider the following two optimization
problems:

(P1) : min
p,t

cp

s.t. Ap ≤ b
d(p,Pt) = 0
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and

(P2) : min
p,t

cp+ λ∗ d(p,Pt)

s.t. Ap ≤ b

where Pt is a general polyhedron described by a set
of linear inequalities implicating an integer vector of
variables t, and where d(·, ·) is the L1 distance function
of a vector to a polyhedron. There exists a scalar λ∗ such
that (P1) and (P2) are equivalent.

Proof. The proof is inspired by [28]. Suppose, without
loss of generality, that Pt = {p ∈ RP : Vtp ≤Wt}. Then,

(P1)⇔ min
t

min
p
cp

s.t. Ap ≤ b
Vtp ≤Wt

⇔ min
t

min
p,p̃,s1,s2

cp

s.t. Ap ≤ b
1
>s1 + 1

>s2 ≤ 0 [λt]
s1i ≥ pi − p̃i ∀i = {1, ..., Z}
s2i ≥ p̃i − pi ∀i = {1, ..., Z}
Vtp̃ ≤Wt

s1, s2 ≥ 0

where the scalar λt is the inner-problem dual variable
of the constraint on the distance between p and p̃, that
depends on t. Let λ be an upper bound of λt for each t.
By using Lemma 1 of [28], we have that

(P1)⇔ min
t

min
p,p̃,s1,s2

cp+ λ(1>s1 + 1
>s2)+

s.t. Ap ≤ b
s1i ≥ pi − p̃i ∀i = {1, ..., Z}
s2i ≥ p̃i − pi ∀i = {1, ..., Z}
Vtp̃ ≤Wt

s1, s2 ≥ 0

By the non-negativity of s1 and s2, (1>s1 + 1
>s2)+ =

1
>s1 + 1

>s2. Therefore, we conclude, by the definition
of the L1 distance, that

(P1)⇔
[
min
p,t

cp+ λ d(p,Pt)

s.t. Ap ≤ b

]
⇔ (P2)

We now define explicitly the distance function as the
following max-min problem:

d(p, ∩
‖u‖1≤1

Pt(u)) = max
u∈U

min
p̃,t
‖p− p̃‖1 (16)

s.t. p̃ ∈ Pt(u) (17)

With the formulation (14) - (15) which is justified
by the result of Proposition 1, we are now in the
framework of adaptive robust optimization with mixed

integer recourse. The correspondence in notation be-
tween the generic AROMIP and our specific application
is the following: x = (v, p), z = t, y = (s1, s2, p̃),
dy + gz =

∑
g∈G s1,g + s2,g, Y = {v, p :

∑
g∈G(z) Qgvg −

pz =
∑
n∈N(z) Qn ∀z ∈ Z}, U is the set of all possible

contingencies such that ‖u‖1 ≤ 1, and

F(u,x) =
{
p̃ : p̃ ∈ Pt(u)

s1,g ≥ pg − p̃g, ∀g ∈ G

s2,g ≥ p̃g − pg, ∀g ∈ G
}

which can be written as a mixed integer linear feasibility
set if Assumption 1 holds.

A. Outer-level column-and-constraint generation algo-
rithm

Two different classes of methods have been proposed
in the literature for solving two-stage robust optimiza-
tion problems [29]. Benders dual methods, as in Benders
decomposition, use the dual information of the second-
stage problem to sequentially approximate the first-
stage value function. Column-and-constraint generation
methods gradually include the variables and constraints
of the monolithic formulation. In [6], the first approach
has been used, leading to a cutting plane based algo-
rithm for solving the market clearing problem. How-
ever, as mentioned previously, the presence of binary
variables in the second-stage problem, which correspond
to transmission switching decisions, prevents the use of
Benders dual methods in the context of our problem.
In contrast, [15] describes how a column-and-constraint
generation method can be used for solving adaptive
robust optimization problems with integer variables in
the recourse problem, provided we can solve exactly the
second-stage max-min problem for a given choice of first-
stage decisions.

Let us therefore assume that we can solve this
second-stage problem (which corresponds, in our case,
to computing the distance of a net position vector to the
set of net positions) and let us apply the column-and-
constraint generation algorithm of [15] to our problem.
We will then explain how we can solve the second-stage
problem in section IV-B.

Algorithm 1 : Column-And-Constraint
Generation Algorithm
1) Set LB = +∞, UB = −∞ and k = 0
2) Solve the following master problem:

MP: min
v∈[0,1]
p,t,η

∑
g

QgPgvg + λ∗η

s.t.
∑

g∈G(z)

Qgvg − pz =
∑

n∈N(z)

Qn

η ≥ |pi − p|, ∀i ∈ {1, ..., k}
pi ∈ Pti(ui), ∀i ∈ {1, ..., k}
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Update LB =
∑
g QgPgv

∗
g + λ∗η∗. If UB−LB < ε,

terminate.
3) Call the oracle to solve subproblem

d(p∗, ∩
‖u‖1≤1

Pt(u)) and update UB as

min
(
UB,

∑
g

QgPgv
∗
g + d(p∗, ∩

‖u‖1≤1
Pt(u))

)
If UB − LB < ε, terminate.

4) Create variable pi and add the following constraints

η ≥ |pi − p|
pi ∈ Pti(u∗i )

where u∗ is the optimal value of variable u in the
subproblem.

�
This algorithm can be further simplified by noticing

that, by definition of λ∗, η∗ = 0 at each iteration
of the algorithm. This renders the algorithm totally
independent of λ∗, for λ∗ sufficiently large. This also
implies that LB =

∑
g QgPgv

∗
g at each iteration, and

thus that the algorithm will terminate when

d(p∗, ∩
‖u‖1≤1

Pt(ui)) < ε ∀i ∈ {1, ..., k},

i.e. when the optimal net position obtained with only a
subset of the possible contingencies is actually robust to
all contingencies.

B. Inner level max-min problem
So far, we have assumed that we were able to solve

exactly the second-stage problem. To have a complete al-
gorithm, it remains to show how we can solve the second-
stage problem. Recall that the second-stage problem can
be written as follows:

d(p, ∩
‖u‖1≤1

Pt(u)) = max
u∈U

min
p̃,t
|p− p̃|

s.t. p̃ ∈ Pt(u)
(18)

Zhao and Zeng [15] propose solving this inner problem by
using a column-and-constraint generation algorithm, ex-
actly in the same fashion as the outer problem. With this
method, the master problem first considers only a subset
of topologies. The master problem clears with the best
net position that corresponds to this subset of topologies.
Then, the subproblem identifies the best topology than
can react to the vector of net positions identified and this
topology is added to the master problem. This procedure
repeats until no more new topologies are added to the
master. The drawback of this method is that, for each
topology under considerarion, the other variables (v, f, θ
in our case) must be duplicated. This quickly introduces
a bottleneck in terms of efficiency in the master problem,
which increases the run time of the algorithm.

In what follows, we propose a new approach for the
inner max-min problem that avoids the bottleneck of
the nested C&CG method. Our approach builds on the

observation that this problem falls in the class of inter-
diction games, i.e. two player Stackelberg games where
the decision variables of the leader are binary. When
set to 1, these variables force the corresponding follower
variables to be 0, thereby interdicting the follower from
choosing certain actions. In our context, the leader is
Nature and is looking for the line to place out of service
so as to maximize the disruption to the system operator.
The system operator can react with switching.

Based on [30], we will first show how a cutting
plane formulation of our problem can be obtained. Let
Q be the set Pt(0) in the space of p and t, i.e. the
feasible set of net positions and switching variables under
no contingency. Then, problem (18) can be formulated
equivalently as

max
u∈U

min
p̃,t
|p− p̃|

s.t. (p̃, t) ∈ Q
tlul = 0 ∀l ∈ L

(19)

We also have the following result.
Proposition 2. Let us consider the following problem
for a fixed vector u∗:

min
p̃,t
|p− p̃| (20a)

s.t. (p̃, t) ∈ Q (20b)
tlu
∗
l = 0 ∀l ∈ L (20c)

If λl is an optimal Lagrangian dual multiplier of con-
straint (20c), then problem (20) is equivalent to

min
p̃,t
|p− p̃|+

∑
l∈L

λltlu
∗
l

s.t. (p̃, t) ∈ Q,
(21)

i.e. there is no Lagrangian duality gap for constraint
(20c).

Proof. First notice that, because constraint (20c) is
an equality constraint, if the solution of problem (21)
satisfies tlu∗l = 0 ∀l ∈ L, then the duality gap is zero.
We define the following two quantities:

α = min
p̃,t
|p− p̃|

s.t. (p̃, t) ∈ Q
and

βl = min
p̃,t
|p− p̃|

s.t. (p̃, t) ∈ Q
tlu
∗
l = 0

If u∗ is the zero vector, every real value is a dual
optimal multiplier, the constraint tlu∗l = 0 is naturally
satisfied ∀l ∈ L, and the duality gap is zero. Else, u∗
is a vector of zeros with one entry set to one. Let m be
the index of that entry. Note that the optimal objective
value of problem (20) is βm by definition. Let t∗m be the
optimal value of problem (21) with λl = βl−α ∀l ∈ L. If
t∗m = 1, then the optimal objective value of problem (21)
is α+βm−α = βm. If t∗m = 0, then its optimal objective
is also βm. We conclude that the duality gap is zero and
that βl − α is a dual optimal Lagrange multiplier.
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Using Proposition 2, we deduce that if λl is a dual
optimal multiplier, problem (19) is equivalent to

max
u∈U

min
p̃,t
|p− p̃|+

∑
l∈L

λltlul

s.t. (p̃, t) ∈ Q
(22)

Note that the feasible set of the inner level of problem
(22) does not depend on u anymore. Moreover, as its
objective function is linear, at least one extreme point
of conv(Q) is optimal, where conv denotes the convex
hull. Let us denote by ext(Q) the set of extreme points
of Q. Then, problem (22) is consequently also equivalent
to

max
u∈U

min
{
|p− p̃|+

∑
l∈L

λltlul : (p̃, t) ∈ ext(Q)
}

and to
max
u∈U

η

s.t. η ≤ |p− p̃|+
∑
l∈L

λltlul, ∀(p̃, t) ∈ ext(Q) (23)

where our problem has been rewritten in the form of
a cutting plane formulation. Using this formulation, a
cutting plane algorithm can be obtained by noticing the
two following facts: (i) if problem (23) is solved with a
subset of ext(Q), then we obtain an upper bound as well
as an interdiction plan u; (ii) solving the inner level of
problem (22) for a fixed u gives a lower bound as well as
a new extreme point for the set conv(Q). The algorithm
that is suggested above can be presented formally as
follows.
Algorithm 2 : Inner Level
1) Set LB = +∞, UB = −∞, k = 0 and ext(Q)0 = ∅
2) Solve the following Worst Uncertainty Oracle :

max
u∈U

η

s.t. η ≤ |p− p̃|+
∑
l∈L

λltlul, ∀(p̃, t) ∈ ext(Q)k

Denote by u∗ the optimal value of variable u and
update UB to the optimal objective value.

3) Solve the following Best Reaction Oracle :

min
p̃,t
|p− p̃|+

∑
l∈L

λltlu
∗
l

s.t. (p̃, t) ∈ Q

Denote by p̃∗ and t∗ the optimal values of variables
p̃ and t respectively.
Let ext(Q)k+1 ← ext(Q)k ∪ (p̃∗, t∗).
Let LB ← max {LB, |p− p̃∗|+

∑
l∈L λlt

∗
l ul}.

4) If UB−LB < ε, terminate. Else, let k ← k+ 1 and
go back to step 2.

�
If λl is a dual optimal multiplier, algorithm 2 is guaran-
teed to converge in a finite number of iterations. Note,

however, that if λl is a dual optimal multiplier, then ev-
ery λ̃l such that λ̃l > λl is also a dual optimal multiplier.
This method also results in the decomposition of the
problem into two subproblems, as in the case of Zhao and
Zeng [15]. The difference is that the Worst Uncertainty
Oracle subproblem is solved much more efficiently than
the master problem of [15]. Since the master problem is
the bottleneck of [15], our approach achieves a material
improvement over Zhao and Zeng.

The speed of convergence is largely determined by
the value of the dual multiplier. Notice that the smaller
λl is, the tighter the formulation (23) is. Thus, the goal
is to find the smallest possible dual optimal multiplier
of constraint (20c). If λl is set to a large trivial value,
the algorithm will have to generate almost all possible
values of u before converging. In contrast, if the value
chosen is close to its optimal value, the convergence can
be much faster. In what follows, we present our idea for
generating values for λl that yield fast convergence in
the case of our problem.

We first mention that the proof of Proposition 2
highlights how we can obtain the best value of λl, which
we denote by λ∗l . Indeed, let

γl = max
u∈U

min
p̃,t
|p− p̃|

s.t. (p̃, t) ∈ Q
tlul = 0

Then, λ∗l = γl − α. This value can be interpreted as the
price of robustness, i.e. the price to pay for being robust
to the contingency of line l. It turns out that it can be
easily upper bounded as follows: Let δl be defined as the
objective value of the inner problem when we are robust
to the contingency of line l without the possibility for
switching as a recourse action:

δl = min
v∈[0,1]
p̃,f,θ

|p− p̃|

s.t.
∑

g∈G(z)

Qgvg − p̃z =
∑

n∈N(z)

Qn, ∀z ∈ Z∑
g∈G(n)

Qgvg −
∑

j∈L(n,·)

fj +
∑

j∈L(·,n)

fj = Qn,

∀n ∈ N
− Fj ≤ fj ≤ Fj , ∀j ∈ L
fj = Bj(θm(j) − θn(j)), ∀j ∈ L\{l}
fl = 0

(24)
The value δl can be obtained much more efficiently than
the value γl as it is a simple monolhitic LP. Then, the
following inequalities naturally hold:

α ≤ γl ≤ δl.

It follows that λ∗l is bounded from above by δl − α.
Algorithm 2 with λl = δl − α is the approach that we
use for solving (18).
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C. Extension to preventive dispatch
It is straightforward to adapt the algorithm to the

case of a purely preventive dispatch. In the master
problem, instead of adding constraints

p ∈ Pti(ui), ∀i ∈ {1, ..., k}

we will add the following set of constraints, which de-
scribe the fact that the dispatch should be the same for
every contingency:∑

g∈G(z)

Qg v̄g − pz =
∑

n∈N(z)

Qn, ∀z ∈ Z

v̄ ∈ Vti(ui), ∀i ∈ {1, ..., k}

The inner problem, that identifies the next contin-
gency to add in the master problem, now reads as
follows:

d(v̄, ∩
‖u‖1≤1

Vt(u)) = max
u∈U

min
ṽ,t
|v̄ − ṽ|

s.t. ṽ ∈ Vt(u)
(25)

The structure of problem (25) is exactly the same as
that of problem (18). The same cutting plane algorithm
can thus be used to solve the inner problem. Note,
however, that although the algorithm can be adapted in
a straightforward way, the problem with preventive re-
dispatch and the problem with curative re-dispatch vary
in terms of solution difficulty. This is due to the fact that,
in the case of a preventive re-dispatch, the inner problem
computes the distance to a set that is significantly
higher dimensional than in the case of curative dispatch.
Whereas the set Pt(u) has dimension |Z|, the number
of zones in the system, the set Vt(u) is of dimension
|G|, which corresponds to the number of generators. For
instance, in our case study on a realistic instance of the
Central Western European (CWE) system, there are 5
zones, whereas the number of generators is almost 2000.
This translates to additional computational burden for
achieving preventive N-1 robustness, compared to cura-
tive robustness.

D. Extension to hybrid dispatch
A simple combination of the algorithm for the pre-

ventive case and for the curative case can be used to
clear the market with a hybrid N-1 robust dispatch. We
note, however, that the important question of how to
determine the set Uprev (i.e. the set of contingencies to
be considered in a preventive way) remains. Our column-
and-constraint generation algorithm for solving the day-
ahead model suggests a way of defining this set. In this
algorithm, each iteration generates a severe contingency
that is added to the master problem, until convergence
is reached. We propose that Uprev should consist of
the n first contingencies produced by the algorithm. By
construction, these contingencies are selected among the
most severe contingencies that the system operator is
called to react to.

Note that this hybrid model, being a combination of
the preventive and curative case, has a computational
complexity that is intermediate between that of the cu-
rative and that of the preventive model. This complexity
is increasing with n.

V. Conclusion
In the first part of this two-part paper, we have

proposed a two-stage model of a zonal electricity mar-
ket with transmission switching at both the day-ahead
and real-time stage. We have cast our problem as an
AROMIP, and we have described a new algorithm for
solving this class of challenging mixed integer optimiza-
tion problems when the inner level has the structure of
an interdiction game.

In the second part, we propose different variations
of models for the re-dispatch and balancing phase. We
use these models and the resolution method presented in
this first part for analyzing the relative performance of
various market design options that include transmission
switching. We test these models on a realistic case study
of the Central Western European market. The second
part of the paper also validates the efficiency of the
algorithm proposed here, by showing that it achieves a
considerable reduction in computation time compared to
the technique proposed in [16].

Appendix
A. Illustration of the difference between preventive and
curative re-dispatch

In this appendix, we describe an illustrative example
that highlights the difference between a day-ahead model
with preventive versus curative re-dispatch. We consider
a three-node two-zone network, as shown in Fig. 3. Zone
A consists of two buses, An and As. Zone B consists of
a single bus, bus B. Buses An and As are connected by
two lines, each with a reactance of 0.01 per unit (p.u.).
Bus An is connected to bus B by two lines, each with a
reactance of 0.001 p.u. Bus As is connected to bus B by
two lines, each with a reactance of 0.001 p.u. All lines
obey a capacity limit of 1 GW. In order to simplify the
exposition, we consider only contingencies that involve
cross-zonal lines.

In the case of purely curative re-dispatch, the net
position of zone A could reach up to 3 GW. Indeed, if a
contingency occurs on a line between bus An and bus
B, the transmission limits on the remaining elements
can still be respected by a net injection of 1 GW in
bus An and a net injection of 2 GW in bus As. If a
contingency occurs on a line between bus As and bus B,
the transmission limits on the remaining elements can
still be respected by a net injection of 2 GW in bus An
and a net injection of 1 GW in bus As.

However, in the case of purely preventive re-
dispatch, the N-1 security constraints on all cross-zonal
transmission elements must be met simultaneously. In
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B

An

As

X = 0.001p.u.

X = 0.01p.u.

X = 0.001p.u.

A B

Figure 3: Network data of the three-node two-zone ex-
ample that is presented in the appendix.

that case, it is not possible to inject more than 1083
MW in bus An and more than 1083 MW in bus As. In
the day-ahead market clearing problem, the maximum
net position of zone A is thus limited to 2.17 GW
(preventive), and not to 3 GW (curative).
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