
Programming Techniques for Scientific
Simulations I

Authors: T. Lausberg, R. Worreby, revised by R. Barton

Contact: toml@ethz.ch, rworreby@ethz.ch, rbarton@ethz.ch

In relation to lecture by: Dr. Roger Käppeli

For corrections, questions, remarks please contact the current maintainer: rbarton@ethz.ch

Note: Offline cppreference is searchable via "Index" or "std Symbol Index" from homepage, use Crl+F

Fully revised chapters: 1-3, 9, 16-22

Recent Changes (see git also):

Reorganisation: Added 5. C++ Features & Keywords, moved chapters around
6 Functors, Operators, small changes
14 Inheritance corrections, some inaccuracies previously

Table of Contents

Programming Techniques for Scientific Simulations I
Table of Contents
1. C++ compiling

1.1 Compile Process
1.2 Compile via CLI

Compile Options
Optimisation Options
Libraries
Example

1.3 Pre-processor Macros
Include Guards
Examples

Conditional Compilation
Replacement
Undefine Macros
If-Statement

2. Make
2.1 Makefiles
2.2 Variables
2.3 Examples

3. CMake
3.1 General

Running CMake

af://n44262
mailto:rbarton@ethz.ch
af://n44289

Basic CMake Functions
Minimal Example

3.2 Examples
Libraries with Subdirectories
Eigen Library
Installing Example (Ex06 Benchmark)

4. Classes
Definition of a class (Data declarators)
How to design classes
Example - Traffic Light
Example - Point
Class terminology

5. C++ Features & Keywords
5.1 Features

Namespaces
Ternary Operator
Range-based for loops
Lambda Expressions

5.2 Keywords
Keyword Auto
Typedef / Using
Constants, Mutable & Volatile
Static Variables
Static Inside Classes
Friends
*this
=default & =delete
Misc

6. Functions & Operators
Inlining
Functors & Passing Functions
Operators

Conversion Operators
7. Traits

C++ Concepts
8. Exceptions
9. Timer
10. Random Number Engines

Random numbers
Distributions

11. Data Structures in C++
Arrays
Linked lists
Trees
Queues and Stacks
Generic traversal of containers

Array implementation:
Linked list implementation:

12. Algorithms Overview
13. Templates

Function Overloading
Generic Algorithms
Templated Classes

Template Specialization
14. Inheritance

Access Specifiers
Abstract Base Classes (ABC)

15. Programming Styles
Run-time vs Compile-time Polymorphism
Comparison on programming Styles

Procedural programming
Modular programming
Object orientated programming
Generic programming

16. Hardware
16.1 CPUs

Instruction Sets
Von Neumann Bottleneck

16.2 CPU Optimisations
Pipelining
Branch Prediction
Vectorisation
GPUs

16.3 Memory
Random Access Memory (RAM)
Caches

16.4 Memory Optimisations
Cache Line
Cache Associativity
Virtual Memory
Worst Case Caching

17. Optimisation
17.1 Profiling Runtime
17.2 General Optimisations

Datastructures and Algorithms
Loop unrolling
Compiler Optimisations
Storage order and optimising cache

17.3 Template Meta Programming
I. Calculating Constants - Factorial
II. Loop Unrolling
III. Expression Templates

18. BLAS & LAPACK
Example

19. Input / Output
19.1 Formatting Streams
19.2 File Streams

File IO in CLI
File IO in C++
HDF5

20. Python
20.1 Python Modules
20.2 Classes

Static variables
Copying Instances
Inheritance

20.3 Decorators
Built-in Decorators
Custom Decorators

1. C++ compiling

1.1 Compile Process

Programs can be split into several files/libraries, compiled separately and finally linked together.

.ii pre-processed files, with macros run ie # lines

.s assembly files (already specific to a CPU/OS)

.o are compiled files (object code)

.a , .so are compiled static, shared libraries respectively

.out or .exe is the final program to be run. a.out is the default name (machine code)

1. Preprocessor, handles all lines starting with a # (Macros), outputs c++ text file
2. Compiler + Assembler, convert c++ code to assembly code
3. Linker, combines compiled .o files to a runnable file

1.2 Compile via CLI

This process independent of compiler (c++, g++, clang) and options/flags can be added mostly in any order.
You have to be careful with the order when linking multiple files

Compile Options

-o Set name of output (usually last flag)

-Wall -Wextra -Wpedantic Turn on more warnings (-Weverything with clang)

-std=c++11 Set C++ version

-Dname=value Define macro name (case-sensitive), =value optional

-lname Link the library named libname.a . If libx.a calls a function in liby.a, you need to link in the right
order: -lx -ly

-Lpath Set where to look for libraries. Use just -L. to look in current dir

c++ [options] file1 file2...
c++ main.cpp timer.cpp -std=c++17 -o main.exe

af://n44292
af://n44293
af://n44314
af://n44317

-Ipath (as in -i) Add directory to look for headers, often used for adding library headers

-c Compile files to .o , don't link

-E Preprocess only

-S Preprocess and compile to assembly files .s

-g Generate additional debugging information

--save-temps Saves intermediate compile files: .ii .s .o

--help To see more options

Optimisation Options

-DNDEBUG turn off debug code, such as asserts

-O3 Set optimisation level 3 (possible 0-5, fast)

-O flags are shortcuts to turn on many different compiler optimisation techniques. Levels 4+
increase the risk of wrong code being generated.
-Os optimises a program for size instead of speed
-Og: enables optimisations that don't affect debugging (gcc >= 4.8)
-O0 (default level) switch off optimisations

-march=native Minimum processor architecture to be run on, native is the architecture of the computer
running the compiler on. Can also put other arch instead of native .

-fopt-info gives you information on which optimisations have been done (gnu compilers)

-funroll-loops Will optimise short loops by writing out the iterations individually

Libraries

Static/shared libraries are essentially pre-compiled collections of .cpp files with header files (.a or .so +
headers).
We include the libraries’ header files, so we know how to interface with the library when compiling our own
.o files, i.e. knowing which functions exists, their input/outputs.
During the linking stage we combine the pre-compiled library and our .o files, where the linker checks that
the functions actually exists

Create static library:

1. c++ -c square.c To compile files to .o

2. ar rcs libsquare.a square1.o square2.o To create the library from compiled .o's. include 'lib' as
prefix to easily include later.

r means replace existing, c don't warn if lib doesn't exist, s create lib index

Create shared library: (a library that exists only once in memory, can be used by several programs at once)

1. c++ -fPIC -c square.c To compile files to .o, -fPIC for position independent code
2. c++ -shared -fPIC -o libsquare.so square1.o square2.o To create library from compiled .o's.

Header Only Libraries

af://n44341
af://n44362

Libraries that are not pre-compiled and all code is in the headers, which means more compile time optimisations
can be made (but is slower to compile)
Necessary for templated libraries, templates are always in the header as we need to create a compiled
version per type that is used. E.g. Eigen

Example

square.hpp

square.cpp

main.cpp

Compiling:

1. Compile the file square.cpp , with the -c option (no linking, creates square.o)
$ c++ -c square.cpp

2. Compile the file main.cpp , link square.o and output square.exe
$ c++ main.cpp square.o -o square.exe

3. Alternatively, compile main.cpp with no linking as in step 1. Then perform just the linking
$ c++ main.o square.o –o square.exe

Using Library:

1. $ c++ -c square.cpp

2. Package square.o into a static library
$ ar rcs libsquare.a square.o

3. Compile main.cpp and link the lib, -L. to look for lib in current folder (signified by the .)
$ c++ main.cpp -L. -lsquare or directly
$ c++ main.cpp libsquare.a

After a while this gets tedious use a build system, e.g. make, cmake…

double square(double x);

#include "square.hpp"
double square(double x) {
 return x*x;
}

#include <iostream>
#include "square.hpp" //cpp not included

int main() {
 std::cout << square(5.);
}

af://n44381

1.3 Pre-processor Macros

All lines starting with a # are handled by the pre-processor (1st compilation step). These manipulate the cpp
text file, removing/adding/replacing text, before compilation.

Remember compiler flags: -DNAME=VALUE to define a variable with an optional value and -E to output only pre-
processed .ii file.

Common Macros:

#include <filename> pastes the file into that line, brackets affect where to look for the file

<> looks in list of directories known to the compiler, where libs are installed, commonly
/usr/include

“” looks in the current directory first then where <> looks, can specify a relative path e.g. #include
“lib/simpson.h”

#define NAME VALUE defines variable in code, value is optional (default is 1)

Important: then all occurrences of NAME below will be replaced by VALUE
Using the -D compiler flag is equivalent to writing #define on the first line
#define NAME(param1, param2) function advanced defines exist with parameters (see example)

#undef NAME undefine/delete var

#ifdef NAME Checking if variables are defined (exist) is a good way of doing boolean logic, as the user
only has to define the variables they are interested in when compiling.

#if CONDITION if statement, works with normal logical operators && , || , ! etc

can also use defined(NAME) in the condition, to check if NAME is defined
#endif close an if-statement, like the } in c++

#else , #elif (else-if)

#error message throw error, printed to console (#warning also exists)

Use Cases:

Including files
Conditional compilation, e.g. platform specific
Control from terminal, how to compile
Error checking, e.g. on invalid defined variables
Text manipulation, replacement (not recommended)

Tips:

Don’t use macros unless you have to, using this can lead to:

Unexpected side effects
Problems with debugger and other tools
No type safety

Use all caps names to prevent unwanted name conflicts with c++ code, causing the code to be replaced

Macros are very important in C but have far fewer uses in C++. Almost every macro demonstrates a flaw in the
programming language or programmer.
Because they rearrange the program text before the compiler properly sees it, macros are also a major
problem for many programming support tools.

af://n44406

So when you use macros, you should expect inferior service from tools such as debuggers, cross- reference
tools, and profilers.
If you must use macros, read the reference manual and try not to be too clever.

Include Guards

#include will paste the source file in place. But if we include the same file in multiple places we are dulicating
the code and so redeclaring the same classes/functions. This gives linker errors (when we combine the
compiled .o files)

So we use macros, to ensure the code is only ‘included‘ once for the whole project. Essentially this makes the
file appear empty when pasting with the #include . The macros below should surround all the code in the
file.

Other #include in the file can be placed anywhere as they are also guarded. Its best to have them below the
#define … as the pre-processor only needs to execute that once.

Examples

Conditional Compilation

Replacement

#ifndef GRANDFATHER_H //convention: name the symbol as the name of the file
#define GRANDFATHER_H //define the symbol so afterwards we do not enter here
struct foo{
 int member;
};
#endif /* GRANDFATHER_H */

#define SYMBOL //or compile with: "c++ -DSYMBOL main.cpp"

#ifdef SYMBOL
something
#else
alternative
#endif

//converted to
something

#define A 12
std::cout << A;
//converted to
std::cout << 12;

#define SUM(A,B) A+B
std::cout << SUM(3,4);
//converted to
std::cout << 3+4;

#define std //example of accidental name conflict, avoid this

af://n44468
af://n44473
af://n44474
af://n44476

Undefine Macros

If-Statement

#define std 1 //equivalent
std::cout << "hello";
//converted to
1::cout << "hello"; //syntax error

#define XXX “Hello”
std::cout << XXX;
#undef XXX
std::cout << “XXX”;

//converted to
std::cout << “Hello”;
std::cout << “XXX”;

#if !defined (__GNUC__)
 #error This program requires the GNU compilers
#elif __GNUC__>=3
 std::cout << “gcc version 3 or higher”;
#endif

af://n44478
af://n44480

2. Make

This is used to compile a project with several files into an executable file, hence a build automation tool. It
handles dependencies and detects changes to files, to only recompile necessary files.

We write a Makefile (no file extension) to define how to compile our project in that directory.
We create a rule for each target (output/compiled file), which defines how to create/update that file
We can add dependencies to a target, this will ensure that each of the dependencies is present and
updated (if there is a rule for it) before we run the commands for the target

Use in CLI:

make usually used to build the whole project. Will build the first target in the Makefile
make mytarget run the rule for mytarget
make -f file use a specific makefile
make -n ‘dry run’ just prints commands to be executed, useful to debug, see if variables are correct etc
make -C path run a makefile in the path directory. Used later to run a makefile from within a makefile

2.1 Makefiles

target the name of the rule and its output file

dependencies list all files that are required to exist/be up-to-date to create the file rule

Be sure to include the header as a dependency, so that it checks there for changes as well
command write normal terminal commands, usually to compile a cpp or create a library

Important: needs to have a tab before, not 3 spaces
.PHONY: target is used to say that a rule does not correspond to a file, e.g. all or clean

The target all is often added as the first rule which defines what is to be compiled. As it is the first
rule, we are setting it as the default target.

export to expose variables to the environment. Allows other makefiles called to see the same variables
(see longer example)

Short Example:

Instead of issuing commands manually:

This is the 'rule' for the output file 'target'
target: dependencie/s
[TAB]command/s

main.exe: main.cpp simpson.hpp simpson.o
 c++ -o main.exe main.cpp simpson.hpp simpson.o

simpson.o: simpson.cpp simpson.hpp
 c++ -c simpson.cpp

$ c++ -c simpson.cpp
$ c++ -o main.exe main.cpp simpson.hpp simpson.o

af://n44483
af://n44504

2.2 Variables

my_var = value to set variable
${my_var} or $(my_var) to get value

It is best to create an additional config.mk file to store the local values of the variables (don’t ad to git).
Then include the file with -include . By adding the - in front of include we say that this is optional.

Special Variables:

$@ Name of the target, for the current rule
$< Name of the first dependency (like arrow the leftmost dependency)
$^ List of all dependencies (with spaces)

Predefined Variables:

CXX Command for compiling C++ (default g++)
CXXFLAGS flags/options for the compiler
LDFLAGS flags/options for compilers when linking
LDLIBS Library flags or names for compilers when linking
MAKE The make command we used to run the file. Use this when running another makefile from within
make, as the options are passed as well. Avoid using just the make command.
RM Command to remove a file (default rm -f)

2.3 Examples

config.mk, stores variables

integrator/Makefile, makefile to create the library

-include config.mk

CXX = g++
CXXFLAGS = -std=c++11
CXXFLAGS += -Wall -Wextra -Wpedantic
CXXFLAGS += -O3 -march=native
LDFLAGS = -Lintegrator
LDLIBS = -lintegrate

af://n44530
af://n44556

Makefile

For projects with multiple directories, it is common to create a Makefile per directory, then call them with
$(MAKE) -C path as in the libintegrate.a or clean above

Create a library from the object code
libintegrate.a: simpson.o
 ar rvs $@ $^
ar rvs libintegrate.a simpson.o (evaluated code)

Object code depending on header and implementation.
simpson.o: simpson.cpp simpson.hpp
 $(CXX) $(CXXFLAGS) -c -o $@ $<
g++ std=c++11 <more flags> -c -o simpson.o simpson.cpp (evaluated code)

.PHONY: clean
clean:
 rm -f *.o *.a

-include config.mk

Export variables into the environment. So that other makefiles see the same variables
export

The first target is called 'all' by convention and used to set what we want to run
.PHONY: all
all: main.exe

Compile our code and generate an executable binary together with the library
main.exe: main.cpp integrator/libintegrate.a
 $(CXX) $(CXXFLAGS) -o $@ $< $(LDFLAGS) $(LDLIBS)
evaluates to
c++ -std=c++11 <more flags> -o main.exe main.cpp -Lintegrator -lintegrate
test yourself with: make -n

Exported variables will also be visible in a sub-make
integrator/libintegrate.a:
 $(MAKE) -C integrator # Call the makefile in the integrator folder

.PHONY: clean
clean:
 rm -f *.o *.a main.exe # could also use $(RM) instead of 'rm -f'
 $(MAKE) -C integrator clean # call the clean of the other makefile

3. CMake

CMake is a cross-platform build system generator. It is used to define how to compile projects. This is so that
we can simply specify which executables/libraries we want to create with which files.

Commonly it creates a Makefile which we can then run to compile our project. However, it can be used for
many compilers/platforms/build systems (not just make).

3.1 General

We create a CMakeLists.txt file where we define how to build our project. Where we write all CMake code

Running CMake

1. cmake <path> create a Makefile using the CMakeLists.txt from the <path>

Reminder: Current directory is . and one directory up is ..
The Makefile is created in the current directory by default
It is recommended to create a separate build directory so that our compiled files do not fill up our
source directory

2. make compile the project with make

make target compile a specific target (target names defined in CMakeLists)
3. make install install files, usually for libraries (defined in CMakeLists what to install)

4. make clean delete all compiled files

Short Example:

Basic CMake Functions

Short list of basic functions that can be added to the CMakeLists.txt:

cmake_minimum_required() sets the minimum version of CMake for this project, prevents errors from
backward compatibility issues

You should use the current version of CMake on your system cmake --version

project() sets the project name, useful for debugging

add_executable(<Target Name> <Source Files>) compile an executable

Target Name name of the executable, use this later when adding libraries etc
Source files list of all files/dependencies, separated with spaces
Source files do not have to be in the current folder, must write with path

add_library(<Name> <TYPE> <Source Files>) create a library, similar to add_executable

Starting in source directory, where CMakeLists is located
$ mkdir build
$ cd build
$ cmake ..
$ make
or compile a specific target
$ make square.exe

af://n44565
af://n44568
af://n44570
af://n44592

Note: The filename has the lib prefix (i.e. lib<Name>)
Type is either STATIC or SHARED

target_link_libraries(<target> <libraries>) Makes the library accessible to the target, adds it in
the linking stage of compilation, (-l flag)

Use the name of the library without the lib prefix
add_subdirectory(<path>) run the CMakeLists.txt in a subdirectory, e.g. for your own library

We can then use the targets/libraries created in the other CMakeList

Compiling:

add_definitions (-D<NAME>) sets compiler definitions for use with macros

include_directories(<path>) Tells the pre-processor where to look for #include <> files

Use this when header files, e.g. for a library, are not in the default install folders or the project.
Or to avoid writing path, #include "QR" instead of #include "Eigen/QR" (not recommended)

target_include_directories(<Target> PRIVATE <path>) Newer version of include_directories
specific for a target and has an access level

find_package(<NAME>) searches for an installed library to be linked (see eigen example)

add_compile_options(<flags>) way of setting compile flags manually

e.g. add_compile_options(-Weverything)

Variables:

set(variable value) to set the value of a variable, can also have multiple values to create a list

$(variable) to use the variable, as usual
set(CMAKE_BUILD_TYPE Release) sets release (vs development) to optimise further

set(CMAKE_CXX_STANDARD 11) use C++11

file(GLOB <variable> <expression>) finds all files that meet the expression and saves it to the var

e.g. file(GLOB varName “integrator/*.cpp”) (not recommended, should be explicit)
Then we can just add_executable(main ${varName})

Installing Files:

Note: Will only install with make install
The idea is to copy the output files to a standard location so they can be easily accessed from anywhere
e.g. so that we can use the #include <myLibrary> without having myLibrary in our project
or run the program from any directory in the terminal

install(TARGETS <targets> DESTINATION <path>) installs the target outputs (ie .exe or .a) by
copying them to the path

Can specify for only parts to be installed by adding LIBRARY , RUNTIME etc. before DESTINATION
FILES instead of TARGETS just copies the files, used for headers
path will be a relative path, prefix with ~ (home) or / (root) to use the absolute paths

Testing:

See Exercise 6 Testing

We create another executable, with a main() , for the test. When we throw an unhandled exception or an
assert is false, the test fails

enable_testing() need to set this otherwise tests will not be compiled

add_test(NAME test_name COMMAND test_target_name) to add a target as a test, need to
add_executable(test_target_name test.cpp) to compile the test target

This just classifies an executable as a test, so that we can easily call the test and also disable the
test from being compiled

make all test to execute all tests

Minimal Example

It is easy to forget to write the VERSION in the first line

Adding Warning Flags (Common)

3.2 Examples

Libraries with Subdirectories

Generally, we have a separate directory per library. There are two options for subdirectories:

1. Use one CMakeLists and add path prefixes, e.g. timer/timer.h

2. Create a separate CMakeLists for each library/subdirectory and ensure it is called with
add_subdirectory(path)

Normally used for a library or other distinct module of the program

Subdirectories Example (Ex03 Simpson)

We have a subdirectory integrator with files: CMakeLists.txt, simpson.cpp, simpson.h

Option 1:

add_executable(genome_test genome_test.cpp) # create the executable test
target_link_libraries(genome_test penna) # add necessary libraries
add_test(NAME Genome COMMAND genome_test) # add the test

cmake_minimum_required(VERSION 2.8) # Require certain version
project(ProjectName) # Name your project

Compile the square program from the two source files
add_executable(square.exe main.cpp square.cpp)

if(CMAKE_CXX_COMPILER_ID MATCHES "(C|c?)lang") #need to distinguish between compilers
 add_compile_options(-Weverything)
else()
 add_compile_options(-Wall -Wextra -Wpedantic)
endif()

af://n44693
af://n44698
af://n44699

Option 2:

CMakeLists.txt in integrate/ subdirectory

Eigen Library

Note: this requires that Eigen is installed, i.e. exists in /usr/include/eigen3
sudo apt install libeigen3-dev

Installing Example (Ex06 Benchmark)

Reminder: installing just means copy the files to a specific folder

cmake_minimum_required(VERSION 3.1)
project(simpson_cmake)

add_library(simpson_lib STATIC integrator/simpson.cpp) # Create the static library
ensure header files can be included for the simpson.cpp
target_include_directories(simpson_lib PUBLIC integrator)

add_executable(main main.cpp)
target_link_libraries(main simpson_lib) # Link the library to the executable

cmake_minimum_required(VERSION 3.1)
project(simpson_cmake)

this tells cmake to look for a CMakeLists.txt file in the folder integrator
(which is where the add_library command is defined)
add_subdirectory(integrator)

all that remains is to define our executable and the library to link against
add_executable(main main.cpp)
target_link_libraries(main simpson_lib)#Link the library created in the other CMakeList

add_library(simpson_lib STATIC simpson.cpp) # Create the static library
target_include_directories(simpson_lib PUBLIC ./)#Include the headers in the currentdir

cmake_minimum_required(VERSION 3.10)
project(Exercises)

add_executable(main main.cpp)

Add Eigen libary, use #include <Eigen/Dense> afterwards
find_package (Eigen3 3.3 REQUIRED NO_MODULE)
target_link_libraries (main Eigen3::Eigen)

Benchmark/CMakeLists.txt
cmake_minimum_required(VERSION 3.1)
project(benchmark)

af://n44717
af://n44720

Random/CMakeLists.txt , (identical with Timer/CMakeLists)

Note: In this example we need to run cmake and compile the libraries separately, as the benchmark CMake assumes
the libraries exist in the lib folder

set(CMAKE_CXX_STANDARD 11)

If the library is installed in a standard location, we would use find_library
and not specify this manually
We choose to do it manually to keep it simpler
if(NOT LIBRARY_INSTALL_PATH) # CMake was not invoked with -DLIBRARY_INSTALL_PATH.
 set(LIBRARY_INSTALL_PATH ${CMAKE_SOURCE_DIR}/../install) # hardcode path
endif()

link_directories(${LIBRARY_INSTALL_PATH}/lib) # *Look* for the libraries in that path
include_directories(${LIBRARY_INSTALL_PATH}/include) # Include the library headers

add_executable(benchmark main.cpp)
target_link_libraries(benchmark random timer) # Link the libraries to the executable

install(TARGETS benchmark DESTINATION bin) # Copy the output .exe to the bin/ folder

cmake_minimum_required(VERSION 3.1)
project(random)
set(CMAKE_CXX_STANDARD 11)

add_library(random STATIC random.cpp) # Create the library

install(TARGETS random DESTINATION lib) #Copy the library output to the lib folder
install(FILES random.hpp DESTINATION include) #Copy the header to the include folder

4. Classes

Definition of a class (Data declarators)

Classes are collections of “members” representing one entity

Members can be:

functions
data
types

These members can be split into

public accessible interface to the outside.
Should not be modified later! Only representation-independent interface, accessible to all.
private hidden representation of the concept. Can be changed without breaking any program using the
class. Representation-dependent functions and data members.
friend declarators allow related classes access to representation.

Objects of this type can be modified only through these member functions localization of access, easier
debugging.
The default in a class is always private.
In a struct the default is public.

How to design classes

What are the logical entities (nouns)?
 classes

What are the internal state variables ?
 private data members

How will it be created/initialized and destroyed?
 constructor and destructor

What are its properties (adjectives)?
 public constant member functions u how can it be manipulated (verbs)?
 public operators and member functions

Example - Traffic Light

Property: The state of the traffic light (green, orange or red)

Operation: Set the state

Construction: Create a light in a default state (e.g. red) or in a given state

Destruction: Nothing special needs to be done

Internal representation: Store the state in a variable

Alternative: connect via a network to a real traffic light

class Trafficlight {
public:

af://n44727
af://n44728
af://n44747
af://n44750

Example - Point

Internal state: x- and y- coordinates
Construction: default: (0,0), from x- and y- values, same as another point
Properties: distance to another point u, x- and y- coordinates, polar coordinates
Operations: Inverting a point, assignment

 enum light { green, orange, red };
 Trafficlight(light l = red) : state_(l) {} //default constructor
 Trafficlight(const Trafficlight& rhs) : state_(rhs.state_) {} //copy constructor
 Trafficlight& operator=(const Trafficlight& rhs) {
 if (this != &rhs) {
 state_ = rhs.get_state();
 }
 return *this;
 }
 ~Trafficlight(){}
 void print_state() const;

 light get_state() const { return state_; };
 void set_state(light l) { state_ = l; };

private:
 light state_;
};

int main() {
 Trafficlight a(Trafficlight::green); //green
 Trafficlight b(a); //green

 Trafficlight* c_ptr = new Trafficlight(Trafficlight::orange); //orange
 Trafficlight d = *c_ptr; //orange

 Trafficlight e; //red
 Trafficlight& f = a; //green

 Trafficlight::light l; //create variable of type light
 l = Trafficlight::light::red; //change color to red

 l = e.get_state(); //assign state of a Trafficlight to light

 delete c_ptr;
}

class Point {
private:
 double x, y;
public:
 Point(); //default constructor, (0,0)
 Point(double, double); //constructor from two numbers
 Point(const Point&); //copy constructor
 ~Point(); // destructor

af://n44766

Remember the rule of three: If there is any one of the three following, all three have to be defined:

Copy Constructor (is automatically generated (a.k.a. synthesized) as memberwise copy, unless otherwise
specified)
Destructor (normally empty and automatically generated)
Copy Assignment

Nontrivial destructor only if resources (memory) allocated by the object. This usually also requires nontrivial
copy constructor and assignment operator. (example: array class)

Class terminology

Declaration

class Point;

Definition

Note: here we have defined the Point class but only declared its functions
Declaration generally ends in a ; whereas definition is the {} part

Implementation

Constructor (ctor)

 double dist(const Point&) const;
 double x() const; double y() const;
 double abs() const;
 double angle() const;
 void invert();
 Point& operator=(const Point&);
};

class Point {
 private:
 double x_,y_;
 public:
 Point();
 void Invert();
 ...
};

double Point::abs() const {
 return std::sqrt(x_*x_+y_*y_);
}

//preferred method with constructor initializer list, calls the ctors of the members
Point::Point(double x, double y) : x_(x), y_(y) {
 ...
}

Point::Point() = default; //use compiler generated ctor

af://n44786

5. C++ Features & Keywords

5.1 Features

Namespaces

These are used to organise classes and functions into 'groups' to prevent name conflicts (classes with the
same name). With a conflict it is often uncertain which is used.

Can be nested with scope resolution operator :: e.g. namespace A::B::C {}

Using Namespace:
using namespace std;
Is used to prevent writing the namespace each time, but increases risk of name conflicts.
Important! Do not use this in header files, as it carries over to where it is included in.

We can also just do this for a single function

using std::cout; now we can write cout

Ternary Operator

Shorthand if-else statement, meant to be used as part of an expression

Range-based for loops

Executes a for loop over a range. Works by using the begin() and end() of a container. Similar to python for
loops

#include <cmath>
namespace MyNamespace {
 void sin(float);
}

MyNamespace::sin(1); //call like this
std::sin(1);
sin(1); //uncertain

//expression ? case-when-true : case-when-false
std::log(a >= 0 ? a : -a); //make value absolute

std::vector<double> v(4);
for (double x : v) // for every double x in the container v
 std::cout << x; //0000
for (int x : {1, 2, 5})
 std::cout << x; //125
for (double& x : v)
 x = 5;

af://n44797
af://n44803
af://n46092
af://n46048
af://n46051

Note: if you add/remove elements the iterators can be invalidated so the loop can create errors. Use index
based loops when modifying the vector. This happens when the vector has to be resized and copied, so the
original pointers are invalid. This is not true for all containers (e.g. lists work fine), see cppref Iterator
Invalidation or “container” in index

Lambda Expressions

Form: [value](int x) -> bool {return x > value; };
[…] is called caption
(…) are the parameters
-> bool is the return type
{…} is the instruction to be done

Capture list:

[x] x passed by value (copied)
[&x] x passed by reference
[&x, y] Access to reference of x and copied value of y
[&] Default reference access to all objects in the scope of where lambda is declared
[=] Default value access to all objects in the scope of the lambda

5.2 Keywords

Keyword Auto

Type of a variable is implied by the right hand side. Reference and constness works in the same way

Just need to be careful with templated expressions from optimisation, as we will have an expression type

Typedef / Using

From C++11 using replaces the old typedef

Generally don't avoid using typedefs. Use them to allow easy modification of your code later on (you only
need to change the typedef line and there is no need for refactoring).
Note: the _t is used to denote types, like uint64_t .

std::vector<double> v(5);
auto i = v[3]; //double
const auto& r = v[0]; //const double&

using element_t = double;

class Animal {
 public:
 typedef unsigned short age_t;
 age_t age() const;
 private:
 age_t age_;
};

https://en.cppreference.com/w/cpp/container#Iterator_invalidation
af://n46055
af://n46085
af://n46108
af://n46107

Constants, Mutable & Volatile

const Variable, Can only be set once with the constructor

Must use initialiser list when setting constant members of a class
It calls the constructors of the members (hence you should always use the initialiser list to set variables)

const Member Functions, prevents modifying of the object inside the function, ie this is constant
Only constant functions can be called for constant instances of the class

Note: Calling non-const functions from const functions in the same class is not allowed

constexpr indicates it is possible to evaluate at compile time. Used for both variables and functions Different
to const , which just indicates the value is not changed
Note: constexpr is written at the front of the declaration. They should be combined for member functions

mutable - Allows modification of members even in const objects or inside const functions, "overrides const
status"

volatile - Tells compiler value may change between every access (read or write) or cause side-effects
Prevents some optimisations

struct MyClass {
 const int a;
 MyClass(int value) : a(value) { //<- initialiser list
 a = value; //won't work
 }
};

double Point::abs() const;
double Point::abs() const {...}

//only const member functions can be called for const objects
const Point P(5,6);
P.invert(); //error: calling non-const function on const object

constexpr void MyFunction();
constexpr void MyMemberFct() const;

struct MyClass {
 mutable int value;
 void func() const {
 value++; //this is allowed
 }
};

int main(){
 const MyClass a;
 a.value++; //allowed
}

af://n46084

Static Variables

Variables persist through the whole program, are not deleted at the end of the scope
Can be used to prevent a variable from being reinitialised, e.g. in a loop or function

Note: The variable will still only be accessible inside its scope, as usual

Static Inside Classes

Variable/Function exists once for all instances, does not require an instance of the class to exist
Accessed through class MyClass::myVar or directly if inside the class

Friends

Allowing classes to have access to each others internal representation (private parts).

foo() {
 static int count = 0; //only executed the first time
 count++; //executed every time, value persists from last call
}
std::cout << count; //error: count only accessible in its scope

for(int x = 0; x < 10; x *= 2) {
 static int number_of_times = 0;
 number_of_times++;
}

class Genome {
public:
 static const unsigned short gene_number;
 Genome clone() const; //non-static
 static void set_mutation_rate (unsigned int value){
 mutation_rate = value;
 }

private:
 unsigned long gene_;
 static unsigned int mutation_rate;
};

int main(){
 Genome::gene_number = 128;
 Genome::set_mutation_rate(3);
}

class Vector;

class Point {
 //...
private:
 double x,y,z;
 friend class Vector;

af://n46130
af://n46134
af://n46137

This also works for functions

*this

this is a pointer to the instance with which a member function was called
It is available in all non-static member functions

=default & =delete

These are used to use/prevent compiler generated functions, often used for ctors/dtors, operators

Misc

};

class Vector {
 //...
private:
 double x,y,z;
 friend class Point;
};

//written in another class (not Point)
friend Point Point::invert(...); //allow the invert function to access privates
friend int func(...);
friend Point::Point(); //make a ctor a friend

double Point::x() const {
 return this->x; //or (*this).x or simply x
}

//array copy assignment
const Array& Array::operator=(const Array& arr) {
 //copy the array
 return *this; //return the object with which the function was called
}

int main(){
 Array a;
 a = ...; //now in operator= *this is a
 a = b = c = d; //possible as we always return the instance so it can be chained
 a = (b = (c = d)) //where (c = d) return c
}

class Point{
 Point() = default; //shows generate ctor is used
 ~Point() = delete; //we must implement our own dtor
 Point operator=(Point&&) = default; //use generate move assignment
};

af://n44837
af://n44842
af://n45939

decltype(variable) returns the type of the variable or expression, useful with templating

explicit function: Prevent implicit conversions on the input, types must match the parameters exactly

Const Pointers:

T* const ptr; pointer itself can’t change value of address it stores (similar to reference)
const T* ptr; pointer can move but the integer value must stay the same
Note left of the * is the type we are pointing to

Cast-conversion: allows compiler to convert the type of a variable if it knows how to

static casting: explicit casting, always use static casting in exam!
static_cast<to_type>(from)

Encapsulation: abstraction of use from the implementation, getters/setters

std::complex<double> cd;
decltype(cd) other; //other has the same type as cd

6. Functions & Operators

Inlining

Copies the code of the function and pastes it where it is called, function does not exist after compilation.
Can improve performance if function is called often.
Avoid excessive inlining as it leads to large executable file. Try to avoid with larger functions.

Note that the keyword inline is only a suggestion to the compiler. For higher compiler optimisation levels,
some functions will be inlined even without the inline keyword.

When to use:

Small functions, saves having to rewrite each time, often used for getters/setters
Large functions, if they are only called once or so (can be used for better organisation)

Functors & Passing Functions

See Exercise 8, Simspson Benchmark, esp. simpson.hpp in benchmark

Functions can be passed by:

1. Functor/Function Object

Class with overloaded operator()
Pass instance of function

2. Function Pointer

Pass a function directly as a parameter
Create function pointer: return_type (*myfunc) (param1, param2)
For member functions use std::mem_fn , needs to be wrapped

Or std::function<return_type (param1, param2)> (advanced function pointer)

class complex {
 private:
 double re_, im_;
 public:
 inline double real() const;
 inline double imag() const;
};

double complex::real() const {
 return re_;
}
double complex::imag() const {
 return im_;
}

auto greet = std::mem_fn(&Foo::display_greeting);
greet(f);

af://n44846
af://n44847
af://n44858

Use auto

These can be made generic with templates or abstract base class functors

Operators

See Week 4 Slide 31 for all operators and member vs non-member operators

See Week 0506a Slide 51 for rule of 3/5

Point Example

Which Operator to overload

class Inverse {
 double operator() (double d) { //overload call operator
 return 1.0 / d;
 }
};

Inverse V;
std::cout << V(5.0);

struct Point {
 double x, y;
 const Point& operator+=(const Point& rhs) {
 x += rhs.x;
 y += rhs.y;
 return *this;
 }
 Point operator+(const Point& other) {
 Point tmp{x + other.x, y + other.y};
 }
};

//stream operators usually non-member functions
std::ostream& operator<<(std::ostream& out, const Point& p) {
 out << "(" << p.x << ", " << p.y << ")";
 return out;
}

//we can now use print:
int main(){
 Point p1, p2;
 std::cout << "The point is " << p1 + p2 << std::endl;
}

af://n44885

Conversion Operators

Type conversion of A B as in:

Keep in mind the implicit type conversion order:
i) bool, char < int < unsigned int < float < double
ii) short < int < long < long long

A a; ++a; //requires either
const A& A::operator++(); //operator as member
const A& operator++(A&); //or as a non-member

A a; a++; //requires
A A::operator++(int);
//The additional int argument is just to distinguish the pre- and postincrement

A b = a; A b(a); //both use the copy constructor
A::A(const A&);

A a; B b=B(a);
//can be implemented in two ways:

B::B(const A&); //constructor
A::operator B(); //conversion operator

af://n44893

7. Traits

Also see http://blog.aaronballman.com/2011/11/a-simple-introduction-to-type-traits/

Recall the template for the min function

We now want to allow things like min(1.0,2) and min(1,2.0)

Now, instead of doing it manually with 3 different typenames and having to call the function with the return
type min<int>(1.0,2) or min<double>(1,2.0) , we use traits.

The keyword typename is needed here so that C++ knows the member is a type and not a variable or
function. This is required to parse the program code correctly – it would not be able to check the syntax
otherwise.

How to derive min_type:

template <typename T>
T const& min(T const& x, T const& y) {
 return x < y ? x : y;
}

template <class T, class U>
typename min_type<T,U>::type& min(T const& x, U const& y)

//empty template type to trigger error messages if used
template <typename T, typename U>
struct min_type {};

//partially specialized valid templates:
template <class T>
struct min_type<T,T> {typedef T type; };

//fully specialized valid templates:
template <>
struct min_type<double,float> {typedef double type; };

template <>
struct min_type<float,double> {typedef double type; };

template <>
struct min_type<float,int> {typedef float type; };

template <>
struct min_type<int,float> {typedef float type; };

//add more specialized templates here

template <typename T>
struct average_type {

af://n44898

C++ Concepts

A concept is a set of requirements on types:

The operations the types must provide
Their semantics (i.e. the meaning of these operations)
Their time/space complexity

A type that satisfies the requirements is said to model the concept. A concept can extend the requirements of
another concept, which is called refinement. The standard defines few fundamental concepts, e.g.

CopyConstructible
Assignable
EqualityComparable
Destructible

 typedef typename
 helper1<T,std::numeric_limits<T>::is_specialized>::type type;
};

//the first helper:
template<typename T, bool F>
struct helper1 {typedef T type;
};

//the first helper if numeric limits is specialized for T (a partial specialization)
template<class T>
struct helper1<T,true> {
 typedef typename
 helper2<T,std::numeric_limits<T>::is_integer>::type type;
};

//the second helper
template<class T, bool F>
struct helper2 {
 typedef T type;
};

//the second helper if T is an integer type (a partial specialization)
template<class T>
struct helper2<T,true> {
 typedef double type;
};

af://n44921

8. Exceptions

Overview:

Use asserts when testing your code, check errors coming from your own code or for high performance
Use exceptions when writing code that is used by others, when the error can be resolved/handled, you
want to give more data on the error

Exceptions enable good error handling, especially with use of libraries or functions. There are some more
primitive ways of handling errors than exceptions:

Global error variables/Flags (not recommended)
Functions returning error codes or objects

Global variables: Typical for older C-code,
Set a global variable when an error occurs, then check at other places if the error has occurred.
This typically fills the code with a lot of seemingly random checks. Cannot call in parallel.

Functions returning error code: Typical for big APIs (OS level or http),
Functions exit when an error occurs and return a 'status' variable. Then check the status code with if-
statements at the place of calling, instead of try-catch.
Problems:

Makes it harder to return other values or give detail on the error.
Need to handle deleting of memory manually

Asserts terminate the program if a condition is not met,
These should only be used for internal testing, when something is violated that means the program cannot
operate. However, these are good when testing your own code. Asserts can be turned off for performance,
use the -DNDEBUG compile flag. E.g. checking invariants in your algorithm, necessary pre-conditions for
internally used functions.

Exceptions: Change the control flow,
Exceptions ensure the function is left safely (deletes allocated memory) with an error message and allows
handling of the error. It will keep exiting the functions up the stack until it is caught (works on multiple levels of
function calls). Exceptions can hence be used to print a stack-trace, to see where the error occurred and what
led to it.

How to use:

try will attempt to execute the enclosed code, when an exception is thrown the scope is exited safely
and can be caught. It will not execute the code in the try scope below where the error occurred.
catch(Type e) written after a try if we know how to resolve a particular type of error. Write one per
type of error
catch(...) Catch all exceptions, should be the last catch . We do not have a parameter as we don’t
know the type of what we are catching. It is usually a sign of a fatal error.
throw <object> to signal an error an leave the function. We can re-throw the error in a catch. Can throw
any type, but std::exception is recommended.
Use e.what() to get the message from an error (named e)

When not to use:

af://n44942

Do not use exceptions to change the control flow of your program.
Avoid exceptions in destructors

Example

Standard exceptions are in <stdexcept> , derived from std::exception .
(<exception> is part of <stdexcept> and only contains the base class std::exception)

Logic errors (base class std::logic_error) error due to incorrect semantics. Violation in pre-condition,
invariants

domain_error

invalid_argument

length_error

out_of_range

Runtime errors (base class std::runtime_error) error beyond what the function was intended to handle

range_error an invalid value occurred as part of a calculation
overflow_error a value got too large
underflow_error a value got too small

9. Timer

The standard library contains:

Header <ctime> : date & time
Header <chrono> (since C++11): precision time measurements

Benchmarking example:

void my_function(){
 if(n<=0)
 throw "n too small"; //throwing a char array
 if(index >= size)
 throw std::range_error("description");
}

try{
 my_function(); //only put code in here which is likely to throw an exception
}
catch(std::logic_error& e){ //Handle a logic_error
 std::cout << e.what();
 throw e; //re-throw error like this
}
catch(...){ //catch all other error types
 std::cerr << "A fatal error occurred.\n";
}

af://n45003

//requires #include <chrono>
std::chrono::time_point< std::chrono::high_resolution_clock > t_start, t_end;
t_start = std::chrono::high_resolution_clock::now();

//put code to benchmark here

t_end = std::chrono::high_resolution_clock::now();

std::cout << "It took: " << static_cast<std::chrono::duration<double> >(t_end -
t_start).count()
 << " seconds." << std::endl;

10. Random Number Engines

Random numbers

Real random numbers: are hard to obtain. It can be done from physical phenomena

Pseudorandom numbers:

Get random numbers from an algorithm
Totally deterministic and therefore not random at all, useful for debugging
But maybe good enough for your application
Never trust (just one) (pseudo) random number generator

Utilities for dealing with random numbers in standard library since C++11: Header <random>

Useful and good generators:

Distributions

Uniform distributions:

Integer: std::uniform_int_distribution<int> dist1(a,b)
Floating point:
std::uniform_real_distribution<double> dist2(a,b)

Exponential distribution:

std::exponential_distribution<double> dist3(lambda);

Normal distribution:

std::normal_distribution<double> dist4(mu, sigma);

#include <random>
//Mersenne-twisters
std::mt19937 rng1;
std::mt19937_64 rng2;

//lagged Fibonacci generators
std::ranlux24_base rng3;
std::ranlux48_base rng4;

//linear congruential generators
std::minstd_rand0 rng5;
std::minstd_rand rng6;

//set the seed of a RNG
#include <random>

//default random engine
std::default_random_engine e;
e.seed(42); // set seed

af://n45015
af://n45016
af://n45032

11. Data Structures in C++

Arrays

Are consecutive range in memory. Fast arbitrary element access. Profits from cache effects. Constant time
insertion and removal at the end. Searching in sorted array is O(ln N). Insertion and removal at arbitrary
position in O(N).

C array
vector
valarray
deque:
The deque is more complicated to implement, but yields constant time insertion and removal at the
beginning.

Linked lists

list:
A linked list is a collection of objects linked by pointers in sequence. Constant time insertion and removal
anywhere (just reconnect the pointers). Does not profit from cache effects. Access to an arbitrary
element is O(N), searching is also O(N).
Functions:

splice joins lists without copying, moves elements from one to end of the other.

sort optimized sort, just relinks the list without copying elements

merge preserves order when “splicing” sorted lists

remove(T x)

remove_if(criterion) criterion is a function object or function, returning a bool and taking a
const T& as argument.
Example:

bool is_negative(const T& x) { return x<0; }

list.remove_if(is_negative);

Trees

map
set:
Unordered container, entrys are unique.
multimap:
Can contain more than one entry (e.g. phone number) per key.
multiset:
Unordered container, multiple entries possible

Queues and Stacks

af://n46485
af://n46486
af://n46497
af://n46517
af://n46527

queue:
The queue works like a Mensa, FIFO (first in first out). In constant time you can push an element to the
end of the queue, access the first and last element and remove the first element.
Functions:

void push(const T& x) //inserts at end
void pop() //removes front
T& front() , T& back() , const T& front() , const T& back()

priority_queue:
The priority_queue is like a Mensa, but professors are allowed to go to the head of the queue (not
passing other professors!). The element with the highest priority is the first one to get out. For elements
with equal priority, the first one in the queue is the first one out. Prioritizing is done with < operator.

stack:
The stack works like a pile of books, LIFO (last in first out). In constant time you can push an element to
the top, access the top-most element and remove the top-most element.
Functions:

void push(const T& x) //insert at top
void pop() //removes top
T& top()

const T& top() const

Generic traversal of containers

We want to traverse a vector and a list in the same way:

Note: We can replace auto with the containers iterator , but this makes it less generic

Array implementation:

for (auto p = a.begin(); p != a.end(); ++p)
 cout << *p;

//Specific to Array<T> (replace T if necessary)
for (typename Array<T>::iterator p = a.begin(); p != a.end(); ++p)
 cout << *p;

template<class T>
class Array {
 public:
 typedef T* iterator;
 typedef unsigned size_type;
 Array();
 Array(size_type);

 iterator begin(){
 return p_;
 }
 iterator end() {
 return p_+sz_;
 }

af://n46551
af://n46555

Linked list implementation:

 private:
 T* p_;
 size_type sz_;
};

template <class T>
struct node_iterator {
 Node<T>* p;
 node_iterator(Node<T>* q) : p(q) {}
 node_iterator<T>& operator++() {
 p=p->next;
 return *this;
 }
 T* operator ->() {
 return &(p->value);
 }
 T& operator*() {
 return p->value;
 }
 bool operator!=(const node_iterator<T>& x) {
 return p!=x.p;
 }
 // more operators missing ...
};

template<class T>
class list {
 private:
 Node<T>* first;
 public:
 typedef node_iterator<T> iterator;
 iterator begin() {
 return iterator(first);
 }
 iterator end() {
 return iterator(0);
 }
};

af://n46557

12. Algorithms Overview

Mostly found in <algorithm> header, some also from cmath , numeric
See 'Algorithms Library' in cppreference!

Example - linspaced vector (1-10), square each element, shuffle vector, copy range, print each element

Non-modifying:

for_each(begin, end, function)
find, find_if, find_first_of
adjacent_find
count, count_if
mismatch
equal
search
find_end
search_n

Modifying:

transform(begin, end, output begin, function)
copy, copy_backward
swap, iter_swap, swap_ranges
replace, replace_if, replace_copy, replace_copy_if
fill, fill_n

#include <algorithm> //for_each, transform
#include <numeric> //iota

int main() {
 std::vector<int> v(10);
 std::iota(v.begin(), v.end(), 1); //start 1, spacing 1 to get (1, 2, 3...10)

 auto squarelam = [](int x){ return x*x; }; //square the element
 std::transform(v.begin(), v.end(), v.begin(), *squarelam); //*apply* for each
 //v = 1 4 9 16 25 36 49 64 81 100

 std::random_shuffle(v.begin(), v.end()); //randomise v

 std::vector<int> v1(5);
 std::copy_n(v.begin() + 2, 5, v1.begin()); //copy elements [2, 2+5) to v1

 auto printlam = [](int x){ std::cout << x << " "; };
 std::for_each(v1.begin(), v1.end(), *printlam); //call print for each element
 //output: 9 16 25 36 49

 std::for_each(animals.begin(), animals.end(), std::mem_fn(&Animal::grow));
 //use mem_fn if the function is a member
 //required as else we do not know what grow is, could be a var
}

af://n46560

generate, generate_n
remove, remove_if, remove_copy, remove_copy_if
unique, unique_copy
reverse, reverse_copy
rotate, rotate_copy
random_shuffle

Sorted sequences:

sort, stable_sort
partial_sort, partial_sort_copy
nth_element
lower_bound, upper_bound
equal_range
binary_search
merge, inplace_merge
partition, stable_partition

Permutations:

next_permutation
prev_permutation

Set Algorithms:

includes
set_union
set_intersection
set_difference
set_symmetric_difference

Minimum and Maximum:

min
max
min_element
max_element
lexicographical_compare

13. Templates

Function Overloading

We can declare functions with the same name if they have a different number/types of parameters.
The compiler will choose the matching version of the function

Problems arise with implicit conversions

During compilation, this works as they don't really have the same name. The function argument types are
appended to the function name, e.g. our integer min is _Z3minii (i for integer)

Note: For generic functions use templates.
This is more used when there are different number of arguments, but it may be best to use default argument
values, i.e. int min(int a, int b = 0);

Generic Algorithms

We can implement the example above generically by using a template:

What happens if we want to use a mixed call in the example above min(1,3.141) ?
 Now we need to specify the first argument since it cannot be deduced

Advantages of using templates are, that we get functions that:

work for many types T
are as generic and abstract as the formal definition
are one-to-one translations of the abstract algorithm

int min(int a, int b) { return a<b ? a : b; }
double min(double a, double b) { return a<b ? a : b; }

min(1,3); //calls min(int, int)
min(1.0,3.0); //calls min(double, double)

min(1, 3.14); // Problem! which type?
min(1.0, 3.14); // OK
min(1, int(3.14)); // OK but does not make sense
// could also define new function "double min(int,double);"

template <typename T>
T const& min (T x, T y)
{
 return (x < y ? x : y);
}

min<double>(1,3.141);
min<int>(3,4);

af://n46657
af://n45049
af://n45056

Templated Classes

std::size_t is simply an unsigned integer type that can store the maximum size of a theoretically possible
object of any type.

If we want to create a fully compatible array class, we use typedef to create our generic types:

Now we need to add the keyword typename to our operator overloads, or the compiler won't know that the
member is a type and not a variable or function.

template <typename T>
class A {
 public:
 typedef T T2; //alternate name for T
 A(); //constructor
 //...
 T func1(T x) {return x; } //definition
 T func2(T); //declaration only
 private:
 //...
};

//define a member outside of the class body:
template <typename T> T A::func2(T x) {
 //...
}

template <typename T>
class sarray {
 public:
 typedef std::size_t sz_t; //size type
 typedef T elem_t; //element type
 // ... as before
 private:
 sz_t size_; //size of array
 elem_t* elem_; //pointer to array
};

template <typename T>
class sarray {
 public:
 typedef std::size_t size_type; //size type
 typedef T value_type; //value / element type
 typedef T& reference; //reference type
 typedef T const& const_reference; // const reference type
 // ...
 private:
 size_type size_; //size of array
 value_type* elem_; //pointer to array
};

af://n46703

Template Specialization

Take as an example an array of bools. Internally it is stored as one byte for every entry. We want to specialize
this such that every bool only takes up one bit of storage.

// subscript operator
template <typename T>
typename sarray<T>::reference sarray<T>::operator[](size_type index) {
 assert(0 <= index && index < size());
 return elem_[index];
}

// const subscript operator
template <typename T>
typename sarray<T>::const_reference sarray<T>::operator[](size_type index) const {
 assert(0 <= index && index < size());
 return elem_[index];
}

template <class T>
class sarray {
 //generic implementation
 //...
};

template <>
class sarray<bool> {
 //optimized version for bool
 ...
};

af://n46711

14. Inheritance

See Exercise 9 Inheritance

Store shared behaviour/variables in a base class

Can then create derived classes to extend the base class for a more specific case
Form of Polymorphism, can look at instances in a generic sense, but treat them differently

We can have a vector of the base class, but actually have a vector of varying types

Properties:

virtual allows the function to be overriden (modified) by derived classes

For derived instances the derived function will be called
override not required but enables compiler checks to check for a matching virtual function

Only a matching declaration is needed to override a virtual function
Call base class function from the derived class equivalent with the scope modifier BaseClass::func()

The function remains virtual for a class deriving from the derived class, sticky

Can inherit from any class and have multiple base classes

Here Fish , Bird are derived classes and Animal is the base class.

What is not inherited:

Anything Private
Con/Destructors, Assignment operators
Friends

Access Specifiers

We can set access levels of variables and functions. These define who can read/write/call the
variables/functions
Important: Derived classes will still inherit all the functionality and data

public anyone can access (read/write/call)

protected only accessible to derived classes

struct Animal{
 double age;
 virtual void Eat();
};

struct Fish : public Animal {
 void Swim();
 void Eat() override; //modifies the base function
};

struct Bird : public Animal {
 void Fly();
};

af://n45070
af://n45111

private only the class itself has access

Instances of the derived class will have these variables/functions, but they are not accessible directly
or via member functions of the derived class. They can only be seen by the member functions of the
base class.

We can set also an access specifier on the inheritance itself. This sets the max access level of the inherited
variables/functions

The default access specifier for the base class is the same as the default for class (i.e. private) or struct
(i.e. public). Usually we want to inherit publicly, as we want to have the same access levels as the base class

Example:

Note: Classes B, C, D all contain the variables x, y, z. It is just question of access, can we modify/read

Example from https://stackoverflow.com/a/1372858/9295437

Abstract Base Classes (ABC)

Prevent instances of the base class itself by forcing overriding of functions for derived classes
Using = 0 for a function forces the derived class to override the function. Makes the class abstract

class A
{
public:
 int x;
protected:
 int y;
private:
 int z;
};

class B : public A
{
 // x is public
 // y is protected
 // z is not accessible from B
};

class C : protected A
{
 // x is protected
 // y is protected
 // z is not accessible from C
};

class D : private A // 'private' is default for classes
{
 // x is private
 // y is private
 // z is not accessible from D
};

https://stackoverflow.com/a/1372858/9295437
af://n45129

Important: Must pass ABC by reference/pointer, as pass by value creates a copy which is not allowed

#include <iostream>

struct MyBase{
 virtual void print() const{}
 virtual void run() =0; //must be overriden, defined in derived class
};

struct Derived: public MyBase {
 void print() const override{
 //extra functionality
 MyBase::print(); //call base function of run, works as print is not abstract
 }
 void run() override {}
};

struct OtherDerived: public MyBase{
 //print() does not have to be overriden
 void run() override{}
};

void Func(MyBase& b){ //must not pass by value, else compiler error
 b.print(); //will call the derived version
}

int main(){
 MyBase b; //Compiler error: class is abstract
 Derived a;
 a.run(); //calls Derived::run
}

Run-time (Dynamic) Compile-time (Static)

Uses virtual functions (Inheritance) Uses templates

Decision at run-time Decision at compile-time

Works for objects derived from the common
base

Works for objects with the right members

One function created for the base, class
saves space

A new function is created for each class used
takes more space

Virtual function call needs lookup in type
table slower

No virtual function call, can be inlined faster

Extension possible using only definition of
base class

Extension needs definitions and implementations of
all functions

Most useful for application frameworks, user
interfaces, “big” functions

Useful for small, low level constructs, small fast
functions and generic algorithms

15. Programming Styles

Run-time vs Compile-time Polymorphism

Comparison on programming Styles

The following chapter will show the different advantages and disadvantages of programming styles by means
of the implementation of a stack

Procedural programming

Procedural programming is one of the more simple programming paradigms. It is used in many different
programming languages.
See simpson integration in Ex 1.6 for more details

void push(double*& s, double v){
 *(s++) = v;
}
double pop(double *&s) {
 return *--s;
}
int main() {
 double stack[1000];
 double* p = stack;
 push(p,10.);
 std::cout << pop(p) << “\n”;
 std::cout << pop(p) << “\n”;
 // error of popping below
 // beginning goes undetected!
}

af://n45135
af://n45136
af://n45162
af://n45164

Modular programming

The modular implementation of a stack allows transparent change in underlying data structure without
breaking the user’s program.
See simpson integration in Ex 2.2 for more details

Object orientated programming

By implementing the stack as a class, one is able to encapsulate the data and make use of the automatic
initialisation and cleanup of the class.
See simpson integration in Ex 4.2/5.3 for more details

namespace Stack {
 struct stack {
 double* s;
 double* p;
 int n; };

 void init(stack& s, int l) {
 s.s=new double[l];
 s.p=s.s;
 s.n=l; }

 void destroy(stack& s) {
 delete[] s.s; }

 void push(stack& s, double v) {
 if (s.p==s.s+s.n-1) throw
 std::runtime_error(“overflow”);
 *s.p++=v; }

 double pop(stack& s) {
 if (s.p==s.s) throw std::runtime_error(“underflow”);
 return *--s.p; }
}

int main() {
Stack::stack s;
Stack::init(s,100); // must be called*
Stack::push(s,10.);
Stack::pop(s);
Stack::pop(s); // throws error
Stack::destroy(s); // must be called
}

namespace Stack {
class stack {
 double* s;
 double* p;
 int n;
public:

af://n45167
af://n45170

Generic programming

By templating the class and implementing it generically you can ensure that the stack works for any data type.
It also creates an efficient datatype because of the fact that the instantiation happens at compile time.
See simpson integration in Ex 8.1 for more details

 stack(int=1000); // like init
 ~stack(); // like destroy
 void push(double);
 double pop();
};

int main() {
 Stack::stack s(100); // initialization done automatically
 s.push(10.);
 std::cout << s.pop(); // destruction done automatically
}

namespace Stack {
template <class T>
class stack {
 T* s;
 T* p;
 int n;
public:
 stack(int=1000); // like init
 ~stack(); // like destroy
 void push(T);
 T pop();
};

int main() {
 Stack::stack<double> s(100); // works for any type!
 s.push(1.3);
 std::cout << s.pop();
}

af://n45173

16. Hardware

We need to understand hardware optimisations and limitations so we know how to optimise in C++

16.1 CPUs

Basic components of the CPU:

Memory controller: Manages loading from and storing to memory

Registers: Fastest memory storage inside CPU, very small, can store integers, floating point numbers,
specified constants

Arithmetic and logic units (ALU):

Perform arithmetic operations and comparisons
Operates on registers (fast)
On some CPUs can directly operate on memory (slow)

Fetch and decode unit: Fetches instructions from memory, interprets the numerical value, decides what
to do and sends them to the ALU or memory controller

Instruction Sets

Every processor has a fixed instruction set determined by the hardware, essentially a list of all fundamental
operations it can do. Every program uses only these operations, which can be seen in the assembly code.

There are two alternatives, either to have a large instruction set (CISC) with lots of possible operations. Or
create everything from a small set of instructions (RISC). Both instruction sets can perform any
operation/program and can be considered equivalent, depends on usage case.

CISC: Complex Instruction Set Computer

Instruction set that implements many high level instructions (e.g sin, cos). They usually have high clock cycles
but take many cycles to complete instructions

RISC: Reduced Instruction Set Computer

Use low level instructions to compute everything.
They execute instructions very quickly and can be pipelined well, but need a large amount of assembly
instructions to create programs More memory usage

Von Neumann Bottleneck

A computers ‘speed’ is always limited by the slowest component, called bottleneck. The CPU cannot perform
operations if it does not have the data for it. Usually this bottleneck is loading data from memory or the hard-
drive into the CPU, called the von Neumann bottleneck

This is important as it is often what we need to optimise the most.

Developments over time
Processor speeds have increased significantly. Memory improvements have mostly been in density – the
ability to store more data in less space – rather than transfer rates.
As speeds have increased, the processor has spent an increasing amount of time idle, waiting for data to be

af://n45177
af://n45353
af://n45371
af://n45378

fetched from memory. No matter how fast a given processor can work, in effect it is limited to the rate of
transfer allowed by the bottleneck, the whole system needs to be fast.

16.2 CPU Optimisations

Specifically Single Core

Beware that CPUs will further optimise the binary machine code to execute it as fast as possible, these are
some of the tricks it does or can do.
They are based on: utilising all resources fully (pipelining), predicting (branch prediction) and Instruction Level
Parallelism ILP (Pipelining/Vectorisation)

These optimisations are related to processing, but there are also memory optimisations with similar concepts,
e.g.
Predicting - temporal locality (keep newest in cache) and spatial locality/pipelining (read cache line)
Parallelisation - using a bus, read multiple data at once

Pipelining

A form of ILP
Pipelining is the process of increasing performance by running consecutive independent instructions before
the previous ones are finished in the same processor core (i.e. without threading). CPUs do this with their
circuits, they send input signals into the circuit before the previous signal has finished. Only works if we
structure our code correctly.

Loop unrolling is a way of making the operations independent, allows for pipelining to happen. But branch
prediction is also used for this…

Branch Prediction

af://n45382
af://n45386
af://n45390

Pipelining is not possible if there are branches in the program (if-statements), since we need to know the
output before starting the next operation.
CPUs circumvent this problem by predicting/guessing the result of the branches and simply starting the
execution of the most likely branch (e.g. for loop, continuing the loop).

If predicting is correct, then the pipeline continues as normal but has saved time. Else, if the prediction is
wrong, the pipeline aborts and starts again at the right branch.
Sometimes even both branches are computed and the wrong one is discarded.

Vectorisation

Various Names/Versions: MMX, SSE, SIMD(Single Instruction Multiple Data), AVX
Also a form of Instruction Level Parallelism (ILP)
Vector operations perform the same operation on multiple values at the time. Typical operations are
elementwise addition/multiplication on vectors and matrices. The compiler will attempt to vectorise (–ftree-

vectorize flag), but it is best to do it manually

GPUs

GPUs are specifically designed for performing vectorised (SIMD) instructions.
They have many cores (100-3000) but the cores are less complex, and can only do basic operations. Less for
logic, more for lots of data. They are more difficult to program due to parallelisation, need to use other
languages e.g CUDA, OpenCL, CG. Sharing memory between CPU and GPU is also a problem.

16.3 Memory

As faster memory is expensive, we have a hierarchy of different sized memory to prevent the CPU waiting for
data. At the top is the storage actually used by the processor (registers). The less memory a program needs,
the faster it runs as we can fit most of the program into a higher cache (not necessarily faster, but reduces the
memory bottleneck)

We can see how there is a slowdown when each cache level is full:

af://n45393
af://n45395
af://n45397

Random Access Memory (RAM)

Note: We often ambiguously use ‘memory’ to refer to RAM

There are many different types of varying size, price and speed.

SRAM: static RAM, very fast, expensive, data stored on flip-flops, data stays as long as there is power

DRAM: dynamic RAM, slower, much cheaper than SRAM, data stored on tiny capacitors, capacitors need
to constantly be recharged

SDRAM: synchronous dynamic RAM, synchronised to cache cycle, faster than DRAM

DDR RAM: double data rate RAM, can send data twice per clock cycle

Interleaved Memory Systems: uses multiple memory banks

Can read from all simultaneously same latency, more band width

Caches

As the bottleneck is usually reading data from the hard-drive/memory, we cache data read in several levels
(L1-L3). The CPU will check if the data it needs exists in the memory hierarchy from the top downwards. When
checking in a level, if the data exists it is called a cache hit (else cache miss and the search continues, slower)

16.4 Memory Optimisations

Two Assumptions:

1. Temporal Locality - Data tends to be reused, data currently being used will be used in future.

So we keep data in the cache until it is full
We discard oldest data first

2. Spatial Locality - Data needed next is near the data currently being used

i.e. data use is chronologically ordered, e.g. arrays
Read data surrounding data as well cache line

Note: These optimisations occur between/on levels of the cache. Test values with $ getconf -a

Cache Line

af://n45402
af://n45419
af://n45421
af://n45439

When reading data into a higher level in the memory hierarchy, there is always an initial delay. So it is best to
read more data at once and request less often. Due to spatial locality we read the data requested plus data
around it in a block. This block has a fixed size called cache line size. Each level has its own cache line size but
they are usually equal.

When the CPU reads data from memory, a full cache line is loaded into the L3 cache and further up the
memory hierarchy. This means that the data itself and more data sequentially after it is in the cache. So if we
need the surrounding data next, we saved the initial delay as it is already in cache.

So in C++ we should organise the data/usage so it is reads sequentially, so the data read in the cache line is
always used. E.g. matrix row vs column major needs to match in matrix storage and reading sequence.

Note! 64/32-bit is not related to the cache line size, it is about the number of bits used for addresses in the memory.

Cache Associativity

Cache associativity is how data is mapped from a larger to a smaller sized storage, similar to hashing. Direct
mapping is the cheapest as it requires least complex calculations (and so circuits).

Direct mapped - Each memory location can only be stored at one cache location.

Address in cache can be calculated with modulo,
n-way associative - Each memory location can be stored at n cache locations

E.g. does a similar modulo, then a linear search in the next n elements for the oldest/empty location
Fully associative - Each memory location can be stored at any cache location

Performs a linear search through the whole cache

Due to temporal locality, if an index is full, we discard the oldest.

af://n45445

Note: It is often easier to look at the n-way associativity as a grid, with y-axis being the ‘Index’, x-axis the ‘Way’.
The number of ways is the n.
An address is assigned to an index and does search through all the ways in that index.

Cache associativity is useful as it allows us to rearrange the data from the cacheline and prevent cache
thrashing, which is when we constantly replace data we are using. Means we have to re-read each time,
defeating the concept of caching.
Cache thrashing is the worst when the stride size equals the cache line size. Larger strides may improve
performance, due to the modulo. With higher associativity we have this less.

E.g. in image above, what happens if we compare every 4th element and have a cache line size of 4. We will
always fully replace the previous data the cache and have to re-read each time. With 2-way we will always
have the last 2 in cache, for full-associativity we will have the last 4.

Virtual Memory

The abstraction of mapping logical memory onto physical memory addresses. Handled by hardware+OS

1. Processes run independently, for each process it appears it is running on its own

Prevents memory conflicts/overlaps between processes
2. We can extend RAM when full with the slower hard-drive

Prevents crashing when memory is full

The mapping from virtual to physical memory addresses is stored in page tables in the RAM

To get data we need to first read address from page table slow

So we cache the page table, called Translation Lookaside Buffer (TLB)

Note: Does not apply to caches, only to RAM. When the caches are full we replace old data

Worst Case Caching

af://n45469
af://n45493

Always try to reuse data as much as possible. Worst case when fetching data:

Request an address

Cache miss in L1-3

Lookup physical address

Cache miss in TLB (translation lookaside buffer)
Request page table entry
Load page table from memory (slow)

Page fault in page table

Store a page to disk (extremely slow)
Create and initialise a new page (very slow)
Load page from disk (extremely slow)

Load value from memory (slow)

17. Optimisation

Do easy and significant optimisations first

Optimal approach to optimisation:

1. Use compiler flags (see section 1 C++ compiling)

2. Use profiling to determine slow parts of program

3. Find best data structure & algorithm and a library which implements it

4. Look into more advanced optimisations

1. Inlining
2. Read data in a sequential order, to use data in cache line effectively
3. Unroll loops
4. Vectorisation/SIMD (single instruction multiple data e.g. MMX, AVX)
5. Lazy evaluation and Expression Templates, compile time calculations
6. Use processor specific intrinsics

17.1 Profiling Runtime

1. Time program in CLI with time
2. More detailed profile with gprof , to see calls and runtime of individual functions
3. Time inside C++ with chrono (Manual Instrumentation)
4. Use a more advanced profiler, e.g. pref or vtune, or also profile memory usage etc

A. time is a simple shell command which returns the runtime of a program. It is the simplest way to time
your program.
You can add the option -p in order to get the time in seconds

B. gprof can profile C++ more exactly, timing individual functions

1. Compile the program with -pg

2. Run it, this creates the gmon.out file
3. View results with gprof

1. A function will not appear in the output if it is never called or has been inlined with compiler optimisations
2. There may be some inaccuracies if running times are short, e.g. %s over 100, this is due to approximations

$ time program.exe
real 0m0.872s # effective total time
user 0m0.813s # cputime of the program
sys 0m0.016s # cputime of other software whilst the program is running.

$ g++ myProgram.cpp -pg
$./a.out
$ gprof ./a.out gmon.out # optionally add '| less' to view with pager

af://n45521
af://n45547

C. Manual instrumentation the <chrono> header enables "manual instrumentation" or timing in a program.
Run the program/function multiple times and average to reduce noise
See Timer chapter

17.2 General Optimisations

Datastructures and Algorithms

Use (correct) STL containers wherever possible

Arrays/Vectors: fast random access
Lists: fast insertion, slow traversal
Trees: middle ground, fastest if both features are needed

Use (correct) library for an algorithm. Many available at Netlib.org
The main advantages of professional libraries:

bug free, thoroughly tested
optimised
well documented (at least better than your code)
support most architectures

Loop unrolling

Loop unrolling creates faster code for two main reasons:

No control statements/branches in the loop
Easier to pipeline

Partial loop unrolling is also possible:

Compiler Optimisations

See Week 11 Slides 19-33
Note: Functions may be inlined before the optimisations are done, e.g. getters

std::chrono::high_resolution_clock::now(); // get the current time, do before/after

//Dot product
double s = x[0] * y[0] + x[1] * y[1] + x[2] * y[2];

//instead of
for (int i=0; i<3; ++i)
 s += x[i] * y[i];

for (int i=0; i<N; i+=4) {
 a[i] = b[i] * c[i];
 a[i+1] = b[i+1] * c[i+1];
 a[i+2] = b[i+2] * c[i+2];
 a[i+3] = b[i+3] * c[i+3];
}

af://n45575
af://n45576
http://www.netlib.org/
af://n45595
af://n45605

See 1.2 for compiler flags

Storage order and optimising cache

See Cache Chapter 17.
Multi dimensional arrays are generally stored linearly in memory. C/C++ uses row-major order (depicted),
Fortran, Matlab use column-major. Red box represents one cache line

For large matrices you can use block multiplication to insure that the calculations can remain in-cache

17.3 Template Meta Programming

Using templates to execute (parts of) a program or optimise it at compile time
Examples: calculating constants, loop unrolling, expression templates

Also see Wikipedia

I. Calculating Constants - Factorial

We can store the value in several ways: enums, static consts or with functions
Result will be fully calculated at compile time in all cases (some require more optimisation)

A. Result stored in the enum (or static const in comments)

template<int i>
struct Factor{
 enum { Result = i * Factor<i-1>::Result };
 //static const int Result = N * Factorial<N-1>::Result;
 //static constexpr int Result = N * Factorial<N-1>::Result;
};

template <>
struct Factor<1>{
 enum { Result = 1 };
 //static const int Result = 1;
 //static constexpr int Result = 1;
};

af://n45608
af://n45612
https://en.wikipedia.org/wiki/Template_metaprogramming
af://n45615

B. Using static functions in a struct, template number N stored by struct

C. Using normal functions

Note: It can be easy to confuse normal template parameters with meta-template parameters (N here)
E.g. when making factorial work for T not just int

II. Loop Unrolling

Use meta-programming to unroll loops, optimising for short loops (removed loop overhead)

See Week 11a Slides 9-15

Use meta_dot to recursively expand the cwise operation

Hence we need a base case template specialisation for I = 0
Uses a static function similar to C. above

int main(int argc, char const *argv[]) {
 std::cout << Factor<5>::Result; //retrieve value like this
}

template<int N>
struct Factorial{
 static int f(){
 return N * Factorial<N-1>::f();
 }
};

template<>
struct Factorial<0> { //specialised for N=0, use as a base case for the recursion
 static int f() {
 return 1;
 }
};

int main() {
 std::cout << Factorial<5>::f(); //can call directly as it's static
}

template<int N>
int f(){
 return N * f<N -1>();
}

template<>
int f<0>() {
 return 1;
}

int main() {
 std::cout << f<5>();
}

af://n45624

Generic for any size(I) and type(T)

III. Expression Templates

Store an expression in an object and only evaluate at end, often used in Linear Algebra
Removes writing temp results, define how to best evaluate an expression at compile time faster
Essentially Templated Lazy Evaluation

Sidenote: Do not use the auto keyword with expression templates, as it will take the type of the expression object

General Idea:

1. Overload operators to return an expression object (store what needs to be evaluated)

2. Say how to evaluate expression object best, either

1. operator= in the vector class
2. operator[] in the expression class, to evaluate just a single element

See non-templated Lazy Evaluation: Week 11a Slides 20-21

vectorsum is the expression object

See proper Expression Template: Week 11 Demos etvector.hpp

X is the expression object, is generic for any LHR, RHS and operator
Have a class per operator, stores how to apply the operation
operator+ at end sets up expression

af://n45637

18. BLAS & LAPACK

Fortran libraries are very fast and have been optimised over a long time. We can use them similar to a normal
C++ library. BLAS is for basic linear algebra, LAPACK extends BLAS

Naming Convention:

Function names follow PTTXXX

P - Precision of the data, D =double, S =Single, C =Complex, Z =Double Complex
TT - Matrix Type, GE =General, SY =Symmetric, HE =Hermitian
XXX - Operation Name, e.g. EV =Eigen Values

Note: Fortran is case insensitive

How to use:

1. Declare function in C++, with correct naming and parameters, see docs(!)

1. We only pass references or pointers of built-in data types, references by default
2. Need to surround declaration with extern “C”{...} to prevent name mangling when compiling
3. Function names end with an underscore (except with certain compilers)
4. Functions have a void return type, but return data through the referenced parameters, so we can

return multiple variables, e.g. LU decomposition returns both matrices
Worth looking at what the inputs and outputs are in the docs

2. Call function in C++ normally

3. Link libraries when compiling

1. Link library itself, -llapack or -lblas

2. Link the Fortran compiler called gfortran with -lgfortran (not always required)

Example

1. a) Find docs

1. b) Declare the function in C++ by copying the docs

af://n45664
af://n45698

2. Call the function

4. Link library in compilation, link gfortran last

OR with CMake

OR link a pre-compiled library, e.g. on Mac we can use accelerate

extern "C" { //Function ends in underscore
 void dsyev_(const char& JOBZ //Reference by default
 , const char& UPLO
 , const int& N
 , double* A //Pointer as signified by the (*) in the docs
 , const int& LDA
 , double* W
 , double* WORK
 , const int& LWORK
 , int& INFO);
}

std::vector<double> M(N * N, 0); // pre-allocate the memory for the output in C++!
std::vector<double> omega(N);
std::vector<double> exact_omega(N);
double D_LWORK;

dsyev_('V', 'L', N, M.data(), N, omega.data(), &D_LWORK, -1, info);
 //use vector.data() to get a pointer to the first element, as with an array
 //as we need to pass by pointer

$ g++ main.cpp -llapack -lblas -lgfortran

target_link_libraries(mytarget lapack blas gfortran) #link blas in the same way

find_library(ACCELERATE_LIB Accelerate)
mark_as_advanced(ACCELERATE_LIB)
target_link_libraries(mytarget ${ACCELERATE_LIB})

19. Input / Output

19.1 Formatting Streams

Streams will first convert the value to a string then print/store it, we can control this conversion with
<iomanip> or <iostream>

Use these like: cout << std::setw(5) similar to std::endl

setw(5) sets width/characters to print for the next value, non-sticky

setfill('0') set fill character, so output matches defined width

left , right , internal sets the text alignment by setting position of fill characters to the opposite

internal is works for specific types, see example
scientific prints floats in scientific notation, i.e. with exponent

setprecision(6) changes the float precision, significant digits

Note: Functions are sticky unless specified, meaning they affect all following output, not just the next value

Examples

Sidenote: Streams should be passed by a non-const reference, cannot be copied

19.2 File Streams

File IO in CLI

Programs can be executed in sequence in the terminal by redirecting output, called pipelining

$ a.exe | b.exe | c.exe - b has the input from a etc…

We can redirect the output to a file, same for input

$./simulation.exe > data.txt output to file

std::cout << std::setw(4) << std::setfill('0') << std::right << 5;
//output: 0005

std::cout << std::setw(4) << std::setfill('#') << std::left << 5;
//5###

//adding in std::
cout << setw(8) << setfill('@') << internal << setprecision(2) << -1.234;
//-@@@@1.2

for (int i = beg; i < end; ++i) { //Common in loop to print a table
 cout << std::scientific;
 cout << std::setw(5) << i << " "
 << std::setw(15) << std::pow(M_PI, i) << " "
 << std::setw(15) << std::pow(M_PI,2*i) << std::endl;
}

af://n45720
af://n45721
af://n45743
af://n45744

$./a.out < input input from file

You can redirect only one stream:

1> stdout
2> stderr
&> error & output

File IO in C++

ofstream behaves similar to std::cout , same for ifstream (‘of’ for ‘output file’ stream)

Can set different modes for an fstream in the ctor/open:

fstream::in input mode or out , already set by default for ifstream or ofstream
fstream::binary binary mode
fstream::ate output position starts at end
fstream::app append to end of file
fstream::trunc truncate, overwrite existing file (default mode)

Note: The bitwise-or | is used to set multiple options as a bitmask

HDF5

Common format for storing data for input/output, is quite complicated at first

Use this for larger datasets
Enables parallel I/O, compression, multiple files in Groups (file system)

#include <iostream>
#include <fstream>
int main () {
 std::ofstream outFile("output.txt"); //Open file with filestream
 outFile << "Hello";
 outFile.close(); //Close the file once finished(!)

 int a;
 std::ifstream inFile; //Same for ifsteams
 inFile.open("input.txt");
 inFile >> a;
 inFile.close(); //Close also called in dtor at end of scope, best to close yourself
}

std::ifstream in;
in.open ("input.txt", std::fstream::binary);

std::fstream out; //note only an fstream not ofstream, so need to set out mode
out.open ("output.txt", std::fstream::out | std::fstream::ate);

//input and output also possible
std::fstream file("out", std::ios::in | std::ios::out | std::ios::ate);

af://n45763
af://n45780

20. Python

Interpreted - when run, code is ‘compiled’ line by line directly from source code (.py)

Can run in a shell, e.g. ipython
Untyped, Dynamic variables - type is not declared explicitly and the variables can change type

Classes are not required to have all their variables defined initially

Variables are references by default, almost all things in Python are objects, including functions

Has a Garbage Collector, do not need to manage memory ourselves
There is no privacy, just follows convention of underscores

var public, _var private, __var strictly private
Naming conventions follow PEP8, generally everything is lowercase, underscore separated except classes
being CamelCase

See the Python cheatsheet

20.1 Python Modules

Modules are roughly equivalent to libraries in C++. Any .py file is a module, do not need to do anything
special to use it as a module. We can #include them by using import

Note: a package is a collection of modules, whereas a module is usually a single .py

Instead of a main() in C++ we can have several ‘entry points’ in the project. The module which is called
directly has its name set the main

We can write the code without this, but then the code is executed when we import the .py as a module

Common Packages:

NumPy - Fast package for multi-dimensional arrays with linear algebra functions

See the NumPy Cheat Sheet, SciPy extends NumPy
Matplotlib - 2D plotting library

H5py - Python interface for HDF5 file format

Mpi4py - Message Passing Interface. Allows parallel programming with Python

SymPy - Computer Algebra System, enables symbolic mathematics

20.2 Classes

import file # Imports whole file, similar to #include, then use file.function1()
import path.file # Can use a relative path, use . instead of /
import numpy as np # Can rename imported file/function/class
from file import function1, function2 # import only specific functions/classes
 # Can call function1 directly like this -> may get name conflicts

if __name__ == "__main__": # equivalent to main() in C++
 # This .py was executed directly, not imported

af://n45788
https://visualgit.readthedocs.io/en/latest/pages/naming_convention.html
https://n.ethz.ch/~rbarton/ptss/downloads/Python-Cheatsheet.pdf
af://n45815
https://n.ethz.ch/~rbarton/ptss/downloads/Numpy-Cheatsheet.pdf
af://n45837

The constructor is a magic method named __init__

As we cannot overload functions in python, we create a single ctor with all possible parameters, then
do a case distinction. Remember: arguments have default values and we can set them explicitly

Static variables

Create by defining inside class, not in a function

Inside class, access with self.__class__.static_var

Do not use static_var directly, it sees it as a local variable (so may get conflicts)
Only use MyClass.static_var outside the class, as it can be overriden by an instance specific variable
within the class

Also see link

Copying Instances

As everything is a reference, if we assign a variable to another we are creating an equality

copy.copy(instance) , does a shallow copy

First layer of variables is cloned, but these may be references to more objects
copy.deepcopy(instance) , does a deep copy, usually what is wanted

This ‘clones’ everything recursively

class Genome(object):
 def __init__(self, genome=None):
 if genome is None:
 self.genes = np.zeros(self.__class__.gene_size, dtype=bool)
 else:
 self.genes = copy.deepcopy(genome.genes)

Can construct with either
a = Genome()
b = Genome(a)
c = Genome(genome=a) # setting args explicitly is more useful when there are more

class Genome(object):
 gene_size = 64 # static class variable, shared by all instances
 def __init__(self):
 self.genes = np.zeros(self.__class__.gene_size, dtype=bool)

Access from outside class
Genome.gene_size = 128

import copy # required module for copying
x = [0,1,2]
y = x # makes x and y equivalent, y is a reference to x essentially
y[2] = 666
print(x) # [0, 1, 666] x is also changed
print(y) # [0, 1, 666]

af://n45843
https://radek.io/2011/07/21/static-variables-and-methods-in-python/
af://n45856

Inheritance

Classes always inherit everything, as there is no privacy, everything is virtual

We can call base methods with the super()

Only derived function is called by default, including in __init__
Functions are overriden if the names match

20.3 Decorators

Decorators are functions that modify the functionality of other functions. We apply these with the
@decorator in front of a function definition

Built-in Decorators

x = [0,1,2]
y = copy.copy(x)
y[2] = 666
print(x) # [0, 1, 2] x unaffected
print(y) # [0, 1, 666]

x = [0,1,[2,3]] # Note 3rd elem of array is a *reference* now to another array
y = copy.copy(x)
y[2][0] = 666
y[0] = 333
print(x) # [0, 1, [666, 3]] x[0] unaffected but x[2] has changed
print(y) # [333, 1, [666, 3]]

x = [0,1,[2,3]]
y = copy.deepcopy(x)
y[2][0] = 666
print(x) # [0, 1, [2 , 3]]
print(y) # [0, 1, [666, 3]]

class A:
 def __init__(self):
 self.a = 1
 def print_A(self):
 print(self.a)

class B(A): # B inherits from A
 def __init__(self):
 super().__init__() # self.a == 1
 self.b = 2
 def print_B(self):
 print(self.b)

b = B()
b.print_A() # 1, so print_A is inherited and base class constructor is called to set a
b.print_B() # 2

af://n45871
af://n45883
http://book.pythontips.com/en/latest/decorators.html
af://n45885

Static Functions

@staticmethod - makes a function static, does not receive the self

@classmethod - like static method but also has the cls argument

cls is the class type we call the function with
Useful with inheritance, as we can get the derived classes

Property
This is makes the function behave like a getter, but it allows us to use the function as if it were a variable, so
don’t need to write the parentheses ()

Define a function myproperty that returns a value, like a getter, then decorate with @property

The corresponding setter is then @myproperty.setter
@myproperty.getter does not exist, it is fulfilled by the @property

Custom Decorators

Here we define ourselves how a decorator modifies a function. The key is f = mydecorator(f)

class Point:
 ...
 @property # Like a getter, note: @x.getter does not exist
 def x(self):
 """The point's x coordinate"""
 return self._x

 @x.setter # Setter for the property x, unrelated to _x
 def x(self, val):
 if val < 0: # e.g. Validate the new value in setter
 val = 0
 self._x = val

P1 = Point(1.,3.)
print("P1.x =", P1.x) # dont need to write brackets, i.e. P1.x(), use like a variable
P1.x = 2 # Set like a variable

def mydecorator(func):
 def inner():
 print('Hello', end=' ')
 func()
 return inner # when called we return the *function* inner as the modified function

@mydecorator # f = mydecorator(f)
def f():
 print('World')

f() # Hello World

af://n45907

	Programming Techniques for Scientific Simulations I
	Table of Contents
	1. C++ compiling
	1.1 Compile Process
	1.2 Compile via CLI
	Compile Options
	Optimisation Options
	Libraries
	Example

	1.3 Pre-processor Macros
	Include Guards
	Examples
	Conditional Compilation
	Replacement
	Undefine Macros
	If-Statement

	2. Make
	2.1 Makefiles
	2.2 Variables
	2.3 Examples

	3. CMake
	3.1 General
	Running CMake
	Basic CMake Functions
	Minimal Example

	3.2 Examples
	Libraries with Subdirectories
	Eigen Library
	Installing Example (Ex06 Benchmark)

	4. Classes
	Definition of a class (Data declarators)
	How to design classes
	Example - Traffic Light
	Example - Point
	Class terminology

	5. C++ Features & Keywords
	5.1 Features
	Namespaces
	Ternary Operator
	Range-based for loops
	Lambda Expressions

	5.2 Keywords
	Keyword Auto
	Typedef / Using
	Constants, Mutable & Volatile
	Static Variables
	Static Inside Classes
	Friends
	*this
	=default & =delete
	Misc

	6. Functions & Operators
	Inlining
	Functors & Passing Functions
	Operators
	Conversion Operators

	7. Traits
	C++ Concepts

	8. Exceptions
	9. Timer
	10. Random Number Engines
	Random numbers
	Distributions

	11. Data Structures in C++
	Arrays
	Linked lists
	Trees
	Queues and Stacks
	Generic traversal of containers
	Array implementation:
	Linked list implementation:

	12. Algorithms Overview
	13. Templates
	Function Overloading
	Generic Algorithms
	Templated Classes
	Template Specialization

	14. Inheritance
	Access Specifiers
	Abstract Base Classes (ABC)

	15. Programming Styles
	Run-time vs Compile-time Polymorphism
	Comparison on programming Styles
	Procedural programming
	Modular programming
	Object orientated programming
	Generic programming

	16. Hardware
	16.1 CPUs
	Instruction Sets
	Von Neumann Bottleneck

	16.2 CPU Optimisations
	Pipelining
	Branch Prediction
	Vectorisation
	GPUs

	16.3 Memory
	Random Access Memory (RAM)
	Caches

	16.4 Memory Optimisations
	Cache Line
	Cache Associativity
	Virtual Memory
	Worst Case Caching

	17. Optimisation
	17.1 Profiling Runtime
	17.2 General Optimisations
	Datastructures and Algorithms
	Loop unrolling
	Compiler Optimisations
	Storage order and optimising cache

	17.3 Template Meta Programming
	I. Calculating Constants - Factorial
	II. Loop Unrolling
	III. Expression Templates

	18. BLAS & LAPACK
	Example

	19. Input / Output
	19.1 Formatting Streams
	19.2 File Streams
	File IO in CLI
	File IO in C++
	HDF5

	20. Python
	20.1 Python Modules
	20.2 Classes
	Static variables
	Copying Instances
	Inheritance

	20.3 Decorators
	Built-in Decorators
	Custom Decorators

