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Abstract

This master thesis proposes to model the robust planning of the DSO grid. The model includes the
possibility for the DSO to invest in storage, reinforce its network and impose fuse limits which are
limits on the reinjection and withdrawal of power in and from the network. The problem takes also into
account the operational costs and determines the optimal power flow in the alternating current grid.
A primal-dual algorithm is then used to find the optimal solution that is robust to uncertainties. The
nonconvex optimal power flow equations are solved using an inexact second-order cone programming
relaxation and a sequence of convex problems to recover the feasibility of the solution. Experiments
are then performed on a real distribution network with large amount of renewable production and we
demonstrate how our approach can help to reduce the curtailment of PV production.
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Notations

Sets

N Set of nodes of the network.
N+ Set of nodes of the network except the substation node.
E Set of edges in the network.
T Set of time steps.
T+ Set of time steps except the first one.
T− Set of time steps except the last one.
Td Set of time steps that belong to day d.
Ci Set of children of node i.
G Set of choices for line reinforcement.
D Uncertainty set for the demanded injection.
D̃ Extended uncertainty set for load, PV production and EV charge.
X Set of constraints containing only first-stage variables.
Y Set of constraints containing second-stage variables.
YSOCP Set Y where the nonconvex quadratic constraint has been relaxed to the corresponding

convex inequality.
Zk Feasible set for the variables used in the FRP.
S Set of worst-case candidates.
K Cone corresponding to set Zk.

Variables

vi,t Square of the norm of the complex voltage at node i and time t.
pi,t Active power injection at node i and time t.
qi,t Reactive power injection at node i and time t.
li,t Square of the norm of the complex current of line i and time t.
Pi,t Real power flow in line i and time t.
Qi,t Reactive power flow in line i and time t.
l̃i,t,g Square of the norm of the complex current of line i and time t if choice g is made, 0 otherwise.
P̃i,t,g Active power flow on line i and time t if choice g is made, 0 otherwise.
Q̃i,t,g Rective power flow on line i and time t if choice g is made, 0 otherwise.
K, K Upper and lower fuse limits.
x+

i,t Curtailment performed at node i and time t due to overproduction.
x−

i,t Curtailment performed at node i and time t due to overconsumption.
wg Binary variable indicating the choice made.
ei,t Energy stored in the battery at node i and time t.
fi Storage investment at node i.
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pin
i,t Active power input to be stored at node i and time t.

pout
i,t Active power output to be stored at node i and time t.

uPV
i Uncertain binary parameter indicating whether there are PV panels at node i.

dPV
i,t Uncertain parameter corresponding to the PV production at node i and time t.

uEV
i Uncertain binary parameter indicating whether there is an EV at node i.

dEV
i,t Uncertain parameter corresponding to the EV consumption at node i and time t.

sj,t Slack variable penalizing the SOCP gap in the objective.

Parameters

Ai Ancestor of node i.
di,t Active net power injection demanded at node i and time t.
zi Complex impedance of line i.
ri Resistance of line i.
xi Reactance of line i.
Li Length of line i.
rg Resistance of all lines in choice g.
xg Reactance of all lines in choice g.
Ig Current capacity limit of all lines in choice g.
Cl Cost of losses.
Cf Cost of fuse.
C+ Cost of curtailment due to overproduction.
Cg Cost of reinforcement in choice g.
Ln nth order Lorentz cone.
xplanned Planned curtailment.
xunplanned Unplanned curtailment.
x%

unplanned Percentage of unplanned curtailment.
P , P Upper and lower bound on the active power flow.
Q, Q Upper and lower bound on the reactive power flow.
pin

i ,pin
i Lower and upper bound on the active power input at node i.

pout
i , pout

i Lower and upper bound on the active power input at node i.
h Duration of a time step.
ξin, ξout Charging and discharging battery factors.
ΔPV

1 Budget parameter on the number of PV installations.
ΔPV

2 Budget parameter on the uncertain PV production.
C EV batteries storage capacity.
ΔLoad Budget parameter on the uncertain load.
ρ1 Initial penalty parameter of FRP.
τ Penalty growth rate parameter.
ρM Penalty upper bound.
� Feasibility tolerance of the nonconvex constraint.
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Acronyms

ACOPF Alternating Current Optimal Power Flow.

ADMM Alternating Directions Method of Multipliers.

CCP Convex-Concave Procedure.

DCOPF Direct Current Optimal Power Flow.

DER Distributed Energy Resources.

DSO Distribution System Operator.

EV Electrical Vehicle.

FRP Feasibility Recovery Procedure.

ICT Information and Communication Technologies.

LMP Locational Marginal Prices.

LP Linear Program.

MISOCP Mixed-Integer Second Order Cone Program.

ODP Optimal DSO Planning.

OPF Optimal Power Flow.

SOC Second Order Cone.

SOCP Second Order Cone Program.

VOLL Value Of Lost Load.
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Chapter 1
Introduction

1.1 Understanding the transition of the electric power system

Indisputably, the electric power system is facing a huge transition. Understanding the fundamental
reasons for this change is essential to develop new tools for decision making in the field. Based on [1],
I will highlight the main ways in which the system is transitioning and the reasons for this transition.

How is the system changing ?

We can point out three main ways in which the system is changing. It is becoming :

1. More distributed. The past years have seen a rise of the number of Distributed Energy Resources
(DER) available in the distribution networks. Examples of DER are renewable production at
the distribution level, storage capacity, demand response, control devices, ...

2. Increasingly digitized. Information and Communication Technologies (ICT) are currently being
increasingly deployed in the distribution grid to enable active real-time control and operation of
the grid. Examples of these technologies include smart meters that are able to communicate
with each other and with central operators.

3. Renewable and intermittent. The share of renewable energy in the power production increased
dramatically in the last decade in many big countries and especially in Europe [2]. As a
consequence, the production is much more intermittent and operators have to find new ways
for dealing with this uncertainty.

Why is it changing ?

It is also interesting to investigate why this transition is happening now. The MITEI report ([1])
highlights here three main points :

1. Technological innovations. This implied huge cost decreases in many key technologies in
electricity systems (LEDs, PVs, Batteries, ...).

2. Policies. Many policies related to the investment in renewable energy were adopted, with the
goal of decarbonizing the energy system. This in part enabled the technological innovations
mentioned above.
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3. Consumer choices. Some consumers choose to invest in renewable energy and environment
friendly technologies per choice rather than per economic opportunity. This also participates
to the positive investment climate around technologies for a more distributed, digitized and
renewable energy system.

1.2 The DSO at the core of the transition

The electric power system is a large system with many actors. With the changes that this industry
is facing, one agent will be particularly at the center of the transition : the Distribution System
Operator (DSO). Let us in this section describe the role of the DSO for the time being and how its
role is expected to evolve in the future.

The DSO is the company responsible for building, maintaining and operating the distribution
network. It delivers electricity from the Transmission Grid or local producers to consumers, either
residential or small factories. For the time being, the DSO plays a rather passive role in the operations
of its electricity grid. In the past, very few electricity services were provided at the distribution level.
The role of the DSO was thus to ensure that the electricity was delivered in a safe and reliable way to
the consumers through its network. Its main means of action was to build new or bigger lines if the
forecast indicated that the network could become saturated. The network was reinforced according to
peak demand so that no constraints would be violated in real-time. This way of planning the network
is often called a fit-and-forget approach. The MITEI report ([1]) states that it was an efficient and
cost-effective way of managing the network in a centralized system but shows how it can become
inefficient with the rise of DERs.

The following figure (Figure 1.1) represents schematically the role of the DSO and its means to
plan and operate its network.

Households Factories

DSO grid

Transmission Grid Local producers Forecast

Saturated ?

Build lines

yes

no

Figure 1.1: Role of the DSO at this time. Left : Flow of electricity in in the DSO network. Right :
DSO planning and operation process.

With the advent of distributed production and other DERs in the distribution network, the role of
the DSO is expected to change dramatically in the next decade. To highlight this point, I would like
to refer again to the MITEI report :
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Households Factories

DSO gridStorage

Transmission
Grid

Local
producers

Figure 1.2: Role of the DSO in the near future : flow of electricity in in the network.

Distribution companies will have to become true “system operators”.

They argue that this will necessarily imply coupling operation and planning. In this work, we wish
to develop a decision-making framework for the DSO to decide on the optimal way of planning and
operating the distribution network with respect to the three following decisions :

1. Line reinforcement. The DSO can decide the specifications of the lines it will use in its network
(resistance, reactance, maximum current).

2. Fuse limits. The DSO can impose limits on the consumption and production of power on its
network.

3. Storage investment. The DSO can invest in storage facilities at each node of the network.

These decisions have to be made while respecting a set of constraints :

1. Physical laws. These includes Kirchhoff ’s laws, voltage deviation constraints and current limit.

2. Robustness. The optimal decision has to be robust to the worst case realization of uncertainty.
That is, it is not acceptable to violate voltage constraints or to fail to match the demand even
in the worst case.

3. Computational tractability. It should be possible to find the optimal solution in reasonable time
even for large, real-case instances.

Each of these decisions and constraints will be discussed in chapter 2 dedicated to the presentation
of our model.
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Forecast

Saturated ?

Decision-making

Line reinforcementFuse limits Storage

yes

no

Figure 1.3: Role of the DSO in the near future : planning and operation process.

1.3 Our contributions

In this master thesis, we will use existing models and algorithms and combine them with new modeling
features and methods to solve the problem of optimal planning and operation of distribution networks
with large amount of DER. Our main contributions, both technical and in modeling, are the following
:
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Modeling

1. We model fuse limits as decisions that the DSO can make in the operations of its network
and propose an original method to find them in an optimal way.

2. We propose a method for line reinforcement modeling.

3. Based on existing work on robust optimization with budget uncertainty sets ([3]), we
propose an uncertainty set that is robust both to location of PV installations in the DSO
network and to production profiles uncertainty.

4. We propose an uncertainty set for Electrical Vehicle location and charge timing.

Technical

5. We combine existing work on robust solution to the SOCP relaxation of the OPF ([4])
and on optimal solution to the non-relaxed problem ([5]) to solve the problem of optimal
planning of DSO grid in a robust way.

6. We use the convex relaxation of the AC-OPF equations developed in [6] and [7] to derive
a new formula for the evolution of the electricity price in a radial distribution network.

The present report is organized as follows :

In chapter 2, we present our model. We first sequentially present the ACOPF equations, the fuse
limits, line reinforcement and storage models before combining them into the unified Optimal DSO
Planning (ODP) model. We finish this chapter by the uncertainty sets modeling.

In chapter 3, we present the algorithms that enables us to solve the Optimal DSO Planning (ODP)
in a robust way. In particular, we first present the feasibility recovery of the SOCP relaxation of the
ACOPF. Then, the two-stage algorithm for solving the SOCP problem in a robust way is described.
We also present our method for finding the optimal value of the fuse limits. We end this chapter by
deriving the dual of the problem and discuss the interpretation of the dual variables of the SOCP.

Chapter 4 studies in depth the behavior of our decision framework for the DSO in the context of
a real distribution network with realistic load and generation profiles. We first analyze the influence
of the number of PV installations and EVs on the optimal solution. We then discuss the advantages
of having a robust solution by highlighting the difference with a nonrobust solution before analyzing
the performances of our algorithm.

Finally, chapter 5 proposes a conclusion to this master thesis and exposes the perspectives of
further research.
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Chapter 2
Model

This section aims to develop the optimization program used to model the planning of the DSO grid.

The DSO of the future will have the possibility to use the three following decisions :

1. Impose fuse limits on the injection and consumption of power at each node.

2. Choose the characteristics of the lines in the network.

3. Invest in storage.

The main constraints with which it is confronted are the constraints of the AC-OPF. In what
follows we sequentially present and develop each of these elements to obtain the full model.

2.1 ACOPF constraints

The Optimal Power Flow (OPF) problem consists in finding the flow of power in an electrical network
that minimizes losses or costs subject to the physical laws governing this flow. It has been widely
studied in the literature and is one of the most important problems of power systems. There are
different ways of formulating the OPF problem. The two main formulations are the bus injection
model and the branch flow model. The bus injection model focuses on nodal variables whereas
the branch flow model uses the value of currents and voltages on the branches of the network. In
this work, we will use the branch flow model as it was shown in [6] and [7] that it exhibits good
performances on distribution networks.

In addition to the constraints due to Kirchhoff ’s law, bounds on voltages and currents need also
to be taken into account. The bounds on the voltage represent the acceptable deviation from the
nominal value. The upper bound on the current represents the maximum value that the line can carry.
The lower bound on the current imposes positivity.

The electrical network can be mathematically modeled as a graph whose edges represent the
electrical lines and whose nodes are locations in the network where power can be consumed or injected.
In a typical distribution network, the nodes correspond to households or small factories that behave
as prosumers. In this work, we will make the assumption that the graph is a tree as it is the case of
most distribution networks. Let N be the set of nodes and E be the set of edges.

We represent every node by an integer in {0, . . . , n} where n = |N | − 1, |N | being the cardinality
of set N . The root of the tree is the node that connects the distribution network to the transmission
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network and is the node 0 in our model. We denote by N+ the set of nodes except the substation
node, i.e. N+ = N \{0}. Each node i ∈ N+ has a unique ancestor denoted by Ai and each node
i ∈ N has a set of children denoted by Ci. We choose the orientation of the lines from being from i to
Ai so that we can unambiguously represent each line by its origin node. We thus have E = {1, . . . , n}.
Therefore, the set E is exactly the same as the set N+. In what follows, we will only use N+ to
refer to both the nodes except the root and the lines. We will define the following nodal and branch
quantities :

For each node i ∈ N , we define :

• vi as the square of the norm of the complex voltage at that node,

• si = pi + iqi as the complex net power injection (the net injection being the power consumed
minus the power produced)

• di is the active net power injection demanded at node i, i.e. the power that the agent at that
node wants to reinject in the network. It is thus different than the power that will actually be
seen by the network (that is, pi) as some curtailment mechanisms can take place. This will be
further discussed later. di is positive when the power is injected and negative if it is retrieved.

For each line i ∈ N+, we define :

• zi = ri + ixi as the complex impedance,

• li as the square of the norm of the complex current,

• Si = Pi + iQi as the sending-end complex power, where Pi denotes the active power and Qi

the reactive power.

A schematic representation of a line together with the notations we use is given below (Figure
2.1).

sAi si

vAi vi
zi

li Si

Figure 2.1: Schematic representation of a line.

We consider the OPF problem in a multi-time-step framework. This means that the variables are
defined at each time step and that the constraints need to be satisfied at each of these time steps,
too. We consider a horizon of T time steps. The set of time steps is denoted by T and each one is
represented by a positive integer, i.e. T = {1, . . . , T}.

The OPF problem is in general a hard nonlinear problem for which many relaxations and algorithms
have been developed since it was first formulated more than 50 years ago. A popular relaxation
that linearizes the OPF is called DCOPF, where DC stands for direct current. It assumes that all
voltage magnitudes are fixed and all voltage angles are close to zero. This relaxation is suitable to
approximate high-voltage transmission systems for which these assumptions are realistic. However, it
fails to approximate distribution systems, which are the object of our work. Instead, Masoud Farivar
and Steven H. Low proposed in [6] and [7] two formulations of the general ACOPF that received
a lot of attention in the community. These formulations are exact under some assumptions. I will
present them in the two following subsections.
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2.1.1 Angle relaxation

The first formulation they proposed is a relaxation of the voltage and current angles that yields a
nonconvex quadratic program. The relaxation is exact under the following assumption :

(A1) The graph underlying the network is a tree (also called radial network in power system
engineering). As stated above, this is often the case in distribution systems and is an assumption
of our work.

As mentioned earlier, the objective function of the OPF problem is often to minimize the losses or
the costs. In this work, we will consider the minimization of the power losses due to the resistance of
the lines. These losses will be weighted by a cost denoted by Cl so that the objective function is
expressed in Euros. This will be helpful later when we will add other terms to the objective.

Farivar and Low’s formulation, over the variables {P, Q, p, q, l, v} can be written as

Model 1 Alternating Current Optimal Power Flow (AC-OPF)

Minimize:

Cl

�

j∈N+,t∈T
(rjlj,t) (2.1a)

Subject to:

0 = p0,t +
�

j∈C0

�
Pj,t − rjlj,t

�
, ∀t ∈ T (2.1b)

0 = q0,t +
�

j∈C0

�
Qj,t − xjlj,t

�
, ∀t ∈ T (2.1c)

vAi,t = vi,t − 2(riPi,t + xiQi,t) + (r2
i + x2

i )li,t, ∀i ∈ N+, ∀t ∈ T (2.1d)

Pi,t = pi,t +
�

j∈Ci

�
Pj,t − rjlj,t

�
, ∀i ∈ N+, ∀t ∈ T (2.1e)

Qi,t = qi,t +
�

j∈Ci

�
Qj,t − xjlj,t

�
, ∀i ∈ N+, ∀t ∈ T (2.1f)

vi,tli,t = P 2
i,t + Q2

i,t, ∀i ∈ N+, ∀t ∈ T (2.1g)
v ≤ vi,t ≤ v, ∀i ∈ N , ∀t ∈ T (2.1h)
0 ≤ li,t ≤ l, ∀i ∈ N+, ∀t ∈ T (2.1i)
p ≤ pi,t ≤ p, ∀i ∈ N , ∀t ∈ T (2.1j)

Constraint (2.1j) represents flexibility in the net injection that is available due to for instance solar
production or flexible load. Note that p0,t is the power injected in the distribution network from the
transmission network. In this work, we focus on the DSO and we will thus omit questions related
to the coordination between the DSO and the TSO. We consider that p0,t can be obtained without
restrictions and for free.

Moreover, we will also focus on questions related to active power control. Therefore, we will
assume that reactive power is controlled independently, by allowing some reactive power generation/-
consumption at each node for free.
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We will denote by AC-OPF(pi,t) the set of constraints (2.1b) to (2.1i).

2.1.2 SOCP relaxation

The idea is now to further relax the problem to obtain an SOCP formulation for which an optimal
solution can be found much more efficiently. The relaxation is performed as follows : constraint
(2.1g) is replaced by

vi,tli,t ≥ P 2
i,t + Q2

i,t, ∀i ∈ N+, ∀t ∈ T
which is a convex constraint and can in turn be rewritten into the following SOCP constraint :




vi,t + li,t
vi,t − li,t

2Pi,t

2Qi,t


 ∈ L3, ∀i ∈ N+, ∀t ∈ T

where L3 is a third order Lorentz cone. This relaxation is exact under the following assumption :

(A2) There is no lower bound on the active power consumption at each node, i.e. the load can
always be oversatisfied.

The OPF problem becomes :

min Cl

�

j∈N+,t∈T
(rjlj,t)

s.t. (2.1b) to (2.1f), (2.1h), (2.1i)



vi,t + li,t
vi,t − li,t

2Pi,t

2Qi,t


 ∈ L3, ∀i ∈ N+, ∀t ∈ T (2.2a)

pi,t ≤ di,t, ∀i ∈ N+, ∀t ∈ T (2.2b)

Recall that di,t is the active power that people at node i want to inject in the network. It is
considered as an input parameter of the problem. Notice also that assumption (A2) is respected
as there is no lower bound on pi,t. The relaxation is thus exact. Constraint (2.2b) means that the
demand at node i and time t should be met when possible, but we also allow unbounded consumption
of power at each node so that the relaxation is exact. We will denote by SOCP-OPF(pi,t) the set of
constraints (2.1b) to (2.1f), (2.1h), (2.1i) and (2.2a).

2.2 Fuse limits

For the time being, network constraints are controlled by resorting extensively to solar and wind
production curtailment. This ensures the quality of the electricity provided at the cost of throwing
away free green energy. This is a huge shortfall for the DSO and more globally for the society in
general for the purpose of achieving its goals in terms of cheap green energy production. For example,
California had to curtail 3% of its total potential wind and power generation in the first quarter
of 2017 [8]. During some peak production hours, curtailment can exceed 30% of the total solar
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generation. Moreover, this curtailment is on the rise. Still in California, from 187,000 MWh in 2015,
the wind and solar power curtailment reached 308,000 MWh in 2016. Not to mention also that, as
discussed in section 1.2, it is the role of the DSO to provide guarantees on its services and to ensure
that residential producers will be able to reinject their additional power produced in the grid.

In this context, we state that the DSO can increase the reliability of the services it provides by
restricting the scope of these services. More specifically, we will in this section investigate the use of
limits on consumption and reinjection of power from and in the network (hereafter referred to as fuse
limits) by describing how they can be added to our model.

We model fuse limits by two variables K and K, corresponding respectively to an upper and a
lower bound on the net injection at each node. These variables are independent of the nodes of the
network and the time steps and are thus decided once and for all. Once these limits are announced,
the prosumers should respect them. In case of overproduction, it will be curtailed automatically by
the DSO. In case of overconsumption, the demand will not be satisfied. In what follows, they will be
both referred to by the general term of curtailment.

We will use the following notation :

• x+
i,t is the curtailment performed at node i and time t due to overproduction,

• x−
i,t is the curtailment performed at node i and time t due to overconsumption,

To satisfy the fuse limits, the following constraints will have to be added to the model :

pi,t ≤ K, ∀i ∈ N+, ∀t ∈ T (2.3a)
pi,t ≥ K, ∀i ∈ N+, ∀t ∈ T (2.3b)
di,t − x+

i,t + x−
i,t = pi,t, ∀i ∈ N+, ∀t ∈ T (2.3c)

These constraints are added to model 1. Note that the curtailment variables can be used in two
very different cases. The first one is to curtail di,t when it is outside the fuse limits, in order to respect
constraints (2.3a) and (2.3b). We will call this curtailment the planned curtailment, because the
fuse limits are announced in advance and the customers can thus know that if they go beyond these
limits, they will be curtailed. The second one can happen even when di,t is inside the fuse limits and
is used to respect voltage and current constraints. The latter is similar to curtailment that is used by
network operators for the moment. It will be called unplanned curtailment.

Let us first be more specific about the definitions of planned and unplanned curtailment :

planned curtailment := xplanned =
�

i,t|di,t≥K

�
di,t − K

�
+

�

i,t|di,t≤K

(K − di,t)

unplanned curtailment := xunplanned =
�

i,t

�
x+

i,t + x−
i,t

�
− xplanned

We still have to come up with a strategy to decide on suitable values for the fuse limits K and K.
What we want is that the fuse limits increase significantly the reliability of the service provided by
the DSO, i.e. that it decreases curtailment. However, it is unrealistic to choose them such that it
completely removes the curtailment as it would lead to very small fuse limits, reducing considerably
the scope of services provided by the DSO. Instead, we will impose that the unplanned curtailment
remains at a reasonable fraction of the unplanned curtailment that would take place if there were no
fuse limits. We set this fraction to 10%. With still the objective to minimize the losses, the problem
that we are facing could be written as :
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min Cl

�

j∈N+,t∈T
(rjlj,t) (2.4a)

s.t. pi,t ≤ K, ∀i ∈ N+, ∀t ∈ T (2.4b)
pi,t ≥ K, ∀i ∈ N+, ∀t ∈ T (2.4c)
di,t − x+

i,t + x−
i,t = pi,t, ∀i ∈ N+, ∀t ∈ T (2.4d)

AC-OPF(pi,t) (2.4e)
K, K s.t. unplanned curtailment = 0.1 unplanned curtailment without fuse limits (2.4f)

Constraint (2.4f) cannot be easily formulated without resorting to additional integer variables,
as variables x+

i,t and x−
i,t in the current model are the total curtailment and not the unplanned

curtailment. Instead of resorting to integer variables, we developed a strategy to find a solution
respecting constraint (2.4f) that we describe in what follows.

Let xunplanned,nofuse be the total unplanned curtailment obtained when there are no fuse limits, i.e.
when the cost of fuse is set to 0. We also define the percentage of unplanned curtailment as :

percentage of unplanned curtailment := x%
unplanned = xunplanned

xunplanned,nofuse

Variables K and K are added in the objective with a cost, denoted by Cf . The total curtailment
is also added in the objective with a cost. The cost of curtailment due to overconsumption is set to
the Value Of Lost Load (VOLL).

Definition 1. The VOLL is the value that on average, consumers would be willing to pay to avoid
an outage. It is a measure of the average value of power to consumers.

The cost of curtailment due to overproduction is called C+ and will be in general lower than
VOLL. It remains to find the value of Cf that will lead to a proportion of unplanned curtailment of
10% of the unplanned curtailment without fuse limits. The model becomes :

Model 2 Fuse Limited Optimal Power Flow (FL-OPF)

Minimize:

Cf (K − K) + C+(
�

i∈N ,t∈T
x+

i,t) + V OLL(
�

i∈N ,t∈T
x−

i,t) + Cl

�

j∈N+,t∈T
(rjlj,t) (2.5a)

Subject to:

pi,t ≤ K, ∀i ∈ N+, ∀t ∈ T (2.5b)
pi,t ≥ K, ∀i ∈ N+, ∀t ∈ T (2.5c)
di,t − x+

i,t + x−
i,t = pi,t, ∀i ∈ N+, ∀t ∈ T (2.5d)

AC-OPF(pi,t) (2.5e)

To understand this model, observe that when Cf is set to 0, the optimal solution is to set K to a
value greater than the maximum demanded injection di,t and K lower than the minimum of di,t, so
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that no planned curtailment will have to take place and all the curtailment is unplanned curtailment.
In this case, x%

unplanned is equal to 1. As Cf becomes larger, there is always a value above which the
optimal values of K and K are both 0 and all the curtailment is planned curtailment, which implies
that there are no unplanned curtailment. In this case, x%

unplanned is equal to 0. We can hope to find
an intermediate value of Cf that will lead to a fixed value of x%

unplanned, here 0.1. The way to find
the right value of Cf in order to match the constraint (2.4f) will be explained in chapter 3 dedicated
to the solution strategy.

2.3 Line reinforcement

Another decision that the DSO can make to improve the operations of its network is to reinforce it,
i.e. to build new lines with larger capacity and smaller impedance. Allowing the DSO to decide on the
impedance of the lines complicates the model. Indeed, if rj , xj and lj become variables, the AC-OPF
constraints that were linear in model (1) would become nonlinear, which would greatly reduce the
chances of finding a solution in reasonable time. Therefore, we will not consider the possibility for
continuous line reinforcement but instead consider that there is a finite set of line choices that the
DSO can make, each choice being associated to a known impedance, current limit and cost.

Let

• Nchoices be the number of different choices that we have for the lines,

• G be the set of choices {1, ..., Nchoices},

• Ig, rg, xg, Cg be respectively the maximum current allowed, the resistance, the reactance and
the cost per unit of length for each choice g ∈ G,

• wg be a binary variable equal to 1 if choice g is made, 0 otherwise for each possible choice
g ∈ G,

• Lj the length of line j.

Note that in this work, we suppose that there is an existing distribution network and we don’t
consider the case where the network has to be built from scratch. I1, r1 and x1 are thus the
characteristics of the existing lines and C1 is set to 0. Note also that we consider a unique type of
line for the whole network.
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Then, the problem of line reinforcement subject to AC-OPF constraints can be written as follows :

min
�

j∈N+,g∈G
wgLjCg (2.6a)

s.t. 0 = p0,t +
�

j∈C0

�
Pj,t − (

�

g∈G
wgLjrg)lj,t

�
, ∀t ∈ T (2.6b)

0 = q0,t +
�

j∈C0

�
Qj,t − (

�

g∈G
wgLjxg)lj,t

�
, ∀t ∈ T (2.6c)

vAi,t = vi,t − 2
�
(
�

g∈G
wgLirg)Pi,t + (

�

g∈G
wgLixg)Qi,t +

� �

g∈G
wgL

2
i (r2

g + x2
g)

�
li,t

�
, (2.6d)

∀i ∈ N+, ∀t ∈ T
Pi,t = pi,t +

�

j∈Ci

�
Pj,t − (

�

g∈G
wgLjrg)lj,t

�
, ∀i ∈ N+, ∀t ∈ T (2.6e)

Qi,t = qi,t +
�

j∈Ci

�
Qj,t − (

�

g∈G
wgLjxg)lj,t

�
, ∀i ∈ N+, ∀t ∈ T (2.6f)

vi,tli,t = P 2
i,t + Q2

i,t, ∀i ∈ N+, ∀t ∈ T (2.6g)
v ≤ vi,t ≤ v, ∀i ∈ N , ∀t ∈ T (2.6h)
0 ≤ li,t ≤

�

g∈G
wgIg, ∀i ∈ N+, ∀t ∈ T (2.6i)

�

g∈G
wg = 1 (2.6j)

wg binary, ∀g ∈ G (2.6k)

Note that even for the continuous relaxation, equations (2.6b) to (2.6f) are still nonlinear as wg is
a variable. By extending the formulation with new variables, we can restore their linearity as follows :

Let

• P and P be an upper and lower bound on the active branch power,

• Q and Q be an upper and lower bound on the reactive branch power,

• P̃i,t,g, Q̃i,t,g, l̃i,t,g be new branch power and current variables equal to respectively Pi,t, Qi,t, li,t
if choice g is made and 0 otherwise, for each choice g ∈ G.

Note that INchoices and 0 are respectively upper and lower bounds on the branch currents. We
write the problem as follows :
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Model 3 Distribution Network Reinforcement (DNR)

Minimize:

�

j∈N+,g∈G
wgLjCg (2.7a)

Subject to:

0 = p0,t +
�

j∈C0

�
Pj,t − (

�

g∈G
Ljrg l̃j,t,g)

�
, ∀t ∈ T (2.7b)

0 = q0,t +
�

j∈C0

�
Qj,t − (

�

g∈G
Ljxg l̃j,t,g)

�
, ∀t ∈ T (2.7c)

vAi,t = vi,t − 2
� �

g∈G
LirgP̃j,t,g + LixgQ̃j,t,g + L

2
j (r2

g + x2
g)l̃i,t,g

�
, ∀i ∈ N+, ∀t ∈ T (2.7d)

Pi,t = pi,t +
�

j∈Ci

�
Pj,t − (

�

g∈G
Ljrg l̃j,t,g)

�
, ∀i ∈ N+, ∀t ∈ T (2.7e)

Qi,t = qi,t +
�

j∈Ci

�
Qj,t − (

�

g∈G
Ljxg l̃i,t,g)

�
, ∀i ∈ N+, ∀t ∈ T (2.7f)

vi,tli,t = P 2
i,t + Q2

i,t, ∀i ∈ N+, ∀t ∈ T (2.7g)
v ≤ vi,t ≤ v, ∀i ∈ N , ∀t ∈ T (2.7h)
0 ≤ li,t ≤

�

g∈G
wgIg, ∀i ∈ N+, ∀t ∈ T (2.7i)

�

g∈G
wg = 1 (2.7j)

wg binary, ∀g ∈ G (2.7k)
Pwg ≤ P̃j,t,g ≤ Pwg, ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G (2.7l)
Pj,t − (1 − wg)P ≤ P̃j,t,g ≤ Pj,t − (1 − wg)P , ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G (2.7m)
Qwg ≤ Q̃j,t,g ≤ Qwg, ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G (2.7n)
Qj,t − (1 − wg)Q ≤ Q̃j,t,g ≤ Qj,t − (1 − wg)Q, ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G (2.7o)
0 ≤ l̃j,t,g ≤ INchoiceswg, ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G (2.7p)
lj,t − (1 − wg)INchoices ≤ l̃j,t,g ≤ lj,t, ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G (2.7q)

This model can be understood with the following observations : when wg is equal to 0, equation
(2.7l) imposes that P̃j,t,g = 0 while equation (2.7m) becomes

Pj,t − P ≤ P̃j,t,g ≤ Pj,t − P

which is trivially satisfied in view of the definition of P and P and the fact that P̃j,t,g = 0. When wg

is equal to 1, equation (2.7l) becomes
P ≤ P̃j,t,g ≤ P

which is trivially satisfied in view of the definition of P̃j,t,g, P and P . Equation (2.7m) forces P̃j,t,g

to be equal to Pj,t. The same logic applies to Q̃j,t,g and l̃j,t,g.

Observe that now, the only sources of nonconvexity are the binary restriction on wg and equation
(2.7g).
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2.4 Storage capacity investment

The third possibility that the DSO has is to invest in storage capacity. This can be modeled as follows,
let

• ei,t, ∀i ∈ N , t ∈ T be the energy stored at node i and time t,

• fi, ∀i ∈ N be the storage investment/maximal storage capacity at node i,

• pin
i,t, ∀i ∈ N , t ∈ T be the active power input to be stored at node i and time t,

• pout
i,t , ∀i ∈ N , t ∈ T be the active power output from the battery at node i and time t,

• pin
i and pin

i be respectively a lower bound and an upper bound on the active power input at
node i,

• pout
i and pout

i be respectively a lower bound and an upper bound on the active power input at
node i,

• h is the duration of a time step,

• ξin and ξout are respectively a charging and a discharging factor,

• Cs be the cost of having 1 unit of storage available by unit of time,

• T+ be the set of time steps except the first one,

• T− be the set of time steps except the last one.

Then, the problem reads as follows:
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Model 4 Storage Investment (SI)

Minimize:

Cl

�

j∈N+,t∈T
(rjlj,t) + Cs

�

i∈N ,t∈T
fi (2.8a)

Subject to:

0 = p0,t +
�

j∈C0

�
Pj,t − rjlj,t

�
, ∀t ∈ T (2.8b)

0 = q0,t +
�

j∈C0

�
Qj,t − xjlj,t

�
, ∀t ∈ T (2.8c)

vAi,t = vi,t − 2(riPi,t + xiQi,t) + (r2
i + x2

i )li,t, ∀i ∈ N+, ∀t ∈ T (2.8d)

Pi,t + pin
i,t − pout

i,t = pi,t +
�

j∈Ci

�
Pj,t − rjlj,t

�
, ∀i ∈ N+, ∀t ∈ T (2.8e)

Qi,t = qi,t +
�

j∈Ci

�
Qj,t − xjlj,t

�
, ∀i ∈ N+, ∀t ∈ T (2.8f)

vi,tli,t = P 2
i,t + Q2

i,t, ∀i ∈ N+, ∀t ∈ T (2.8g)
v ≤ vi,t ≤ v, ∀i ∈ N , ∀t ∈ T (2.8h)
0 ≤ li,t ≤ l, ∀i ∈ N+, ∀t ∈ T (2.8i)
0 ≤ ei,t ≤ fi, ∀i ∈ N , ∀t ∈ T (2.8j)
pin

i ≤ pin
i,t ≤ pin

i , ∀i ∈ N , ∀t ∈ T (2.8k)
pout

i ≤ pout
i,t ≤ pout

i , ∀i ∈ N , ∀t ∈ T (2.8l)

ei,t = ei,t−1 + h
�
ξinpin

i,t − 1
ξout

pout
i,t

�
, ∀i ∈ N , ∀t ∈ T+ (2.8m)

ei,1 = 0, ∀i ∈ N (2.8n)

2.5 Optimal DSO planning

By combining the AC-OPF constraints and the modeling of the decision on fuse limits, line reinforce-
ment and storage investment, we can formulate the problem of optimal planning of the DSO grid,
called Optimal DSO Planning (ODP), in the following way :
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Model 5 Optimal DSO Planning (ODP)

Minimize:

Cf (K − K) + C+(
�

i,t

x+
i,t) + V OLL(

�

i,t

x−
i,t) +

�

g,j

�
wgLjCg + Ljrg l̃j,t,g

�
+ Cs

�

i,t

fi (2.9a)

Subject to:

�

g∈G
wg = 1 (2.9b)

wg binary, ∀g ∈ G (2.9c)

pin
0,t − pout

0,t = p0,t +
�

j∈C0

�
Pj,t − (

�

g∈G
Ljrg l̃j,t,g)

�
, ∀t ∈ T (2.9d)

0 = q0,t +
�

j∈C0

�
Qj,t − (

�

g∈G
Ljxg l̃j,t,g)

�
, ∀t ∈ T (2.9e)

vAi,t = vi,t − 2
� �

g∈G
LirgP̃i,t,g + LixgQ̃i,t,g + L

2
i (r2

g + x2
g)l̃i,t,g

�
, ∀i ∈ N+, ∀t ∈ T (2.9f)

Pi,t + pin
i,t − pout

i,t = pi,t +
�

j∈Ci

�
Pj,t − (

�

g∈G
Ljrg l̃j,t,g)

�
, ∀i ∈ N+, ∀t ∈ T (2.9g)

Qi,t = qi,t +
�

j∈Ci

�
Qj,t − (

�

g∈G
Ljxg l̃j,t,g)

�
, ∀i ∈ N+, ∀t ∈ T (2.9h)

vi,tli,t = P 2
i,t + Q2

i,t, ∀i ∈ N+, ∀t ∈ T (2.9i)
v ≤ vi,t ≤ v, ∀i ∈ N , ∀t ∈ T (2.9j)
K ≤ pi,t ≤ K, ∀i ∈ N+, ∀t ∈ T (2.9k)
di,t − x+

i,t + x−
i,t = pi,t, ∀i ∈ N+, ∀t ∈ T (2.9l)

x+
i,t ≥ 0, ∀i ∈ N+, ∀t ∈ T (2.9m)

x−
i,t ≥ 0, ∀i ∈ N+, ∀t ∈ T (2.9n)

0 ≤ li,t ≤
�

g∈G
wgIg, ∀i ∈ N+, ∀t ∈ T (2.9o)

Pwg ≤ P̃j,t,g ≤ Pwg, ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G (2.9p)
Pj,t − (1 − wg)P ≤ P̃j,t,g ≤ Pj,t − (1 − wg)P , ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G (2.9q)
Qwg ≤ Q̃j,t,g ≤ Qwg, ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G (2.9r)
0 ≤ l̃j,t,g ≤ INchoiceswg, ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G (2.9s)
Qj,t − (1 − wg)Q ≤ Q̃j,t,g ≤ Qj,t − (1 − wg)Q, ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G (2.9t)
lj,t − (1 − wg)INchoices ≤ l̃j,t,g ≤ lj,t, ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G (2.9u)
0 ≤ ei,t ≤ fi, ∀i ∈ N , ∀t ∈ T (2.9v)
pin

i ≤ pin
i,t ≤ pin

i , ∀i ∈ N , ∀t ∈ T (2.9w)
pout

i ≤ pout
i,t ≤ pout

i , ∀i ∈ N , ∀t ∈ T (2.9x)

ei,t = ei,t−1 + h
�
ξinpin

i,t−1 − 1
ξout

pout
i,t−1

�
, ∀i ∈ N , ∀t ∈ T+ (2.9y)

ei,1 = 0, ∀i ∈ N (2.9z)
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2.6 Robust formulation

Our goal is to find a solution to this problem that will be robust to load and generation uncertainties.
Let us first reformulate the problem as a robust optimization problem. The uncertainty is in the demand
parameter di,t. Let us denote by D the uncertainty set of the demand so that di,t ∈ D ∀i ∈ N+, ∀t ∈ T .
As this demand is uncertain, it is now considered as a variable.
We now separate the variables into first-stage and second-stage variables. First-stage variables,
denoted by x are decisions that have to be made before knowledge of the realization of the uncertainty.
Second-stage variables, denoted by y, are the remaining variables and correspond to the decisions
that are made after realization of the uncertainty. We do the separation as follows :

• x = {K, K, wg, fi ∀g ∈ G, ∀i ∈ N }
• y = {x+

i,t, x−
i,t, pi,t, Pj,t, Qj,t, vi,t, lj,t, P̃j,t,g, Q̃j,t,g, l̃j,t,g, ei,t, pin

i,t, pout
i,t , ∀g ∈ G, ∀i ∈ N , ∀j ∈

N+, ∀t ∈ T }
We also denote the vector of uncertain variables by d. We have d = {di,t ∀i ∈ N+, ∀t ∈ T }
Let us denote by X the set of constraints containing only first-stage variables. We have

X = {x :
�

g

wg = 1, wg binary}

Let us denote by Y the set containing the remaining constraints.

Y = {x, y, d subject to (2.9d) to (2.9z)}

Let Y(d) be the set Y with fixed d taken as a parameter and let Y(x, d) be the set Y(d) with fixed
x taken as a parameter.

When d is fixed to deterministic known values, our problem can be simply rewritten as

min
x,y

a�x + b�y

s.t. x ∈ X
(x, y) ∈ Y(d)

(2.10)

with a and b defined correspondingly. The robust problem consists in finding the optimal value of
this optimization problem subject to the worst case of the uncertainty. It can be formally written as

min
x∈X

�
a�x + max

d∈D
min

y∈Y(x,d)
b�y

�
(2.11)

2.6.1 Uncertainty set

Let us now explain how we model the uncertainty set D. We wish to be robust to the following :

• Distributed photovoltaic location and production.

• Electrical vehicles (EV) location and charging load.

• Other load.

Let’s describe each subset separately.
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PV location and production

Let us denote by uPV
i an uncertain binary parameter indicating whether there are PV panels at node

i ∈ N+. Let dPV
i,t be an uncertain parameter corresponding to the PV production at node i and time

t. The traditional approach for robust optimization was developed by Soyster back in the 1970s in
[9]. It consists in considering that the uncertain parameter can take any value between a lower and
an upper bound. Although having the whole hypercube is optimal in terms of robustness, it is very
conservative. The probability that each uncertain parameter takes its worst value is in general very
low. Other models that relax slightly some robustness constraints to get a model more tractable have
later been developed ([10], [3]).

In our case, the conservative approach would be to consider that each node can have PV panels
installed so that the the only restriction on uPV

i is the binary restriction. However, the probability
that each household in a distribution network have PV panels installed is low. Therefore, inspired by
Bertsimas and Sim budget uncertainty set developed in [3], we propose to restrict the number of PV
installations possible (ΔPV

1 ). We thus impose the constraint
�

i∈N+

uPV
i = ΔPV

1

This parameter could potentially vary with time to take into account the penetration of PV systems
in the grid.
Note that there is a big drawback in imposing binary restrictions in the uncertain parameter. We
therefore relax this condition by allowing uPV

i to be continuous in [0, 1] and we suppose that it will
be exact because for voltage constraints, it is worse to have all the production at the same place
compared to a production that is spread in the entire network.

Now, let d̄PV
t be the nominal value of PV production at time t. This value is available to the DSO

as a forecast value. Let also δ
PV be its maximum deviation from the nominal value in percent of this

nominal value. For the uncertain production dPV
i,t , we also use a budget uncertainty set with the only

difference that the production is imposed to be 0 when uPV
i is 0. It can be expressed as

�
dPV

i,t ∈ R|
�

i∈N+,uPV
i �=0

d̄PV
t �=0

|dPV
i,t − d̄PV

t |
δ

PV
d̄PV

t

≤ ΔPV
2 ,

dPV
i,t ∈

�
uPV

i

�
d̄PV

t − δ
PV

d̄PV
t

�
, uPV

i

�
d̄PV

t + δ
PV

d̄PV
t

� ��

Note that we could also have used a maximum value for the deviation d̂PV
t that does not depend

on the nominal value like the set initially proposed by Bertsimas and Sim [3]. However, in our case, it
makes more sense to use a percentage of the nominal value so that when the nominal value of the
solar production is zero, the worst case is also zero. ΔPV

2 controls the level of conservatism. It varies
between 0 and ΔPV

1 . When it is 0, it corresponds to the deterministic case : the demand will take its
nominal value in all nodes. When it is equal to ΔPV

1 , it is the most conservative set and corresponds
to the whole hypercube for locations with PV installation.

EV location and load

The uncertainty related to Electrical Vehicle (EV) is different to the one related to PV production in
that for EVs, the uncertainty is more about when in the day consumers are going to charge their
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car instead of about how much power they will need to charge it. Let us in this section model the
uncertainty on location and timing of charge related to EVs.

The uncertainty on location will be modeled in the same way as for PV. Let uEV
i by a variable

equals to 1 if node i has an EV, 0 otherwise. We will impose the number of EVs in the network :
�

i∈N+

uEV
i = ΔEV

For the timing of charge, we will suppose that each EV owner will have to consume everyday a
fixed amount of energy, denoted by C, to charge the battery. We will denote by Td the set of time
steps that belongs to a certain day d. We represent each day by a positive integer d ∈ {1, . . . , D},
where D is the number of days during the time period considered. Note that we have T = ∪D

d=1Td.
We add the two following constraints on the EV demand :

�

t∈Td

dEV
i,t = uEV

i C, ∀i ∈ N+, ∀d ∈ {1, . . . , D} (2.12a)

dEV
i,t ≤ 1920h, ∀i ∈ N+, ∀t ∈ T (2.12b)

where 1920 represent the maximum power in W that one can obtain from the network and we recall
that h is the duration of a time step in hours (h is equal to 1 for an hourly resolution). Constraint
(2.12a) imposes that total charge is met for nodes with EV. Constraint (2.12b) ensures that the total
power allowed is not exceeded.

Other load

For the usual load, there is no notion of location. We can thus model it with a simple budget
constraint as �

dLoad
i,t ∈ R|

�

i∈N+

|dLoad
i,t − d̄Load

t |
d̂Load

t

≤ ΔLoad,

dLoad
i,t ∈

�
d̄Load

t − d̂Load
t , d̄Load

t + d̂Load
t

��

In this case, ΔLoad takes integer values between 0 and |N+|.
Let us define the set of extended uncertain parameters

d̃ =
�

di,t, dPV
i,t , uPV

i , dEV
i,t , uEV

i , dLoad
i,t | i ∈ N+, t ∈ T

�

Let us also denote the extended uncertainty set by D̃. It can thus be written as
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D̃ =
�

d̃ |
�

i∈N
uPV

i = ΔPV
1 ,

uPV
i ∈ [0, 1],

�

i∈N ,uPV
i �=0

d̄PV
t �=0

|dPV
i,t − d̄PV

t |
δ

PV
d̄PV

t

≤ ΔPV
2 ,

dPV
i,t ∈

�
uPV

i

�
d̄PV

t − δ
PV

d̄PV
t

�
, uPV

i

�
d̄PV

t + δ
PV

d̄PV
t

� �
,

�

i∈N
uEV

i = ΔEV,

uEV
i ∈ [0, 1],
�

t∈Td

dEV
i,t = uPV

i C

dEV
i,t ≤ 1920
�

i∈N

|dLoad
i,t − d̄Load

t |
d̂Load

t

≤ ΔLoad,

dLoad
i,t ∈

�
d̄Load

t − d̂Load
t , d̄Load

t + d̂Load
t

�
,

di,t = dPV
i,t − dEV

i,t − dLoad
i,t

�

Notice that D can be defined in function of D̃ as

D =
�

d | ∃ dPV
i,t , uPV

i , dEV
i,t , uEV

i , dLoad
i,t , i ∈ N+, t ∈ T | d̃ ∈ D̃

�
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Chapter 3
Solution

This chapter is dedicated to the presentation of the solution strategy that we will use to solve the
robust ODP. We first show in section 3.1 how we can solve the AC-OPF problem with a sequence
of convex problems. We then explain the two-stage robust algorithm used to deal with uncertainty.
After that, we present a method to find the right value of Cf to use in order to have a limited amount
of unplanned curtailment, as explained is section 2.2. Finally, we conclude this chapter by deriving
the dual of our problem and discussing the interpretation of some of the dual variables.

3.1 ACOPF as a sequence of SOCP

In order to develop an algorithm for solving problem (2.11), we need to express (2.10) as a conic
problem. For clarity, we recall here problem (2.10) :

min
x,y

a�x + b�y

s.t. x ∈ X
(x, y) ∈ Y(d)

where d is considered to be a deterministic known value. We will use this assumption throughout
this section and it will be relaxed in the next section (section 3.2). The transformation to a conic
problem will be achieved by using a technique designed by Na Li et al. and published in [5]. In this
section I will describe this algorithm and show how it can be applied to our problem.

Their idea is to use a Convex-Concave Procedure (CCP) to restore feasibility to the solution
obtained with the SOCP relaxation. There are thus two major steps : the first one uses the SOCP-OPF
formulation to obtain an initial point close to the global optimal. The second step solves a sequence
of problems where the nonconvex part of the quadratic constraint is linearized. A slack variable is
also added to this constraint and penalized in the objective so that feasibility is recovered at the end
of this step.

More formally, let us define the two following convex quadratic functions

• fj,t(y) = (vj,t + lj,t)2

• gj,t(y) = (vj,t − lj,t)2 + (2Pj,t)2 + (2Qj,t)2
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With this notation, the nonconvex quadratic constraint (2.9i), namely

vj,tlj,t = P 2
j,t + Q2

j,t

can be written as
fj,t(y) = gj,t(y)

and can be split into two inequalities
�

fj,t(y) ≥ gj,t(y)
fj,t(y) ≤ gj,t(y)

(3.1a)
(3.1b)

where we recognize that equation (3.1a) is the SOC constraint used in SOCP-OPF and where
equation (3.1b) is in general a nonconvex constraint. To make equation (3.1b) convex, we linearize
gj,t(y). Let gj,t(y, yk) be the linear approximation of gj,t(y) around yk, i.e.

gj,t(y, yk) = gj,t(yk) + ∇gj,t(yk)�(y − yk)

We also add a slack variable sj,t to prevent the constraint to be too restricitive. Its role will be
discussed in more details below. The slack variable is penalized in the objective to ensure convergence.
Equation (3.1b) at iteration k becomes thus

fj,t(y) ≤ sj,t + gj,t(y, yk)

Note that this constraint is convex. Let us also define the following notations :

• YSOCP is the set Y where the nonconvex quadratic constraint has been relaxed to the corre-
sponding SOC constraint. Recall that the quadratic constraints in Y describe the border of
some third order Lorentz cones. YSOCP is thus a superset of Y in which the interior of the
cones are added.

• z is the vector of variables y extended with sj,t, i.e. z = y ∪ {sj,t ∀j ∈ N+, ∀t ∈ T }
• c�

k z is the new cost at iteration k, i.e. c�
k z = b�y + ρk(�

j,t sj,t) where ρk is a penalty
parameter.

• Zk the feasible set for variables z as

Zk =
�

z = y ∪ {sj,t} | y ∈ YSOCP

fj,t(y) ≤ sj,t + gj,t(y, yk), ∀j ∈ N+, ∀t ∈ T

sj,t ≥ 0, ∀j ∈ N+, ∀t ∈ T
�
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With these notations, we can formally define the algorithm as follows :

Algorithm 1: The Convex-Concave Procedure for Feasibility Recovery.
Result: x∗ and z∗ feasible solution of (2.10)
Input: An initial penalty parameter ρ1,

a penalty growth rate parameter τ ,
a penalty upper bound ρM ,
a feasibility tolerance �.

Let k = 1;
Solve

min
x,y

a�x + b�y

s.t. x ∈ X
(x, y) ∈ YSOCP(d)

(3.2)

and let (x1, y1) be the optimal solution ;
Gap ← v1

j,tl
1
j,t − (P 1

j,t)2 + (Q1
j,t)2 ;

while Gap > � do
Solve

min
x,z

a�x + c�
k z

s.t. x ∈ X
(x, z) ∈ Zk(d)

(3.3)

and let (xk+1, zk+1) be the optimal solution ;
Gap ← vk+1

j,t lk+1
j,t − (P k+1

j,t )2 + (Qk+1
j,t )2 ;

ρk+1 = min(τρk, ρM ) ;
k ← k + 1 ;

end
x∗ ← xk ;
z∗ ← zk ;

Note that in what follows, we will call this algorithm the Feasibility Recovery Procedure (FRP).
Note also that problems (3.2) and (3.3) are both MISOCP and can thus be solved quite efficiently to
optimality with existing solvers. Our goal is now to free the uncertain variables d and solve (3.2)
and (3.3) in a robust way with respect to d. This is what is done in the next section (Section 2.6).
Before, we show an example of the behavior of algorithm 1 on a simple problem.

Example

This example shows the behavior of the algorithm on a simple 3D problem and highlights the role of
its parameters, namely ρ1 and τ .

Suppose that we want to solve the following small example involving an SOC equality constraint :
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min
x1,x2,x3

x1 (3.4a)

s.t. x1 =
�

x2
2 + x3

3 (3.4b)
x1 ≥ −x2 + 1 (3.4c)
x1 ≥ 0.5x2 + 0.5 (3.4d)
x1 ≥ −0.5x3 + 1 (3.4e)
x1 ≥ x3 + 0.5 (3.4f)

Note that if we ignore constraints (3.4c) to (3.4f), the solution is x1 = x2 = x3 = 0 which would
be the same solution as the corresponding SOCP relaxation. Constraints (3.4c) to (3.4f) are there to
force the solution of the relaxation to be in the interior of the cone. Let’s apply the FRP to obtain a
sub-optimal but feasible solution. We first solve the following SOCP relaxation :

min
x1,x2,x3

x1 (3.5a)

s.t. x1 ≥
�

x2
2 + x3

3 (3.5b)
(3.4c) to (3.4f)

The optimal solution is :

x0 = [0.8333, 0.3513, 0.3333]
We can check that it violates constraint (3.4b). At iteration k, we solve :

min
x1,x2,x3

x1 + ρks (3.6a)

s.t. (3.5b), (3.4c) to (3.4f)

x1 ≤ s +
�

(xk
2)2 + (xk

3)2 + xk
2�

(xk
2)2 + (xk

3)2
(x2 − xk

2) + xk
3�

(xk
2)2 + (xk

3)2
(x3 − xk

3)

(3.6b)

Two views of the cut (3.6b) for s = 0 together with the cone (3.5b) for k = 0 are represented in
Figure 3.1.
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Figure 3.1: Two views of the cuts and the second order Lorentz cone. x0 is represented by the red
dot.
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As Figure 3.1 gives us the intuition, equation (3.6b) forces the solution to lie on the extreme ray
defined by

�
λ

�
(xk

2)2 + (xk
3)2, λxk

2, λxk
3

�
for all λ > 0 when s = 0. The slack variable s controls

how much the solution can deviate from this extreme ray. The role of ρ1 and τ now appears clear :
they will play on the rate at which we make s go to 0. For our example, we will show the iterations
of the algorithm for two different choices of ρ1 to show its role. We set τ = 2.

First case : ρ1 = 0.5 The iterations are given on table 3.1.

Iteration nb Solution ρ s gap
1 [0.8333, 0.6667, 0.3333] 0.5 0.1203 0.1389
2 [0.9045, 0.8090, 0.4045] 1 8.7751 10−9 1.6029 10−8

Table 3.1: Iterations of the FRP for ρ1 = 0.5

On the following figure, we show these iterations on the level curves of the cone, together with
the associated extreme ray.
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Figure 3.2: Representation of the iterations (in red) on the level curves of the cone. The black line
represents the corresponding extreme ray.

We can see that as ρ1 is rather small, the first solution found has a nonzero s and is not on the
same extreme ray as the projection of the previous solution x0 on the cone. At the next iteration, ρ
increases, which makes s go to zero and consequently the solution lies on the same extreme ray as
the projection of x1. This makes also the gap go to zero.

Second case : ρ1 = 100 The table of iterations becomes
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Iteration nb Solution ρ s gap
1 [1.5211, 1.1274, 1.0211] 100 4.0733 10−4 9.8959 10−11

Table 3.2: Iterations of the FRP for ρ1 = 0.5

Now, as ρ1 is large, the optimal solution will be to directly have s = 0. The optimal solution is
thus the feasible solution with the smallest cost that lies on the same extreme ray as the projection
of x0. Note that obviously, the final solution in this second case has a larger cost than the solution
obtained in the first case. However, it converged in fewer iterations.

In conclusion, this example shows that it is important to pick an initial penalty parameter that is
not too large in order to prevent the difference between two successive solutions to be too large. The
price to pay is a greater number of iterations.

3.2 Two-stage algorithm

In this section, I will focus on problem (3.3) and show, based on [4], how we can solve its robust
counterpart. The same procedure can be applied to problem (3.2). We thus wish to solve

min
x∈X

�
a�x + max

d∈D
min

z∈Zk(x,d)
c�

k z
�

(3.7)

where d is now considered as variable. Notice that problem (3.7) can be equivalently reformulated
as

min
x∈X ,η

a�x + η

s.t. η ≥ min
z∈Zk(x,d)

c�
k z, d ∈ D

Then, by adding one variable z(d) for each possible value of the uncertain variable d, we can
formulate the same problem as

min
x∈X ,η,z(·)

a�x + η

s.t. η ≥ c�
k z(d), d ∈ D

z(d) ∈ Zk(x, d), d ∈ D

At the optimum, the value of z(d) will be the one associated to the worst case. Therefore, if we
had a way to find the worst case of the uncertainty dworst in advance, the problem to solve would
simply be

min
x∈X ,η,dworst

a�x + η

s.t. η ≥ c�
k z(dworst)

z(dworst) ∈ Zk(x, dworst)

which is an MISOCP problem for which there exists efficient solvers. The idea of Lorca and Sun’s
algorithm will thus be to include only a subset of all the z(d) variables and design a strategy to try
to find the worst case as soon as possible.
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Their suggestion is to use a two-stage solution strategy. Let S = {d∗
1, ..., d∗

k} be the worst case
candidates found so far, with all the d∗

j ∈ D.
At the kth iteration, we first solve the following master problem :

min
x∈X ,η,y(·)

a�x + η

s.t. η ≥ c�
k z(d), d ∈ S

z(d) ∈ Zk(x, d), d ∈ S

to obtain a first-stage solution x. We then solve the following second-stage problem, also called
the slave :

Q(x) = max
d∈D

min
zk∈Zk(x,d)

c�
k z

to obtain the new worst-case realization of uncertainty d∗
k+1 corresponding to the fixed investment

x. Notice that if the worst case has already been discovered and is contained in S, then η ≥ Q(x)
necessarily holds. Indeed, the second stage minimize c�

k z subject to the worst case but doesn’t see
the first stage cost a�x. It will thus always do better. Therefore, if Q(x) > η, it necessarily means
that we have not found the worst case yet. Thus, we update S as S ∪ {d∗

k+1} and proceed to a new
iteration. Otherwise, the algorithm terminates. It is proven in [4] that the algorithm converges in a
finite number of steps.
The interactions between the master and the slave are represented schematically in the following
figure :

Slave

Master

Slave

dworst(x) x

Figure 3.3: Master-Slave interactions

3.2.1 First-stage solution

Recall that at iteration k, we have to solve the following master problem :

min
x∈X

a�x + η

s.t. η ≥ c�
k z(d), d ∈ S

z(d) ∈ Zk(x, d), d ∈ S

Note that this problem belongs to the class of MISOCP. Indeed, Y is a set of linear and SOC
constraints and X contains integer restrictions constraints.
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3.2.2 Second-stage solution

The problem to solve at the second stage is

max
d∈D

min
zk∈Zk(x,d)

c�
k z (3.8)

As Zk(x, d) is a conic set, there exists a matrix A, a matrix G, a matrix H, a vector f and a
cone K such that

Zk(x, d) = {z|Az ≥K Gx + Hd + f}

where the notation x ≥K y used in conic theory means that x − y ∈ K. In our case, the cone K
is the cartesian product of a nonnegative orthant cone and a Lorentz cone.

We now notice that, by using the conic duality theory, problem (3.8) is equivalent to the following
bi-conic problem :

max
π,d

{π�(f + Gx) + π�Hd : d ∈ D, π�A = b�, π ≥K 0} (3.9)

This can be solved by the alternating direction method which consists in fixing sequentially π and
d and solving the following two conic problems

max
π

{π�(f + Gx) + π�Hd : π�A = b�, π ≥K 0}

max
d

{π�(f + Gx) + π�Hd : d ∈ D}

until convergence, that is, until their respective objective function coincides. Note that the finite
convergence can also be proven for this problem [4].

It remains now to show how we can obtain the value of Cf that will lead to the right amount of
unplanned curtailment. This is what is done in the next section.

3.3 How to find Cf ?

We argued in section 2.2 that by playing with the cost of fuse Cf we can reach a value of unplanned
curtailment that is much reduced compared to the value obtained without fuse limits. In this section,
we will describe a systematic method to find this value Cf .

We first define the following function :

Fuse : [0, ∞] → [−0.1, 0.9] : Fuse(Cf ) → x%
unplanned − 0.1

with x+
i,t and x−

i,t solution of algorithm 1 with equations (3.2) and (3.3) replaced by their robust
counterparts and with Cf fixed. Our goal is to find a root of this function. Note that we do not know
anything about the analytic expression of the function but we can evaluate it in any point by solving
model (2). A method to find the root of a nonlinear continuous function is the bisection method.
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This method is described in the following algorithm :

Algorithm 2: The bisection algorithm to find Cf

Result: Cf such that x%
unplanned = 0.1

Input: Cf and Cf such that Fuse(Cf )Fuse(Cf ) < 0

Cf =
Cf +Cf

2 ;
while Fuse(Cf ) �= 0 do

if Fuse(Cf )Fuse(Cf ) > 0 then
Cf ← Cf ;

else
Cf ← Cf ;

end

Cf =
Cf +Cf

2 ;
end

In practice, we will allow a tolerance for convergence. That is, the algorithm will terminate if
xunplanned is between 0.1-tol and 0.1+tol, where tol is the fixed tolerance.

3.4 Dual problem

In view of equation (3.9), we need to derive the conic dual of problems (3.2) and (3.3). This is what
we will do in this section. We will also comment on the interpretation that we can make of the dual
variables and constraints.

Before deriving the whole dual, let us first discuss the specific case of the dual of the SOCP-OPF
equations presented in section 2.1. The dual of these equations are indeed of particular interest as
they give insight on the value of electricity in the grid. Moreover, to the best of our knowledge,
this work is the first to use the conic dual of the SOCP formulation to derive an expression of the
locational marginal prices of electricity.

3.4.1 Distribution Locational Marginal Prices

As explained in [1], many DERs have locational value, that is, their value depends on their location.
The electrical energy is one of them. The locational nature of the value of electricity is due to
network constraints and losses. In the same way, this value has also a temporal nature due to the
dependence in time of the demand and the production. Moreover, these differences in location and
time exacerbates with the fact the the system is becoming more distributed. In this context, it can be
interesting to price electricity differently depending on the location and the time of the day at which
the consumption occurs. This is called nodal pricing and is used in the United States, among others.
The prices of electricity in the nodal pricing market design are called Locational Marginal Prices
(LMP). Whereas they can be easily calculated for high-voltage systems using the dual of the Direct
Current Optimal Power Flow (DCOPF) equations, it is much more challenging to compute them in
low-voltage systems such as distribution networks as the equations are nonlinear and in general not
even convex. However, we can use the SOCP relaxation presented in equations (2.2) and the conic
duality theory to get insights about LMPs in distribution networks.

In this section, we wish to investigate the evolution of the LMP in a simple network and derive and
expression for this evolution. We will thus formulate the constraints when the network is a path graph

30



and derive the dual of the AC-OPF constraints for this simple network. From these equations,we will
derive a fundamental expression for the evolution of the LMP and then analyze this result.

Primal formulation

We consider throughout this analysis that the graph underlying the network is a path graph. In that
case, a simpler formulation of the single stage SOCP-OPF problem along with the dual variables of
the constraint can be written as:

min
q,P,Q,v,l

n�

j=1
rjlj

s.t. (πa,0) : 0 = p0 + P1 − r1l1

(πr,0) : 0 = q0 + Q1 − x1l1

(πv,i) : vi−1 = vi − 2(riPi + xiQi) + (r2
i + x2

i )li, ∀i ∈ N+

(πa,i) : Pi = pi + Pi+1 − ri+1li+1, ∀i ∈ {1, n − 1}
(πr,i) : Qi = qi + Qi+1 − xi+1li+1, ∀i ∈ {1, n − 1}

(πa,n) : Pn = pn

(πr,n) : Qn = qn

(σ+
i ) : vi ≤ vi, ∀i ∈ N+

(σ−
i ) : vi ≥ vi, ∀i ∈ N

(η+
i ) : li ≤ li, ∀i ∈ N+

(η−
i ) : li ≥ 0, ∀i ∈ N+



γi1
γi2
γi3
γi4


 :




vi + li
vi − li

2Pi

2Qi


 ∈ L3, ∀i ∈ {1, n}
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Dual formulation

For this formulation, the dual can be written as :

max
π,σ,η,γ

�

i∈N+

�
−ηil

�
+

�

i∈N

�
σ−

i v − σ+
i v

�
(3.10a)

s.t. (v0) : πv,1 + σ+
0 − σ−

0 = 0 (3.10b)
(vi) : πv,i − πv,i+1 − γi1 − γi2 + σ+

i − σ−
i = 0, ∀i ∈ {1, n − 1} (3.10c)

(vn) : πv,n − γn1 − γn2 + σ+
n − σ−

n = 0 (3.10d)
(li) : (x2

i + r2
i )πv,i − riπa,i−1 − xiπr,i−1 − γi1 + γi2 + η+

i = −ri, ∀i ∈ {1, n} (3.10e)
(Pi) : −2riπv,i − πa,i + πa,i−1 − 2γi3 = 0, ∀i ∈ {1, n} (3.10f)
(Qi) : −2xiπv,i − πr,i + πr,i−1 − 2γi4 = 0, ∀i ∈ {1, n} (3.10g)
(qi) : πr,i = 0 (3.10h)




γi1
γi2
γi3
γi4


 ∈ L3, ∀i ∈ {1, n} (3.10i)

To simplify the analysis, we consider that voltage and current limits are not binding, which implies
that the corresponding dual variables σ and η take the value 0. By combining equations (3.10b) to
(3.10i), we can eliminate variables γ’s that are hard to interpret and obtain the evolution of the active
power price at node i in terms of prices at its neighbors :

πa,i−1 = −F ±
√

F 2 − 4E

2 = πa,i + 2riπv,i+1 (3.11)

± 2
�

r2
i πv,i(πv,i+1 − πv,i) + riπa,i(πv,i+1 − πv,i) − ri(πv,i+1 − πv,i)

The details of the computations are provided in appendix A. With this equation, we can see that
the active power price at one node depends on the price at the following node as well as on the price
of voltage at the two next nodes.

Equation (3.11) represents two solutions, depending on whether the power is produced (pi,t is
positive) or consumed (pi,t is negative) at node i.

Graphs representing the evolution of prices (power and voltage) and attesting the validity of
equation (3.11) are also given in appendix A.

3.4.2 Dual of the complete problem

Problem (3.2) together with dual variables for constraints involving second stage variables is given in
model 6. Model 7 gives the corresponding dual. Problem (3.3) and its dual are given in models 8
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and 9.

Model 6 Primal ODP (Primal-ODP)

Minimize:

Cf (K − K) +
�

g,j

�
wgLjCg

�
+ Cs

�

i,t

fi + η (3.12a)

Subject to:

η ≥ C+(
�

i,t

x+
i,t) + V OLL(

�

i,t

x−
i,t) +

�

g,j

�
Ljrg l̃j,t,g

�
(3.12b)

�

g∈G
wg = 1

wg binary

(πa,0,t) : pin
0,t − pout

0,t = p0,t +
�

j∈C0

�
Pj,t − (

�

g∈G
Ljrg l̃j,t,g)

�
, ∀t ∈ T (3.12c)

(πr,0,t) : 0 = q0,t +
�

j∈C0

�
Qj,t − (

�

g∈G
Ljxg l̃j,t,g)

�
, ∀t ∈ T (3.12d)

(πv,i,t) : vAi,t = vi,t − 2
� �

g∈G
LirgP̃i,t,g + LixgQ̃i,t,g + L

2
i (r2

g + x2
g)l̃i,t,g

�
, (3.12e)

∀i ∈ N+, ∀t ∈ T
(πa,i,t) : Pi,t + pin

i,t − pout
i,t = pi,t +

�

j∈Ci

�
Pj,t − (

�

g∈G
Ljrg l̃j,t,g)

�
, ∀i ∈ N+, ∀t ∈ T

(3.12f)

(πr,i,t) : Qi,t = qi,t +
�

j∈Ci

�
Qj,t − (

�

g∈G
Ljxg l̃j,t,g)

�
, ∀i ∈ N+, ∀t ∈ T (3.12g)




γi1,t

γi2,t

γi3,t

γi4,t


 :




vi,t + li,t
vi,t − li,t

2Pi,t

2Qi,t


 ∈ L3, ∀i ∈ N+, ∀t ∈ T (3.12h)

(σ−
i,t, σ+

i,t) : v ≤ vi,t ≤ v, ∀i ∈ N , ∀t ∈ T (3.12i)
(κ−

i,t, κ+
i,t) : K ≤ pi,t ≤ K, ∀i ∈ N+, ∀t ∈ T (3.12j)

(ζi,t) : di,t − x+
i,t + x−

i,t = pi,t, ∀i ∈ N+, ∀t ∈ T (3.12k)
(χ+

i,t) : x+
i,t ≥ 0, ∀i ∈ N+, ∀t ∈ T (3.12l)

(χ−
i,t) : x−

i,t ≥ 0, ∀i ∈ N+, ∀t ∈ T (3.12m)
(η−

i,t, η+
i,t) : 0 ≤ li,t ≤

�

g∈G
wgIg, ∀i ∈ N+, ∀t ∈ T (3.12n)

(�−
1,j,t,g, �+

1,j,t,g) : P wg ≤ P̃j,t,g ≤ Pwg, ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G (3.12o)
(�−

2,j,t,g, �+
2,j,t,g) : Pj,t − (1 − wg)P ≤ P̃j,t,g ≤ Pj,t − (1 − wg)P , ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G

(3.12p)
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(ρ−
1,j,t,g, ρ+

1,j,t,g) : Qwg ≤ Q̃j,t,g ≤ Qwg, ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G (3.12q)
(ρ−

2,j,t,g, ρ+
2,j,t,g) : Qj,t − (1 − wg)Q ≤ Q̃j,t,g ≤ Qj,t − (1 − wg)Q, ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G

(3.12r)
(ι−

1,j,t,g, ι+
1,j,t,g) : 0 ≤ l̃j,t,g ≤ INchoiceswg, ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G (3.12s)

(ι−
2,j,t,g, ι+

2,j,t,g) : lj,t − (1 − wg)INchoices ≤ l̃j,t,g ≤ lj,t, ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G (3.12t)
(τ−

i,t, τ+
i,t) : 0 ≤ ei,t ≤ fi, ∀i ∈ N , ∀t ∈ T (3.12u)

(δin−
i,t , δin+

i,t ) : pin
i ≤ pin

i,t ≤ pin
i , ∀i ∈ N , ∀t ∈ T (3.12v)

(δout−
i,t , δout+

i,t ) : pout
i ≤ pout

i,t ≤ pout
i , ∀i ∈ N , ∀t ∈ T (3.12w)

(νi,t) : ei,t = ei,t−1 + h
�
ξinpin

i,t−1 − 1
ξout

pout
i,t−1

�
, ∀i ∈ N , ∀t ∈ T+ (3.12x)

(νi,1) : ei,1 = 0, ∀i ∈ N (3.12y)

Model 7 Dual ODP (Dual-ODP)

Maximize:

−
�

i,t

�
σ+

i,tv − σ−
i,tv − ζi,tdi,t + τ+

i,tfi + δin,+
i,t pin

i − δin,−
i,t pin

i + δout,+
i,t pout

i − δout,−
i,t pout

i

�

−
�

j,t,g

�
�+

1,j,t,gPwg − �−
1,j,t,gPwg − �+

2,j,t,gP (1 − wg) + �−
2,j,t,gP (1 − wg) + ρ+

1,j,t,gQwg

− ρ−
1,j,t,gQwg − ρ+

2,j,t,gQ(1 − wg) + ρ−
2,j,t,gQ(1 − wg) + ι+

1,j,t,gINchoiceswg

+ ι−
2,j,t,g(1 − wg)INchoices

� −
�

j,t

�
κ+

j,tK − κ−
j,tK + η+

j,t(
�

g

wgIg)
�

(3.13a)

(3.13b)

Subject to:

(Pi,t) : πa,i,t − πa,Ai,t − 2γi3,t +
�

g

�
�−

2,i,t,g − �+
2,i,t,g

�
= 0, ∀i ∈ N+, ∀t ∈ T (3.13c)

(Qi,t) : πr,i,t − πr,Ai,t − 2γi4,t +
�

g

�
ρ−

2,i,t,g − ρ+
2,i,t,g

�
= 0, ∀i ∈ N+, ∀t ∈ T (3.13d)

(pi,t) : −πa,i,t + κ+
i,t − κ−

i,t − ζi,t = 0, ∀i ∈ N+, ∀t ∈ T (3.13e)
(p0,t) : −πa,0,t = 0, ∀t ∈ T (3.13f)
(qi,t) : −πr,i,t = 0, ∀i ∈ N , ∀t ∈ T (3.13g)
(vi,t) : −πv,i,t +

�

j∈Ci

πv,j,t − γi1,t − γi2,t + σ+
i,t − σ−

i,t = 0, ∀i ∈ N+, ∀t ∈ T (3.13h)

(v0,t) :
�

j∈C0

πv,j,t + σ+
0,t − σ−

0,t = 0, ∀t ∈ T (3.13i)
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(li,t) :
�

g

�
ι−
2,i,t,g − ι+

2,i,t,g

�
− γi1,t + γi2,t + η+

i,t − η−
i,t = 0, ∀i ∈ N+, ∀t ∈ T (3.13j)

(ei,t) : τ+
i,t − τ−

i,t + νi,t − νi,t+1 = 0, ∀i ∈ N , ∀t ∈ T− (3.13k)
(ei,T ) : τ+

i,T − τ−
i,T + νi,T = 0, ∀i ∈ N (3.13l)

(pin
i,t) : πa,i,t + δin,+

i,t − δin,−
i,t − hξinνi,t+1 = 0, ∀i ∈ N , ∀t ∈ T− (3.13m)

(pout
i,t ) : −πa,i,t + δout,+

i,t − δout,−
i,t + h

ξout
νi,t+1 = 0, ∀i ∈ N , ∀t ∈ T− (3.13n)

(pin
i,T ) : πa,i,T + δin,+

i,T − δin,−
i,T = 0, ∀i ∈ N (3.13o)

(pout
i,T ) : −πa,i,T + δout,+

i,T − δout,−
i,T = 0, ∀i ∈ N (3.13p)

(x+
i,t) : −ζi,t − χ+

i,t = −C+, ∀i ∈ N+, ∀t ∈ T (3.13q)
(x−

i,t) : ζi,t − χ−
i,t = −V OLL, ∀i ∈ N+, ∀t ∈ T (3.13r)

(P̃j,t,g) : 2Ljrgπv,j,t + �+
1,j,t,g − �−

1,j,t,g + �+
2,j,t,g − �−

2,j,t,g = 0, (3.13s)
∀j ∈ N+, ∀t ∈ T , ∀g ∈ G

(Q̃j,t,g) : 2Ljxgπv,j,t + ρ+
1,j,t,g − ρ−

1,j,t,g + ρ+
2,j,t,g − ρ−

2,j,t,g = 0, (3.13t)
∀j ∈ N+, ∀t ∈ T , ∀g ∈ G

(l̃j,t,g) : Ljrgπa,Aj ,t + Ljxgπr,Aj ,t + 2L
2
j (r2

g + x2
g)πv,j,t + ι+

1,j,t,g − ι−
1,j,t,g

+ ι+
2,j,t,g − ι−

2,j,t,g = −Ljrg, ∀j ∈ N+, ∀t ∈ T , ∀g ∈ G (3.13u)
σ+

i,t, σ−
i,t, κ+

i,t, κ−
i,t, χ+

i,t, χ−
i,t, η+

j,t, η−
j,t, �+

1,j,t,g, �−
1,j,t,g, �+

2,j,t,g, �−
2,j,t,g, ρ+

1,j,t,g, ρ−
1,j,t,g,

ρ+
2,j,t,g, ρ−

2,j,t,g, ι+
1,j,t,g, ι−

1,j,t,g, ι+
2,j,t,g, ι−

2,j,t,g, τ+
i,t, τ−

i,t, δin,+
i,t , δin,−

i,t , δout,+
i,t , δout,−

i,t , ζ0,t ≥ 0 (3.13v)



γi1,t

γi2,t

γi3,t

γi4,t


 ∈ L3, ∀i ∈ N+, ∀t ∈ T (3.13w)
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Model 8 Primal Feasibility Recovery ODP (Primal-FR-ODP)

Minimize:

(3.12a)

Subject to:

η ≥ V OLL(
�

i,t

x+
i,t + x−

i,t) +
�

g,j

�
Ljrg l̃j,t,g

�
+ ρ(

�

j,t

sj,t) (3.14a)

(3.12c) to (3.12y)



γi5,t

γi6,t

γi7,t


 :




fj,t + 1
fj,t − 1

2vj,t + 2lj,t


 ∈ L3, ∀j ∈ N+, ∀t ∈ T (3.14b)

(λj,t) : fj,t = sj,t + (vk
j,t − lkj,t)2 + (2P k

j,t)2 + (2Qk
j,t)2

+ 2(vk
j,t − lkj,t)(vj,t − vk

j,t) − 2(vk
j,t − lkj,t)(lj,t − lkj,t)

+ 8P k
j,t(Pj,t − P k

j,t) + 8Qk
j,t(Qj,t − Qk

j,t), ∀j ∈ N+, ∀t ∈ T (3.14c)
(υj,t) : sj,t ≥ 0, ∀j ∈ N+, ∀t ∈ T (3.14d)

36



Model 9 Dual Feasibility Recovery ODP (Dual-FR-ODP)

Maximize:

(3.13a) −
�

j,t

λj,t

�
(vk

j,t − lkj,t)2 + (2P k
j,t)2 + (2Qk

j,t)2

− 2(vk
j,t − lkj,t)vk

j,t + 2(vk
j,t − lkj,t)lkj,t − 8(P k

j,t)2 − 8(Qk
j,t)2

�
+ γj5,t − γj6,t (3.15a)

Subject to:

(3.13e) to (3.13g), (3.13i), (3.13k) to (3.13w)
(Pj,t) : πa,j,t − πa,Aj ,t − 2γj3,t +

�

g

�
�−

2,j,t,g − �+
2,j,t,g

�
− 8P k

j,tλ
k
j,t = 0, (3.15b)

∀j ∈ N+, ∀t ∈ T
(Qj,t) : πr,j,t − πr,Aj ,t − 2γj4,t +

�

g

�
ρ−

2,j,t,g − ρ+
2,j,t,g

�
− 8Qk

j,tλ
k
j,t = 0, (3.15c)

∀j ∈ N+, ∀t ∈ T (3.15d)
(vi,t) : −πv,i,t +

�

j∈Ci

πv,j,t − γi1,t − γi2,t + σ+
i,t − σ−

i,t − 2γi7,t − 2(vk
i,t − lki,t)λk

i,t = 0, (3.15e)

∀i ∈ N+, ∀t ∈ T
(li,t) :

�

g

�
ι−
2,i,t,g − ι+

2,i,t,g

�
− γi1,t + γi2,t + η+

i,t − η−
i,t − 2γi7,t + 2(vk

i,t − lki,t)λk
i,t = 0, (3.15f)

∀i ∈ N+, ∀t ∈ T
(fj,t) : λj,t − γj5,t − γj6,t = 0, ∀j ∈ N+, ∀t ∈ T (3.15g)
(sj,t) : −υj,t − λj,t = −ρ, ∀j ∈ N+, ∀t ∈ T (3.15h)




γi5,t

γi6,t

γi7,t


 ∈ L3, ∀i ∈ N+, ∀t ∈ T (3.15i)
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Chapter 4
Results

This chapter is dedicated to numerical experiments that will be performed on a real dataset. The
goal of this chapter is to validate the methodology presented in the previous chapters and understand
to what extent line reinforcement, fuse limits and storage investment are capable of addressing the
challenges of the DSO in the context of high penetration of DERs.

4.1 Description of the dataset

We use data from a real distribution network with real generation and load profiles. Our dataset is a
slightly simplified version of the data used in Niels Leemput PhD thesis [11] which is a real urban
feeder topology that was provided for the EIT-KIC InnoEnergy EVCity project [12]. This simplified
version was used in Arnaud Fabri’s master thesis [13].

4.1.1 Distribution grid

We will use two different distribution grids. The first one is a 29 households distribution network
made of one main feeder (primary line) and secondary lines connecting the households to the primary
line (see Figure 4.1). Both types of lines have the same characteristics. There are therefore 29
households nodes, 29 connection nodes and the substation node which connects the LV network to a
medium voltage network through a transformer of maximum power rating of 250kV, for a total of 59
nodes. All households are assumed to be connected to the same phase, with a rated neutral-to-phase
voltage of 230V. In what concerns the distances, the distance between the substation node and the
first connection node is 350m. Then, the distance between two successive connection nodes is 7.2m
until node 17 where there is a gap of 30m until the next connection node. After that, the nodes are
8.3m apart. Each house is located at a distance of 10m to its corresponding connection node. The
characteristics of the lines are summarized in table 4.1.

Impedance 0.31 + i0.0713
�
Ω km−1�

Current limit 210 [A]

Table 4.1: Characteristics of the line.

The second system we use is exactly the same grid but for which we keep only the 10 first nodes.
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Figure 4.1: The real distribution network used.
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Figure 4.2: The reduced distribution network.

The reason we will also use this dataset is because the computations can become slow when the
number of nodes is too high, which makes it challenging if we want to solve the problem with different
values of the parameters. Therefore, for certain experiments, we will run them on the smaller set. It
is schematically represented in figure 4.2.

4.1.2 Residential load and generation

We use real single-phase household electric power consumption profiles that were sampled in 2008,
with a 1 hour time resolution. We also have real PV power generation profiles for all these households
that are based upon measurements at an installation of the KU Leuven, also with a 1 hour resolution.
The horizon used is one week and the profiles were acquired in May.

4.1.3 Battery storage modeling

For the parameters of the battery storage modeling, we use the same assumptions and data as [13].
Therefore, we suppose negligible dissipation rate in the battery, we set the minimum input and output
rate to 0 and we use the same data derived from the Tesla PowerWall 2, which gives us the parameters
summarized in table 4.2.

Investment cost (Cs) 4.435 [e/MW h/h]
Maximum input rate (pin

i ) 0.37fi [MW h−1]
Maximum output rate (pout

i ) 0.37fi [MW h−1]
Charging factor (ξin) 0.975

Discharging factor (ξout) 0.975

Table 4.2: Parameters of the storage modeling.
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where fi is the total storage capacity invested in node i.

4.1.4 Voltage control

The European standard for voltage control allows a deviation of +10%/-10% from the nominal value
(here 230V). However, these values should hold for the entire network and only a fraction of these
deviations is accepted for each voltage level. In Flanders, the acceptable deviations for the LV network
are +1.5%/-6% [11]. In this work, we fix the value of the voltage at the substation node and use the
percentage deviations to derive the upper and lower bound for the square voltage magnitude. Values
are given in table 4.3.

Voltage magnitude at root 0.23 [kV]
Squared votage magintude at root (v0,t) 0.0529 [kV2]

Maximum of the squared votage magnitude (v) 0.0545 [kV2]
Minimum of the squared voltage magnitude (v) 0.4674 [kV2]

Table 4.3: Parameters of the voltage control.

4.1.5 Line reinforcement

In our experiments, we considered two possible choices of line. We have therefore Nchoices = 2 and
G = {1, 2}. The first possibility is to keep the installed line with characteristics given in table 4.1 at
a cost of C1 = 0. The second possibility is to reinforce the network at a nonzero cost C2. To find a
realisitc cost for the line replacement, we rely on data used in Benoît Martin’s PhD thesis [14]. The
costs are summarized in Table 4.4.

Annualized building cost of line 2770 [e/km/year]
Total cost for one week 53.26 [e/km]

Table 4.4: Cost of line reinforcement.

The new lines have characteristics given in table 4.5.

Impedance 0.26 + i0.07
�
Ω km−1�

Current limit 210 [A]

Table 4.5: Characteristics of the line.

4.1.6 Other parameters

Unless stated otherwise, the value for the other parameters that we use are given in table 4.6.
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VOLL 8300 [e/MW h]
Cost of PV curtailment (C+) 500 [e/MW h]

Cost of losses (Cl) 300 [e/MW h]
Maximum deviation from nominal value (δ) 0.1

Budget parameter for load (Δload) 10
EV battery capacity (C) 24 [kW h]

Budget parameter for PV (ΔPV
2 ) ΔPV

1
Initial penalty parameter (ρ1) 0.01

Growing rate of penalty parameter (τ) 2
Maximum penalty parameter (ρM ) 1012

Table 4.6: Parameters of the voltage control.

4.2 Impact of ΔPV
1

In this section, we focus on the number of PV installations and evaluate its impact on DSO investment
and operations. In particular, we wish to determine the number of PV installations above which it
becomes favorable to invest in storage.

As the procedure to determine the parameter Cf that corresponds to a specific value of x%
unplanned

is cumbersome, we will use a fixed value of Cf to perform this analysis. Moreover, it makes the
results more comparable.

Let us first show the behavior of the curtailment for different values of ΔPV
1 . We represent the

unplanned curtailment with and without fuse limits as well as the total unplanned curtailment that
takes place in the system (Figure 4.3).
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Figure 4.3: Total unplanned curtailment in the system for different number of PV installations.

Figure 4.3 shows that if we do not set any fuse limits, unplanned curtailment is needed to control
voltage and current as soon as there are two PV installations in the system. Moreover, we can see
that this unplanned curtailment without fuse limits (i.e. when Cf = 0), in dark blue in the bar chart,
increases with ΔPV

1 . This proves that solar production is in this case a problem for the reliability of
the network. In light blue, we can see the unplanned curtailment that remains when we add the fuse
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limits. The value of Cf was chosen so that this unplanned curtailment is around 10% for ΔPV
1 = 10.

The total curtailment, which includes the planned curtailment, is shown in yellow.

Let’s see now if storage investment is part of the optimal solution. The following figure represents
the total optimal storage capacity in function of ΔPV

1 together with the maximum demand in light
blue and the maximum reinjection in the network due to PV overproduction in yellow (Figure 4.4).
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Figure 4.4: Total storage capacity invested in the system for different numbers of PV installations. In
light blue, we show the sum of the demand in the whole network corresponding to the time step with
maximum demand. In yellow, the maximum PV production after curtailment for ΔPV

1 = 10.

We observe that it is favorable to invest in storage as soon as 4 houses have PV installations.
Moreover, the installed capacity increases with the number of PV installations. This is of course very
natural as there will be more solar production to be stored.

In the following figure, we show the distribution of the total investment and operational costs
with respect to the different types of cost, in function of ΔPV

1 (Figure 4.5).
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Figure 4.5: Distribution of the total cost for different numbers of PV installations.

On this figure, we first notice that the total cost increases with ΔPV
1 . This highlights the cost that

congestion due to large solar production represents for the network operator. The cost of the line
is zero in each case because it is not favorable to invest in a new line. We also observe that when
ΔPV

1 = 2, no PV curtailment takes place. This is because the small PV production in the network
does not cause any congestion problem and the fuse limit can thus safely be placed at the maximum
demanded injection. This can also be seen in figure 4.6 which represents the evolution of the fuse
limits.
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Figure 4.6: Fuse limits for different numbers of PV installations.

In what concerns the lower limit, the optimal value is the same for each value of ΔPV
1 and is slightly

above the minimum value of the demanded injection (which is negative when the power is consumed).
If we look more precisely at the curtailment profiles (Figure 4.7), we can see that the demand is
curtailed for one hour at one paticular house (house 4). So it is really the peak consumption that
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is cut. The upper limit depends on ΔPV
1 . In our case, it increases until 4 and then decreases. The

reason for this decrease is to be found in figure 4.3. Indeed, as ΔPV
1 increases, congestion in the

network also increases and unplanned curtailment has to take place. This is curtailment that, even if
we increase the upper fuse limit, would have had to occur. Therefore, it becomes better to decrease
the fuse limit to save some fuse cost. We can also explain this by reasoning in terms of cost: there is
a cost associated to higher fuse limit. The reason why it might be favorable to have a high limit, like
when ΔPV

1 = 4, is because it decreases the planned curtailment that is also costly. However, when
ΔPV

1 = 6 or more, the PV production is large and it tends to lead to congestion issues. Therefore,
even if we have a high limit, we would have to curtail (in the form of unplanned curtailment). So the
advantage of a high limit like for ΔPV

1 = 4 disappears and it’s better to decrease the limit.

To have more insight about how and where curtailment occurs, we show on figure 4.7 three typical
injection profiles. In dark blue, we show the power that is actually injected in the network. The
planned curtailment is shown in yellow while the unplanned curtailment is shown in cyan. Similarly,
in light blue, we show the power that is withdrawn from the network, with the planned curtailed
demand shown in magenta. Note that we do not observe any unplanned load curtailment.

The first profile corresponds to that of house 2 and is the typical profile of a house with a small
PV installation. For this house, nothing is curtailed. The second profile is representative of a house
with a large PV installation for which the production is highly curtailed but the peak demand of more
than 2kW is also slightly curtailed. It is actually the only time and place for which the demand is not
matched. The third profile is that of a house with a medium size installation, no planned curtailment
occurs but there is a bit of unplanned curtailment.

In the next section, we analyze the impact of ΔEV on the behavior of the system.

4.3 Impact of ΔEV

We will now analyze the impact of the number of Electrical Vehicles on the behavior of the planning
system. For this analysis, we fix ΔPV

1 to 10 and we make ΔEV vary between 0 and 10.

Let us first show what the curtailment without and with fuse limits becomes on figure 4.8.
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Figure 4.8: Total unplanned curtailment in the system for different number of PV installations.
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Figure 4.7: Typical curtailment profiles for representative houses.
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We first notice that the total unplanned curtailment without fuse limits, in dark blue in the graph,
is almost constant but drops when ΔEV goes from 6 to 8. The fact that curtailment tends to decrease
when we add EVs is because it enables to match better the demand with the overproduction. However,
in our case, the decrease is limited. This can be understood by recalling that we work with a robust
model that will always look for the worst case. The specific reason why there is a decrease between
node 6 and 8 is because there is a line reinforcement when ΔEV = 8, as we will discuss later. Similarly,
we show the profiles for ΔEV = 10 at house 2, 4 and 5 on figure 4.9

With this figure, we have a first preview of what it brings to have a robust solution : our algorithm
finds that in the worst case, the EVs are charged during the night when there are no PV production.
With a nonrobust solution, we would probably have found a solution that would have required much
less curtailment.

The costs are shown in figure 4.10.
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Figure 4.10: Repartition of the total cost for different numbers of EV installations.

The main difference with the costs obtained for the case without EVs and displayed in figure 4.5
is the cost of losses, which is now increased. Due to this increase in losses, it now becomes favorable
to invest in a new line when there are 8 EVs or more. The new line enables to reduce the cost of
losses as well as the cost of storage and of curtailment, as we can see on the figure.

The evolution of the fuse limits is quite different from the case without EVs. It is displayed in
figure 4.11.
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Figure 4.9: Typical curtailment profiles for representative houses with EV at every house.
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Figure 4.11: Fuse limits for different numbers of EVs.

The upper limits are very similar with the ΔEV although it increases suddently when the network
is reinforced. The reason for this increase is because bigger lines can handle more reinjection without
the need to resort to curtailment. The lower limit is obviously the same as the one of figure 4.6 when
ΔEV = 0. When ΔEV increases, the lower fuse limit goes down so that only the peak demand is
curtailed. This peak demand is shown in figure 4.9 in the last profile where the curtailed demand is
shown in magenta. This result is very similar to the one obtained for the case without EV where only
the peak demand was slightly curtailed.

4.4 Evolution of DERs

By combining the two previous sections, we will now show the impact of an increasing share of DER,
i.e. we will make both the number of PV installations and the number of EVs vary together. The
histogram of the evolution of the cost in this case is shown in figure 4.12.
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Figure 4.12: Evolution of the cost of the robust ODP with an increasing share of DER (PV installations
and EVs). Note that we set ΔPV

1 = ΔEV.

We observe that the solution is a mix of the two previous experiments : investment in storage is
made as soon as there are 4 PV installations and 4 EVs and a new line is build when there are eight
of them.

For this same experiment, the evolution of the curtailment and the fuse limits, similarly to the
previous cases, are given respectively in figure 4.13 and 4.14.
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Figure 4.13: Total unplanned curtailment in the system for different number of DERs.

49



0 2 4 6 8 10
Nb of PV in talltion  and EV  (Delta_PV = Delta_EV)

−4

−3

−2

−1

0

1

2

3
F
u
 
e
 l
im

it
 
 [

k
W

]

Figure 4.14: Fuse limits for different numbers of DERs.

Interestingly, the combination of a large number of PV installations and EVs yields a different
patterns in the evolution of fuse limits than when only the number of PV installations was increasing
and that was shown in Figure 4.6. Whereas then, the fuse limits kept decreasing with ΔPV

1 , here, the
fuse limits increase from 8 to 10 PV installations and EVs. A larger investment in storage becomes
favorable, which allows to curtail less PV production and to satisfy more demand.

4.5 Analysis of robustness

One of the main feature of our model is that it is robust to load and production uncertainties as well
as to location and charging time of the EVs. In this section, we propose to analyze in more details
the worst case behavior of the system with respect to these uncertainties.

4.5.1 Robustness on PV location

The first experiment that we will do is to compare our solution with the solution that we would have
obtained if we had only imposed a total PV capacity in the whole network, distributed in each house.
This is equivalent to fixing the value of uPV

i to ΔPV
1
n , where n is the number of houses. This means

that instead of having ΔPV
1 houses which have one full PV installation, all houses have a fraction of a

full installation.

Let us fix ΔPV
1 to 6. The following figure compares the total cost in the case of the robust solution

and in the case of fractional PV installations (Figure 4.15).
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Figure 4.15: Comparison between the price in the case of the model robust and nonrobust to PV
location. The case named fractional corresponds to ΔPV

1 being fixed to 6
10 for each house whereas

the case called robust with fractional investment means that ΔPV
1 is unfixed but we fix the investment

decisions to those found by the fractional solution.

The total cost of the robust solution is almost twice the cost of the nonrobust one. This shows the
importance for the DSO to have a solution that is robust to the location of PV installations. More
particularly, we can see that the robust solution involves more curtailment of high PV production and
invests more in storage. If we use the investment decisions of the fractional case with the worst-case
profiles, we can see that the cost is higher than when we use the robust investment. This highlights,
again, the advantage of having a robust solution.

4.5.2 Location in the worst case

It would also be interesting to see in which nodes the PV installations are located with our robust
solution. To analyze that, we go back to the 29 households dataset. When we fix ΔPV

1 to 15 and
ΔEV to 0, we obtain the distribution of PV installations shown in figure 4.16.
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Figure 4.16: In yellow, the location of the PV installations in the network.

On this figure, we see that the PV systems tend to be located at the end of the line. The
exceptions are due to the fact that the PV installations are all of different size. The algorithm will
thus notice that it is worse to have a large installation at the beginning of the line compared to a
small one at the end. If we artificially let all PV profiles be the same (equal to the average profile),
the figure becomes :
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Figure 4.17: In yellow, the location of the PV installations in the network in the case of same
production profiles for each house.

The reason for this pattern, as explained in [13], is that it is cheaper to reinject production that is
closer to the substation node because the line losses will be reduced.

4.6 Gap of the Feasibility Recovery Procedure

Recall that at this stage, the solution that we obtained with algorithm 1 has no optimality guarantee.
Indeed, we used the FRP and the solution of the SOCP relaxation to obtain a solution that is feasible
and close to the solution of the relaxation. As a feasible solution, the corresponding value of the
objective gives us an upper bound on the optimal solution. The optimal value of the relaxed problem
is a lower bound. To give some insight on the value of the gap between the two bounds, we show
them on figure 4.18 for the case where we make ΔPV

1 vary.
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Figure 4.18: Evolution of the upper and lower bound of the solution when ΔPV
1 increases.

Note that, as part of the robust algorithm, the FRP has to be solved several times. We show
here only the values of the gap for the last problem solved. We observe in figure 4.18 that the gap
increases with ΔPV

1 . This is because the inexactness of the SOCP relaxation increases, too. Indeed,
this inexactness increases when the curtailment of the PV production increases. As we can see on the
graph, when no PV curtailment takes place (i.e. for ΔPV

1 = 0 and 2), the gap is zero. The close link
between the PV curtailment and the inexactness of the SOCP relaxation can be explained because
it breaks assumption (A2). This assumption can be understood as follows : the SOCP relaxation
allows to recover the feasibility of the convex solution by throwing away electricity at each node, i.e.
to curtail without any cost. This curtailment is thus curtailment that does not necessarily have to
take place for physical reasons. This is incompatible with the modeling of fuse limits, that should be
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chosen with respect to the real physical curtailment. Therefore, in our model, this curtailment has a
cost, which explains why whenever PV curtailment should happen for physical reasons, the SOCP
relaxation is inexact and we need to go through the FRP.

Finally, note also that it is not because there is a nonzero gap in figure 4.18 that the solution we
found is not optimal. In fact, in the initial paper which proposes the FRP ([5]), the authors argue
that if the parameters of the algorithm are chosen delicately, the solution found by FRP will be very
close, if not equal, to the optimal solution.

4.7 Execution time and number of iterations

In this section, we discuss the performances of the algorithm. First, we show the time taken by each
model of the complete algorithm for a fixed choice of line in Figure 4.19. There are six different
models to solve. First, there are three models solved during the SOCP relaxation: the first-stage
problem where investment decisions are made, the second stage with a fixed di,t parameter and the
second stage with fixed ζi,t. Note that the first-stage and the second stage with fixed d are both
SOCP whereas the second stage with fixed ζ is a Linear Program (LP), in view of our uncertainty set
presented in section 2.6. All experiments were carried out on a laptop with Intel i7-5500U CPU and
8 GB memory. The optimization models were coded in GAMS and both the quadratic and linear
problems were solved with Gurobi.
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Figure 4.19: Total running time of the algorithm for each type of model. The time is expressed in
seconds of wall-clock time.

On this figure, we first observe that the time increases a lot from 0 to 4 PV installations. This
increase is clearly due to the fact that the SOCP relaxation is exact at each iteration when there are
0 PV installation whereas for 4 PV installations, it is inexact and we have to go through the costly
FRP. The case of 2 PV installations is a bit in-between : there is a small infeasibility for the case
Cf = 0 but no infeasibility for the nonzero value of Cf . Then, the time is more or less constant until
10 PV installations where there is a small drop. This drop is partly due to the fact that there is no
more uncertainty on the PV location as all houses have an installation.

In the table below (Table 4.7) we show the maximum number of iterations before convergence for
each part of our algorithm. The parts of the algorithm that require convergence are the following :
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1. The alternating direction method to solve the bi-conic problem.

2. The master-slave iterations to find the worst case of the uncertainty.

3. The number of iterations of the Feasibility Recovery Procedure.

Type of loop ΔPV
1 = 0 ΔPV

1 = 2 ΔPV
1 = 4 ΔPV

1 = 6 ΔPV
1 = 8 ΔPV

1 = 10
Alternating directions 1 2 2 2 2 2

Worst case 2 2 3 3 2 2
Feasibility recovery 0 10 10 10 10 10

Table 4.7: Number of iterations for each type of loop.

This table shows that the alternating direction converges quickly to solve the bi-conic problem, i.e.
in one or two iterations. It also shows that as expected, it is slightly more complicated to find the
worst case with an intermediate value of ΔPV

1 . Finally, we observe that the FRP always converges in
the same number of iterations (10). This corresponds to the iteration number at which ρ becomes of
the same order of magnitude than the cost of the problem.

4.8 Conlusion to the real case analysis

In this chapter, we analyzed the behavior of our robust algorithm on a real distribution network.
There are three main conclusions that we can draw from this real case study :

1. In the current state of the development of storage technologies, with realistic prices for line
reinforcement and with realistic generation profiles, investing in batteries and installing new lines
can help DSOs to reduce curtailment and their operational cost while reducing the discrimination
of the customers along the line.

2. Having a solution that is robust to load and generation uncertainties brings to light the true
value of storage in a distribution grid.

3. The combination of the willingness to have a robust solution and deciding on fuse limits increase
greatly the complexity of the problem.
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Chapter 5
Conclusion

Context

As the electric power system is becoming more and more distributed and digitized, the Distribution
System Operators face new challenges. To overcome these challenges, the role of the DSO should
change completely. Whereas its role has always been to plan the investment in the network so that
production could match the demand at any time, it will now have to include a real-time operation of
the network to manage fuse limits and storage capacities. In one word, we could say that the DSO
will have a much more active role in the operations of its network. To help in this transition, new
decision-making tools will have to be developed.

For the time being, there are many issues in the way distribution systems with high share of DERs
are managed. Indeed, DSOs tend to rely a lot on curtailment to maintain a high level of reliability
of the electricity delivered to the customers. This is of course a problem for meeting the objectives
on the share of electricity coming from renewable energy, but it is also a problem as it tends to
discriminate people regarding their location in the network, which is often seen as problematic. The
new tools should take these issues into account.

Besides the necessity for DSOs in developed countries to use new techniques to integrate renewable
energies in the grid, these techniques are also important for developing countries, in which access
to electricity can be a major issue for part of the population. As it is noted in [14], a majority of
people who lack electricity live in rural areas. In that same work, it is argued that decentralized
electrification is often a good option for providing these people with access to energy. In this context,
the number of low-voltage micro-grids could rise in the coming years. The operations of these grids
will also necessitate decision-making tools that can take into account distributed production and
handle uncertainty in an appropriate way.

Summary

In this master thesis we proposed a new decision-making framework which aims at helping DSOs to
couple the planning and the operations of their network in the context of large amount of DERs. We
first presented a model for finding the optimal fuse limits, storage investment, line characteristics and
power flow in the network. We then modeled the uncertainty on solar panels location, solar production,
electrical vehicles location, charge timing and residential load. We showed how our problem can be
solved in a robust way with respect to the uncertainty set defined. Finally, we validated our model
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and the solution in experiments performed on a real distribution network with realistic production
and load profiles and we discussed to what extent this new tool can help DSOs to overcome the
challenges of the electric power system transition.

Through the real case application, we gave evidence in support of the argument stating that fuse
limits are appropriate to reduce the curtailment in the network and to avoid important discrimination
along the line. We showed that storage investment can reduce the investment and operational costs of
the DSOs and we have quantified the share of DERs above which it becomes interesting to reinforce
the network. We also characterized the advantages that a robust solution represents.

The main limitation of this work is the inefficiency of the robust algorithm that prevents the
solution in its current state to be applied to large network. Although we showed that the solution
time is reasonable for the 10 nodes and one week horizon real case, the problem appears intractable
in its current form. This is because the SOCP solvers are not yet efficient enough to solve large
problems such as ours. However, we can hope that in the future, their efficiency will improve and that
our problem will become tractable. Moreover, it is possible that other algorithms than the standard
barrier method are more efficient in this particular case.

Research perspectives

Probably one of the most important direction for further research would be to come up with techniques
to speed up the algorithm and make the problem tractable. One idea that it would be worth exploring
is the use of distributed optimization to leverage the increasing power of parallel computing. Moreover,
it should be noted that our problem has intrinsically a distributed nature as some of the optimization
variables involved are geographically localized in different places. In the future, we could imagine
that a processor would be located at each node of the physical network and would communicate with
a central processor that would process the investment variables and the information coming from
every node. For the parallelization, algorithms like the Alternating Directions Method of Multipliers
(ADMM) have proved to be well suited for conic problems [15]. A similar idea has already been
proposed in [16] with the proximal message passing method, which is a version of ADMM. In their
solution, each node in the network communicates with its neighbors and solve its own optimization
problem to solve the global OPF. Generalization of this technique to our problem could be possible
and would help to speed up the execution time.

In the same idea, parallel primal-dual interior-point method has recently been proposed in [17]
to solve the DCOPF. The idea is to exploit the special structure of the OPF equations to solve the
large sparse linear system involved in the primal-dual interior point method. It could be interesting to
investigate the possibility to extend this technique to the conic problem of the SOCP relaxation of
the ACOPF.

Besides the geographically decentralized nature, note also that the two-stage master-slave algorithm
3.2 could, with little changes, be parallelized as the different second-stage problems depend only on
the first-stage decision but are mutually independent.
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Chapter A
Evolution of the power price in a path graph

This section presents the detailed computations for deriving the formula of the evolution of the LMP.
After that, the results are validated graphically and a physical interpretation of this evolution is given.

For each i ∈ {1, ..., n − 1}, let us combine the dual constraints to eliminate the variables γi. We
have





2γi1 = −πv,i + πv,i+1 − (x2
i + r2

i )πv,i + riπa,i−1 + xiπr,i−1 − ri

2γi2 = −πv,i + πv,i+1 + (x2
i − r2

i )πv,i − riπa,i−1 − xiπr,i−1 + ri

2γi3 = 2riπv,i + πa,i − πa,i−1

2γi4 = 2xiπv,i + πr,i − πr,i−1

⇔
�

− πv,i + πv,i+1 − (x2
i + r2

i )πv,i + riπa,i−1 + xiπr,i−1 − ri

�2
≥

�
− πv,i + πv,i+1 + (x2

i + r2
i )πv,i − riπa,i−1 − xiπr,i−1 + ri

�2

+
�
2riπv,i + πa,i − πa,i−1

�2
+

�
2xiπv,i + πr,i − πr,i−1

�2

⇔ −4riπv,iπa,i−1 − 4xiπv,iπr,i−1 + 4(x2
i + r2

i )π2
v,i − 4(x2

i + r2
i )πv,iπv,i+1 + 4riπv,i+1πa,i−1

+4xiπv,i+1πr,i−1 + 4ri(πv,i − πv,i+1) ≥ 4r2
i π2

v,i + 4x2
i π2

v,i + (πa,i − πa,i−1)2 + 4riπv,i(πa,i − πa,i−1)
+(πr,i − πr,i−1)2 + 4xiπv,i(πr,i − πr,i−1)

⇔ 4riπv,i+1πa,i−1 + 4xiπv,i+1πr,i−1 − 4(x2
i + r2

i )πv,iπv,i+1

−(πa,i − πa,i−1)2 − (πr,i − πr,i−1)2 + 4ri(πv,i − πv,i+1) ≥ 4riπv,iπa,i + 4xiπv,iπr,i

which can be written as

4riπv,i+1πa,i−1 + 4xiπv,i+1πr,i−1 − C ≥ 4riπv,iπa,i + 4xiπv,iπr,i
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with

C = 4(x2
i + r2

i )πv,iπv,i+1 + (πa,i − πa,i−1)2 + (πr,i − πr,i−1)2 − 4ri(πv,i − πv,i+1)

If we separate the active and the reactive power and we consider the case of an equality, we are
left with

4riπv,i+1πa,i−1 − 4r2
i πv,iπv,i+1 − (πa,i − πa,i−1)2 + 4ri(πv,i − πv,i+1) = 4riπv,iπa,i

⇔ 4riπv,i+1πa,i−1 − 4r2
i πv,iπv,i+1 − π2

a,i + 2πa,iπa,i−1 − π2
a,i−1 + 4ri(πv,i − πv,i+1) = 4riπv,iπa,i

⇔ π2
a,i−1 + (−2πa,i − 4riπv,i+1)πa,i−1 + 4r2

i πv,iπv,i+1 + π2
a,i + 4riπv,iπa,i − 4ri(πv,i − πv,i+1) = 0

⇔ π2
a,i−1 + Fπa,i−1 + E = 0

with

�
F 2 = 4π2

a,i + 16r2
i π2

v,i+1 + 16riπv,i+1πa,i

4E = 4π2
a,i + 16r2

i πv,iπv,i+1 + 16riπv,iπa,i − 16ri(πv,i − πv,i+1)

The solution is

πa,i−1 = −F ±
√

F 2 − 4E

2 = πa,i + 2riπv,i+1

± 2
�

r2
i πv,i+1(πv,i+1 − πv,i) + riπa,i(πv,i+1 − πv,i) − ri(πv,i+1 − πv,i)

Power produced This is the case where the net injection is positive. It corresponds to the solution
with a positive sign. The results are indeed similar in theory and in the model, as shown on figure A.1.

Figure A.1: Comparison between the evolution of the price along the line in theory and when the
model is solved. This is the case of produced power at each node.
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Based on [18], we can have a physical interpretation of this evolution of the price along the line.
Indeed, this evolution is closely linked with the optimal value of voltage at each node. The evolution
of voltage along the line is as follows (Figure A.2)

Figure A.2: Evolution of the optimal value of the voltage along the line.

We observe that the voltage at node i + 1 is lower than the voltage at node i. This means that
by marginally increasing the injected power at node i + 1, we will make the voltage at that node
decrease. Consequently, the current on the line will (see figure in [18]) increase and thus make the
objective value increase so the price at node i + 1 will be positive and higher than the price at node i.

Power consumed In this case, prices are positive and it makes sense that the active power price
increase along the line. The second solution (minus sign) should thus be chosen. In this case, again,
theory predicts well the behavior of the prices as obtained when solving the model, provided we change
Ohm’s law constraints so that it yields increasing dual variables. The results are shown on figure A.3.

Figure A.3: Comparison between the evolution of the price along the line in theory and when the
model is solved. This is the case of consumed power at each node.

61



Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve www.uclouvain.be/epl


