Long Run Equilibrium of Zonal Pricing Followed by Market-Based Re-Dispatch

VAME 2022, Brescia

Quentin Lété Joint work with Yves Smeers and Anthony Papavasiliou Louvain Institute of Data Analysis and Modeling in economics and statistics

10 May 2022

Introduction

Short run competitive equilibrium

Long run competitive equilibrium

Results: case study on Central Western Europe

Conclusion and perspectives

Introduction

Short run competitive equilibrium

Long run competitive equilibrium

Results: case study on Central Western Europe

Conclusion and perspectives

Transmission capacity allocation in Europe: Zonal pricing

- 1. Market cleared with unique price per zone
- 2. Re-dispatching is needed to recover feasible dispatch

Figure 1: Bidding zones in Europe. Source: Meeus (2020).

The status quo is increasingly challenged

Why ? Re-dispatching costs are rising.

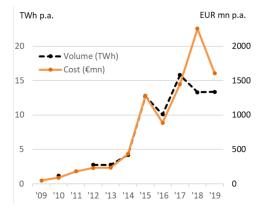


Figure 2: Increasing re-disptach costs and volume in Germany. Source: Hirth and Slecht (2020).

Cost-based vs market-based re-dispatch

Two approaches for organizing re-dispatch:

Cost-based re-dispatch

- Mandatory participation
- Compensation to get profit neutrality
- No locational signal for investment
- Default rule in most countries in Europe

Market-based re-dispatch

- Voluntary participation
- Competitive auction with nodal prices
- Leads to opportunity for arbitrage
- Used in some countries (e.g. the Netherlands)
- Favored by the EU commission

Technical

- How to model the competitive long run equilibrium of zonal pricing followed by market-based re-dispatch ?
- How to solve the model efficiently ?

Policy

- Is the design efficient in the short run and long run ?
- What is the impact of uncertainty in re-dispatch price ?
- Can we restore the efficiency with an additional market instrument (i.e. locational capacity charge) ?

Introduction

Short run competitive equilibrium

Long run competitive equilibrium

Results: case study on Central Western Europe

Conclusion and perspectives

 \rightarrow Simplifying assumptions to focus on the relationship between zonal pricing and re-dispatch.

- 1. 3 types of agents: Producers, a TSO and a Walrasian auctioneer
- 2. Inflexible demand
- 3. Agents are price-takers
- 4. All profit-maximizing problems are convex
- 5. No irrevocable decision are made in zonal pricing

- y_{in} : production of technology *i* in node *n* in the zonal market
- \tilde{y}_{in} : re-dispatch amount (+ or -)

$$\max \rho_{Z(n)} y_{in} + \tilde{\rho}_n \tilde{y}_{in} - MC_i (y_{in} + \tilde{y}_{in})$$
$$(\mu_{in}) : X_{in} - y_{in} \ge 0$$
$$(\tilde{\mu}_{in}) : X_{in} - y_{in} - \tilde{y}_{in} \ge 0$$
$$(\delta_{in}) : y_{in} + \tilde{y}_{in} \ge 0$$
$$y_{in} \ge 0$$

▶ p_z : net position (export - import) of zone z

$$\begin{aligned} \max &-\sum_{z} p_{z} \rho_{z} \\ \text{s.t.} \ (\gamma_{m}) : p \in \mathcal{P} \Leftrightarrow W_{m} - \sum_{z} V_{mz} p_{z} \geq 0, m \in M \end{aligned}$$

- \tilde{r}_n : amount of re-dispatch bought at node *n*
- $ightharpoonrightarrow r_n$: net injection of node *n*

$$\begin{aligned} \max &-\sum_{n} \tilde{r}_{n} \tilde{\rho}_{n} \\ \text{s.t.} \ (\nu_{n}) : r_{n} - \sum_{i} y_{in} + D_{n} - \tilde{r}_{n} = 0, n \in N \\ (\tilde{\gamma}_{m}) : r \in \mathcal{R} \Leftrightarrow \tilde{W}_{m} - \sum_{n} \tilde{V}_{mn} r_{n} \geq 0, m \in \tilde{M} \end{aligned}$$

 \rightarrow Generalized Nash because variables y_{in} appear in the TSO's problem.

▶ $\tilde{\rho}_n$: re-dispatch price in node *n*

In the zonal market

$$\max \rho_z(p_z - \sum_{i,n \in N(z)} y_{in} + D_z)$$

In the re-disaptch market

$$\max \tilde{\rho}_n(\tilde{r}_n - \sum_{in} \tilde{y}_{in})$$

Formulation as an LCP

Producers

 $0 \leq y_{in} \perp MC_i + \mu_{in} + \tilde{\mu}_{in} - \rho_{Z(n)} - \delta_{in} \geq 0$ $\tilde{y}_{in} \text{ free } \perp MC_i + \tilde{\mu}_{in} - \tilde{\rho}_n - \delta_{in} = 0$ $0 \leq \mu_{in} \perp X_{in} - y_{in} \geq 0$ $0 \leq \tilde{\mu}_{in} \perp X_{in} - y_{in} - \tilde{y}_{in} \geq 0$ $0 \leq \delta_{in} \perp y_{in} + \tilde{y}_{in} \geq 0$ **TSO**

$$p_z$$
 free $\perp \rho_z + \sum_m V_{mz} \gamma_m = 0$

$$0 \leq \gamma_m \perp W_m - \sum_z V_{mz} p_z \geq 0$$

 $\tilde{r}_n \text{ free } \perp \tilde{\rho}_n + \nu_n = 0$
 $r_n \text{ free } \perp -\nu_n + \sum_m \tilde{V}_{mn} \tilde{\gamma}_m = 0$
 $\nu_n \text{ free } \perp r_n - \sum_i y_{in} + D_n - \tilde{r}_n = 0$
 $0 \leq \tilde{\gamma}_m \perp \tilde{W}_m - \sum_n \tilde{V}_{mn} r_n \geq 0$
Market clearing
 $\rho_z \text{ free } \perp p_z - \sum_{i,n \in N(z)} y_{in} + D_z = 0$
 $\tilde{\rho}_n \text{ free } \perp \tilde{r}_n - \sum_{in} \tilde{y}_{in} = 0$

Re-dispatch equations in the LCP

Producers

 $0 \le y_{in} \perp MC_i + \mu_{in} + \tilde{\mu}_{in} - \rho_{Z(n)} - \delta_{in} \ge 0$ $\tilde{y}_{in} \text{ free } \perp MC_i + \tilde{\mu}_{in} - \tilde{\rho}_n - \delta_{in} = 0$ $0 \le \mu_{in} \perp X_{in} - y_{in} \ge 0$ $0 \le \tilde{\mu}_{in} \perp X_{in} - y_{in} - \tilde{y}_{in} \ge 0$ $0 \le \delta_{in} \perp y_{in} + \tilde{y}_{in} \ge 0$ **TSO**

$$p_z$$
 free $\perp \rho_z + \sum_m V_{mz} \gamma_m = 0$

$$0 \leq \gamma_m \perp W_m - \sum_z V_{mz} p_z \geq 0$$

 $\tilde{r}_n \text{ free } \perp \tilde{\rho}_n + \nu_n = 0$
 $r_n \text{ free } \perp -\nu_n + \sum_m \tilde{V}_{mn} \tilde{\gamma}_m = 0$
 $\nu_n \text{ free } \perp r_n - \sum_i y_{in} + D_n - \tilde{r}_n = 0$
 $0 \leq \tilde{\gamma}_m \perp \tilde{W}_m - \sum_n \tilde{V}_{mn} r_n \geq 0$
Market clearing
 $\rho_z \text{ free } \perp p_z - \sum_{i,n \in N(z)} y_{in} + D_z = 0$
 $\tilde{\rho}_n \text{ free } \perp \tilde{r}_n - \sum_{in} \tilde{y}_{in} = 0$

We observe that the re-dispatch equations in the LCP correspond to the KKT conditions of the nodal economic dispatch problem:

min
$$\sum_{in} MC_i \bar{y}_{in}$$

s.t. $X_{in} - \bar{y}_{in} \ge 0, i \in I, n \in N$
 $r_n - \sum_{in} \bar{y}_{in} + D_n = 0, n \in N$
 $r \in \mathcal{R}$

 \rightarrow This shows that zonal pricing followed by market-based re-dispatch is efficient in the short run

The full solution to the short run equilibrium can be obtained as follows:

- 1. Solve the nodal economic dispatch problem.
- 2. Denote by $\tilde{\rho}_n^*$ the nodal prices.
- 3. Solve the following zonal economic dispatch problem:

min
$$\sum_{in} \tilde{\rho}_n^* y_{in}$$

s.t. $X_{in} - y_{in} \ge 0, i \in I, n \in N$ $[\mu_{in}]$
 $p_z - \sum_{i,n \in N(z)} y_{in} + D_z = 0, z \in Z$ $[\rho_z]$
 $W_m - \sum_z V_{mz} \rho_z \ge 0$ $[\gamma_m]$

Introduction

Short run competitive equilibrium

Long run competitive equilibrium

Results: case study on Central Western Europe

Conclusion and perspectives

Additional decision variable:

x_{in}: capacity invested in technology i in node n

$$\max \sum_{t \in T} \left(\rho_{Z(n)t} y_{int} + \tilde{\rho}_{nt} \tilde{y}_{int} - MC_i (y_{int} + \tilde{y}_{int}) \right) - IC_i x_{in}$$

$$(\mu_{int}) : X_{in} + x_{in} - y_{int} \ge 0$$

$$(\tilde{\mu}_{int}) : X_{in} + x_{in} - y_{int} - \tilde{y}_{int} \ge 0$$

$$(\delta_{int}) : y_{int} + \tilde{y}_{int} \ge 0$$

$$x_{in} \ge 0, y_{int} \ge 0$$

 \rightarrow Introducing investment completely modifies the nature of the problem !

The investment condition links both problems together:

$$0 \le x_{in} \perp IC_i - \sum_{t \in T} \mu_{int} - \sum_{t \in T} \tilde{\mu}_{int} \ge 0$$

with $\sum_{t \in T} \mu_{int} = \text{zonal rent}$ $\sum_{t \in T} \tilde{\mu}_{int} = \text{re-dispatch rent}$

Cannot be solved as two sequential optimization problems

- Correspond to a large LCP with special structure
- Existence and unicity must be checked

Proposition

If the marginal costs, the investment costs and the demand in all nodes are non-negative, then the investment problem with zonal pricing followed by market-based re-dispatch has a solution.

Proof.

M is copositive and

$$[v \ge 0, Mv \ge 0, v^{\top}Mv = 0] \Rightarrow v^{\top}q \ge 0$$

 \rightarrow Use the basic linear splitting algorithm for solving LCPs: M=B+C

- 1. Initialization. Let z_0 be an arbitrary nonnegative vector, set $\nu = 0$.
- 2. General iteration. Given $z^{\nu} \ge 0$, solve the $LCP(q^{\nu}, B)$ where

$$q^{
u} = q + C z^{
u}$$

and let $z^{\nu+1}$ be an arbitrary solution.

3. Test for termination. If $z^{\nu+1}$ satisfies a prescribed stopping rule, terminate. Otherwise, return to Step 1 with ν replaced by $\nu + 1$.

- \rightarrow This takes advantage of the special structure of the problem:
 - Almost an optimization problem
 - Just one variable has been dropped in producers problem
 - LCP(q, B) is a linear optimization problem if the market was complete
- B = skew-symmetrix matrix and

$$C = \begin{pmatrix} \tilde{\rho}_{nt} \\ 0 & \cdots & I & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

Solution methodology: iterations

At iteration ν , solve

$$\min \sum_{int} MC_i \bar{y}_{int} + \sum_{in} IC_i x_{in} + \sum_{int} \tilde{\rho}_{nt}^{\nu} y_{int}$$

s.t. $X_{in} + x_{in} - \bar{y}_{int} \ge 0$
 $r_{nt} - \sum_{int} \bar{y}_{int} + D_{nt} = 0 \ [\tilde{\rho}_{nt}^{\nu+1}]$
 $r_{:t} \in \mathcal{R}$
 $X_{in} + x_{in} - y_{int} \ge 0$
 $p_{zt} - \sum_{i,n \in N(z),t} y_{int} + D_{zt} = 0$
 $p_{:t} \in \mathcal{P}$

Stop when $\tilde{\rho}_{nt}^{\nu+1} = \tilde{\rho}_{nt}^{\nu}$

Introduction

Short run competitive equilibrium

Long run competitive equilibrium

Results: case study on Central Western Europe

Conclusion and perspectives

- ▶ 632 buses and 945 branches
- Hourly time series data for net demand
- ▶ 892 existing units

Туре	Number of units	Total installed capacity [GW]	
Nuclear	73	77.67	
Natural gas	403	56.38	
Coal	93	30.7	
Lignite	59	20.82	
Oil	75	6.37	
Other	189	6.08	

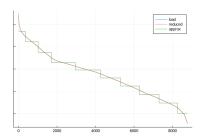
3 types of candidate units

Туре	IC [k€/MW yr]	FC [k€/MW yr]	MC [€/MWh]
CCGT	80.1	16.5	61.29
OCGT	56.33	9.33	100.4
CCGT&CHP	94.39	16.5	41.37

Data reduction

Network

Periods

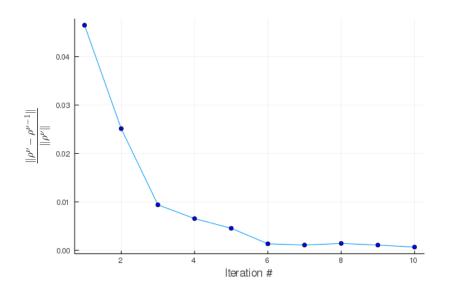


Policy	Op. cost	Inv. cost	Total cost
		[M€/yr]	
Nodal	15,810	10,433	26,243
Cost-based re-dispatch	16,835	10,909	27,744
Market-based re-dispatch	15,867	19,057	34,924

Table 1: Performance comparison of the different policies.

- Important losses of efficiency compared to nodal and const-based re-dispatch
- Due to much higher investment cost
- Operational costs are indeed very similar

Convergence



Introduction

Short run competitive equilibrium

Long run competitive equilibrium

Results: case study on Central Western Europe

Conclusion and perspectives

Summary

- Model of zonal pricing followed by market-based re-dispatch as Generalized Nash
- Efficient in the short run (under simplifying assumptions which do not hold in practice)
- Large losses of efficiency in the long-term
- Splitting algorithm leveraging special structure

Model enhancements

- Uncertainty in the re-dispatch price
- Additional market instruments to recover efficiency

Remaining questions

- Unicity ?
- Convergent algorithm ?

Thank you

Contact : Quentin Lété, quentin.lete@uclouvain.be https://qlete.github.io