PTSS Slides Overview

week00: (summary of basics)

types and their representation

expressions and operations

statements (loops, break, continue, etc.)
memory allocation, pointers

pass by value, (const) reference or pointer
casts, namespaces, default function arguments

weekO01a: (intro)

intro, loop example, swap functions

weekO01b: (version control)

git cheat sheet!

week02a: (preprocessing/compiling/linking)

macros, includes, assert
libraries (static or shared)

week02b: (make)

week03a: (cmake)

creating and using a library and linking against it
setting compiler flags and c++ standard

week03b: (templates and generic programming)

generic programming process

weekO03c: (classes)

data hiding (public, private, friend)

week04: (more on classes, operators, function objects)

public, private, protected (s. week08 inheritance)
outside of class definition (scope operator)
constructors, operator overloading, friend, this

static members, const member functions, mutable
templates

assignment, symmetric, conversion, pointer operators

week05/06a: (more on classes, operators, function objects, templates)

first ~40 slides same as in week04

overview of special member functions (ctor, dtor, copy, move)
default, delete

function objects (functors), lambdas

Argument Dependent Lookup (ADL) or Kénig lookup

type traits, typename, type and value members

concepts, documenting a template function

week06b: (templates, random numbers, timing, exceptions)

error handling (termination, error codes/flags, exceptions)
try, throw, catch, standard exceptions (logic/runtime errors)
date and time utilities, Monte Carlo methods

random number utilities (generators, seed, distributions)



week07: (algorithms and data structures)
e complexity analysis, big O notation
Standard Template Library (STL)
overview of data structures (incl. runtime of operations)
iterators
containers and sequences (linear containers, not trees)
generic algorithms (find, find_if, push_back, back_inserter, etc.)
algorithms overview

weekO08: (inheritance, polymorphism, from modular to generic programming)
e protected (means public for derived classes, private for others)

virtual functions

Abstract Base Classes (ABC), = 0, override

comparing virtual functions and templates

runtime and compile time polymorphism

programming styles (procedural, modular, object oriented, generic)

week09: (hardware)

e computer architecture, CPU, von Neumann bottleneck
machine code and assembly language
Instruction Set Architectures (ISA), CISC vs RISC
pipelining, loop unrolling, branch prediction, Moore’s Law
parallelization, SIMD, shared & distributed memory
GPU, RAM, caches, temporal/spatial locality, virtual memory

week10: (optimization and numerical libraries)

e profiling, choice of data structures & algorithms
optimization in assembly language, compiler intrinsic functions
optimization options
common subexpression elimination, strength reduction, loop unrolling, etc.
storage order, unit stride, performance model, roofline
libraries for linear algebra (Fortran, BLAS, ATLAS, LAPACK, etc.)

week11l: (optimization in C++)
¢ template meta programming
e expression templates, Blitz++

week12: (python)
e built-in types, mutable vs immutable types
control flow, list and dict comprehension
function declaration, arguments, pass by assignment
classes, magic methods, inheritance, decorators (@wrapper syntax)
modules (to be imported), string formatting, input/output, exceptions

week13a: (intro to python packages)
¢ Numpy, Scipy, Matplotlib,

week13b: (input/output)
e standard streams, pipelining/redirecting, formatting, string/file streams, HDF5

week13c: (Euler [Bonus])



