
PTSS Slides Overview
week00: (summary of basics)

• types and their representation
• expressions and operations

• statements (loops, break, continue, etc.)
• memory allocation, pointers

• pass by value, (const) reference or pointer
• casts, namespaces, default function arguments

week01a: (intro)
• intro, loop example, swap functions

week01b: (version control)

• git cheat sheet!

week02a: (preprocessing/compiling/linking)

• macros, includes, assert
• libraries (static or shared)

week02b: (make)

week03a: (cmake)
• creating and using a library and linking against it
• setting compiler flags and c++ standard

week03b: (templates and generic programming)

• generic programming process

week03c: (classes)

• data hiding (public, private, friend)

week04: (more on classes, operators, function objects)
• public, private, protected (s. week08 inheritance)

• outside of class definition (scope operator)
• constructors, operator overloading, friend, this
• static members, const member functions, mutable

• templates
• assignment, symmetric, conversion, pointer operators

week05/06a: (more on classes, operators, function objects, templates)

• first ~40 slides same as in week04

• overview of special member functions (ctor, dtor, copy, move)
• default, delete

• function objects (functors), lambdas
• Argument Dependent Lookup (ADL) or König lookup
• type traits, typename, type and value members

• concepts, documenting a template function

week06b: (templates, random numbers, timing, exceptions)
• error handling (termination, error codes/flags, exceptions)
• try, throw, catch, standard exceptions (logic/runtime errors)

• date and time utilities, Monte Carlo methods
• random number utilities (generators, seed, distributions)

week07: (algorithms and data structures)

• complexity analysis, big O notation
• Standard Template Library (STL)

• overview of data structures (incl. runtime of operations)
• iterators

• containers and sequences (linear containers, not trees)
• generic algorithms (find, find_if, push_back, back_inserter, etc.)
• algorithms overview

week08: (inheritance, polymorphism, from modular to generic programming)

• protected (means public for derived classes, private for others)
• virtual functions
• Abstract Base Classes (ABC), = 0, override

• comparing virtual functions and templates
• runtime and compile time polymorphism

• programming styles (procedural, modular, object oriented, generic)

week09: (hardware)

• computer architecture, CPU, von Neumann bottleneck
• machine code and assembly language

• Instruction Set Architectures (ISA), CISC vs RISC
• pipelining, loop unrolling, branch prediction, Moore’s Law
• parallelization, SIMD, shared & distributed memory

• GPU, RAM, caches, temporal/spatial locality, virtual memory

week10: (optimization and numerical libraries)
• profiling, choice of data structures & algorithms
• optimization in assembly language, compiler intrinsic functions

• optimization options
• common subexpression elimination, strength reduction, loop unrolling, etc.

• storage order, unit stride, performance model, roofline
• libraries for linear algebra (Fortran, BLAS, ATLAS, LAPACK, etc.)

week11: (optimization in C++)
• template meta programming

• expression templates, Blitz++

week12: (python)
• built-in types, mutable vs immutable types
• control flow, list and dict comprehension

• function declaration, arguments, pass by assignment
• classes, magic methods, inheritance, decorators (@wrapper syntax)

• modules (to be imported), string formatting, input/output, exceptions

week13a: (intro to python packages)

• Numpy, Scipy, Matplotlib,

week13b: (input/output)
• standard streams, pipelining/redirecting, formatting, string/file streams, HDF5

week13c: (Euler [Bonus])

