Improved analysis of an algorithm of Lattanzi and Sohler

Davin Choo, Christoph Grunau, Julian Portmann, Václav Rozhoň
k-means clustering

clustering: I have bunch of points, say in \mathbb{R}^d, and want to cluster them so that close points are together.
k-means clustering

find k “centers” so as to minimize

$$\sum_{p \in P} \min_{c \in C} d(p, c)^2$$

sum over input points closest center squared distance
k-means clustering

find k “centers” so as to minimize

$$\sum_{p \in P} \min_{c \in C} d(p, c)^2$$

sum over input points closest center squared distance
k-means clustering

find k “centers” so as to minimize

\[\sum_{p \in P} \min_{c \in C} d(p, c)^2 \]
k-means: theory and practice

Hard to approximate within 1.07 factor [Addad, Srikanta], but
k-means: theory and practice

Hard to approximate within 1.07 factor [Addad, Srikanta], but … can be approximated within 6.47 factor [Ahmadian, Norouzi-Fard, Svensson, Ward]
k-means: theory and practice

Hard to approximate within 1.07 factor [Addad, Srikanta], but … can be approximated within 6.47 factor [Ahmadian, Norouzi-Fard, Svensson, Ward] … PTAS for fixed k [Kumar, Sabharwal, Sen]
k-means: theory and practice

Hard to approximate within 1.07 factor [Addad, Srikanta], but … can be approximated within 6.47 factor [Ahmadian, Norouzi-Fard, Svensson, Ward] … PTAS for fixed k [Kumar, Sabharwal, Sen] … PTAS for fixed d [Friggstad, Rezapour, Salavatipour] [Addad, Klein, Mathieu]
k-means: theory and practice

Hard to approximate within 1.07 factor [Addad, Srikanta], but … can be approximated within 6.47 factor [Ahmadian, Norouzi-Fard, Svensson, Ward] … PTAS for fixed k [Kumar, Sabharwal, Sen] … PTAS for fixed d [Friggstad, Rezapour, Salavatipour] [Addad, Klein, Mathieu]

Lloyd’s heuristic [Lloyd]
k-means: theory and practice

Hard to approximate within 1.07 factor [Addad, Srikanta], but
... can be approximated within 6.47 factor
[Ahmadian, Norouzi-Fard, Svensson, Ward]
... PTAS for fixed k [Kumar, Sabharwal, Sen]
... PTAS for fixed d [Friggstad, Rezapour, Salavatipour] [Addad, Klein, Mathieu]

Lloyd’s heuristic
[Lloyd]

theory

practice
k-means: theory and practice

Hard to approximate within 1.07 factor [Addad, Srikanta], but
... can be approximated within 6.47 factor
[Ahmadian, Norouzi-Fard, Svensson, Ward]
... PTAS for fixed k [Kumar, Sabharwal, Sen]
... PTAS for fixed d [Friggstad, Rezapour, Salavatipour] [Addad, Klein, Mathieu]
k-means: theory and practice

Hard to approximate within 1.07 factor [Addad, Srikanta], but ... can be approximated within 6.47 factor [Ahmadian, Norouzi-Fard, Svensson, Ward] ... PTAS for fixed k [Kumar, Sabharwal, Sen] ... PTAS for fixed d [Friggstad, Rezapour, Salavatipour] [Addad, Klein, Mathieu]

Lloyd’s heuristic [Lloyd]

k-means++ [Arthur, Vassilvitskii]

theory

this talk

practice
Outline

- Explain k-means++
- Explain its improved variant by Lattanzi and Sohler
- Tighter analysis of Lattanzi-Sohler’s algorithm
- Extension of their algorithm to a similar problem (if time allows)
k-means++

Practice: fast seeding for Lloyd’s, better than random seeding

Theory: expected $O(\log k)$ approximation guarantee
k-means++

Practice: fast seeding for Lloyd’s, better than random

Theory: expected $O(\log k)$ approximation guarantee

Outputs a set of centers that are subset of the input points (the centers then define clusters)
k-means++

First center: uniformly at random
k-means++

First center: uniformly at random

Next k-1 centers: sample a point proportional to its current cost
k-means++

First center: uniformly at random

Next k-1 centers: sample a point proportional to its current cost

\[\sum_{p \in P} \min_{c \in C} d(p, c)^2 \]
k-means++

First center: uniformly at random

Next k-1 centers: sample a point proportional to its current cost
k-means++

First center: uniformly at random

Next k-1 centers: sample a point proportional to its current cost
k-means++

First center: uniformly at random

Next $k-1$ centers: sample a point proportional to its current cost
k-means++

First center: uniformly at random

Next $k-1$ centers: sample a point proportional to its current cost
k-means++

First center: uniformly at random

Next $k-1$ centers: sample a point proportional to its current cost
k-means++

First center: uniformly at random

Next k-1 centers: sample a point proportional to its current cost

Looks like alright heuristic, but why does it give $O(\log k)$ approximation?
k-means++: bicriteria

Sampling $O(k)$ centers yields $O(1)$ approximation to optimal solution on k centers. [Aggarwal, Deshpande, Kannan]
k-means++: bicriteria

Sampling $O(k)$ centers yields $O(1)$ approximation to optimal solution on k centers. [Aggarwal, Deshpande, Kannan]

“balls into bins”:
A new center is sampled from given cluster proportional to the cost of the cluster.
k-means++: bicriteria

A new center is sampled from given cluster proportional to the cost of the cluster.

Sampling $O(k)$ centers yields $O(1)$ approximation to optimal solution on k centers. [Aggarwal, Deshpande, Kannan]

“balls into bins”:
A new center is sampled from given cluster proportional to the cost of the cluster.

Cluster is settled = we pay ≤ 10 times more than what OPT pays for that cluster.
k-means++: bicriteria

Sampling $O(k)$ centers yields $O(1)$ approximation to optimal solution on k centers. [Aggarwal, Deshpande, Kannan]

“balls into bins”: A new center is sampled from given cluster proportional to the cost of the cluster.

If current solution is ≥ 20 approximation of OPT, with $\geq 1/2$ probability we sample a point from an unsettled cluster.

cluster is settled = we pay ≤ 10 times more than what OPT pays for that cluster

cluster is settled = we pay ≤ 10 times more than what OPT pays for that cluster
Sampling $O(k)$ centers yields $O(1)$ approximation to optimal solution on k centers. [Aggarwal, Deshpande, Kannan]

"balls into bins": A new center is sampled from given cluster proportional to the cost of the cluster.

If current solution is ≥ 20 approximation of OPT, with $\geq 1/2$ probability we sample a point from an unsettled cluster.

Turns out that if we sample from any cluster, with $1/10$ probability we make it settled.
k-means++: bicriteria

Sampling $O(k)$ centers yields $O(1)$ approximation to optimal solution on k centers. [Aggarwal, Deshpande, Kannan]

“balls into bins”: A new center is sampled from given cluster proportional to the cost of the cluster.

If current solution is ≥ 20 approximation of OPT, with $\geq 1/2$ probability we sample a point from an unsettled cluster.

 Turns out that if we sample from any cluster, with $1/10$ probability we make it settled.

\Rightarrow Each step makes at least one unsettled cluster settled with constant probability.

cluster is settled = we pay ≤ 10 times more than what OPT pays for that **cluster**
k-means++: bicriteria

Sampling $O(k)$ centers yields $O(1)$ approximation to optimal solution on k centers. [Aggarwal, Deshpande, Kannan]

“balls into bins”: A new center is sampled from given cluster proportional to the cost of the cluster.

If current solution is ≥ 20 approximation of OPT, with $\geq 1/2$ probability we sample a point from an unsettled cluster.

Turns out that if we sample from any cluster, with $1/10$ probability we make it settled.

\Rightarrow Each step makes at least one unsettled cluster settled with constant probability.

After $O(k)$ steps, we are done whp :-)

cluster is settled = we pay ≤ 10 times more than what OPT pays for that cluster
Outline

- Explain k-means++
- Explain its improved variant by Lattanzi and Sohler
- Tighter analysis of Lattanzi-Sohler’s algorithm
- Extension of their algorithm to a similar problem (if time allows)
Algorithm of Lattanzi and Sohler (Local search ++)

k-means++:

- Sampling k centers yields $O(\log k)$ approximation
- Sampling $O(k)$ centers yields $O(1)$ approximation
Algorithm of Lattanzi and Sohler (Local search ++)

k-means++:
- Sampling k centers yields $O(\log k)$ approximation
- Sampling $O(k)$ centers yields $O(1)$ approximation

Lattanzi-Sohler:
- Sample k centers and yields $O(1)$ approximation
Algorithm of Lattanzi and Sohler (Local search ++)

Run k-means++ (for k steps)
Algorithm of Lattanzi and Sohler (Local search ++)

Run k-means++ (for k steps)

Then repeat the following:

- sample $k+1$th point as in k-means++
- go over your $k+1$ points and take out the one whose removal increases the cost the least

$$
\sum_{p \in P} \min_{c \in C} d(p, c)^2
$$
Algorithm of Lattanzi and Sohler (Local search ++)

Run k-means++ (for k steps)

Then repeat the following:

- sample $k+1$th point as in k-means++
- go over your $k+1$ points and take out the one whose removal increases the cost the least

$$\sum_{p \in P} \min_{c \in C} d(p, c)^2$$
Algorithm of Lattanzi and Sohler (Local search ++)

Run k-means++ (for k steps)

Then repeat the following:

- sample $k+1$th point as in k-means++
- go over your $k+1$ points and take out the one whose removal increases the cost the least

$$\sum_{p \in P} \min_{c \in C} d(p, c)^2$$
Algorithm of Lattanzi and Sohler (Local search ++)

Run k-means++ (for k steps)

Then repeat the following:

- sample k+1th point as in k-means++
- go over your k+1 points and take out the one whose removal increases the cost the least

Theorem (LS): repeat $O(k \log \log k)$ times and you get $O(1)$ approximation.

$$\sum_{p \in P} \min_{c \in C} d(p, c)^2$$
Algorithm of Lattanzi and Sohler (Local search ++)

Run k-means++ (for \(k \) steps)

Then repeat the following:

- sample \(k+1 \)th point as in k-means++
- go over your \(k+1 \) points and take out the one whose removal increases the cost the least

Theorem (LS): repeat \(O(k \log \log k) \) times and you get \(O(1) \) approximation.

Theorem (CGPR): actually, \(\varepsilon k \) steps suffice for \(O(1/\varepsilon^3) \) approximation.

\[
\sum_{p \in P} \min_{c \in C} d(p, c)^2
\]
Analysis: intuition

Theorem ("local search", Kanungo et al): If we start with any set of k centers and try to "swap" any input points with any center in each step, we achieve $O(1)$ approximation in polynomial time.

Different intuition based bicriteria guarantees: just sampling without removals gets $O(1)$ approximation.
Analysis: one step

LS: cost of solution decreases multiplicatively by $1 - \Theta(1/k)$ with constant probability.
Analysis: one step

LS: cost of solution decreases multiplicatively by $1 - \Theta(1/k)$ with constant probability
Analysis: one step

LS: cost of solution decreases multiplicatively by $1 - \Theta(1/k)$ with constant probability.

Hence, after $O(k)$ steps the approximation decrease from $\log(k)$ to $\log(k)/2$.
LS: cost of solution decreases multiplicatively by $1 - \Theta(1/k)$ with constant probability

Hence, after $O(k)$ steps the approximation decrease from $\log(k)$ to $\log(k)/2$

after $O(k)$ more steps from $\log(k)/2$ to $\log(k)/4$

… after $O(k \log \log(k))$ steps we are down to constant
Analysis: one step

LS: cost of solution decreases multiplicatively by $1-\Theta(1/k)$ with constant probability

Hence, after $O(k)$ steps the approximation decrease from $\log(k)$ to $\log(k)/2$

after $O(k)$ more steps from $\log(k)/2$ to $\log(k)/4$

… after $O(k \log \log(k))$ steps we are down to constant

we cannot improve
Analysis: one step

LS: cost of solution decreases multiplicatively by $1 - \Theta(1/k)$ with constant probability

Hence, after $O(k)$ steps the approximation decrease from $\log(k)$ to $\log(k)/2$

after $O(k)$ more steps from $\log(k)/2$ to $\log(k)/4$

… after $O(k \log \log(k))$ steps we are down to constant

we cannot improve or can we?
Analysis: one step

LS: cost of solution decreases multiplicatively by \(1-\Theta(1/k)\) with constant probability

Hence, after \(O(k)\) steps the approximation decrease from \(\log(k)\) to \(\log(k)/2\)

after \(O(k)\) more steps from \(\log(k)/2\) to \(\log(k)/4\)
… after \(O(k \log \log(k))\) steps we are down to constant

we cannot improve or can we?

LS: cost of solution decreases multiplicatively by \(1-\Theta(1/l)\) if the cost is “concentrated” just on \(l\) “unsettled” clusters
Outline

- Explain k-means++
- Explain its improved variant by Lattanzi and Sohler
- Tighter analysis of Lattanzi-Sohler’s algorithm
- Extension of their algorithm to a similar problem (if time allows)
Analysis: few bad clusters

Proposition (CGPR): Suppose the current clustering is $\geq \alpha$-approximation of optimum. Then, $O(k^{\frac{3}{\sqrt[3]{\alpha}}})$ clusters are not $\frac{3}{\alpha}$-settled.
Analysis: few bad clusters

Proposition (CGPR): Suppose the current clustering is $\geq \alpha$-approximation of optimum. Then, $O(k^{3/\alpha})$ clusters are not $3/\alpha$-settled.

cluster A is β-settled: we pay at most β times more for A then what optimum pays.
Analysis: few bad clusters

Proposition (CGPR): Suppose the current clustering is $\geq \alpha$-approximation of optimum. Then, $O(k^{3/\alpha})$ clusters are not $3/\alpha$-settled.

Cluster A is β-settled: in our set of centers C, there is $c \in A$ and it “certifies” we pay at most β times more for A than what optimum pays.
Analysis: $O(k)$ steps

Proposition (CGPR): Suppose the current clustering is $\geq \alpha$-approximation of optimum. Then, $O(k/\sqrt[3]{\alpha})$ clusters are not $\sqrt[3]{\alpha}$-settled.

Fact (LS): Improvement of one step is $(1 - 1/l) = (1 - \sqrt[3]{\alpha}/k)$

Corollary: Hence, after $O(k/\sqrt[3]{\alpha})$ steps the approximation factor drops to $\alpha/2$ and after $O(k/\sqrt[3]{(\alpha/2)})$ steps drops to $\alpha/4$ … after $O(k)$ steps we have constant approximation.
Analysis: technical part

Proposition (CGPR): Suppose the current clustering is $\geq \alpha$-approximation of optimum. Then, $O(k/\sqrt[3]{\alpha})$ clusters are not $\sqrt[3]{\alpha}$-settled.

Fact: Suppose the current clustering is $\geq \alpha$-approximation of optimum. Then, with probability $1-1/\sqrt[3]{\alpha}$ we sample a new point from $\sqrt[3]{\alpha}$-unsettled cluster and make it $\sqrt[3]{\alpha}$-settled.

Corollary: after kmeans++, there are $O(k/\sqrt[3]{\alpha})$ $\sqrt[3]{\alpha}$-unsettled clusters.

Corollary: in each local search step, the number of $\sqrt[3]{\alpha}$-unsettled clusters increments by ≤ 1 with probability $\leq 1/\sqrt[3]{\alpha}$ => after $O(k)$ steps still only $O(k/\sqrt[3]{\alpha})$ $\sqrt[3]{\alpha}$-unsettled clusters.
Outline

- Explain k-means++
- Explain its improved variant by Lattanzi and Sohler
- Tighter analysis of Lattanzi-Sohler’s algorithm
- Extension of their algorithm to a similar problem (if time allows)
Extension to k-means with outliers

Select a subset of z “outliers” and output k centers that optimize the k-means cost on the remaining vertices.

Bhaskara et al.: There is k-means based algorithm that gives $O(\log k)$ approximation, but only if it is allowed to output $O(z \times \log k)$ many outliers.

Lattanzi-Sohler: $O(1)$ approximation with $O(z)$ outliers.

One more trick and more careful analysis (Grunau, R): $O(1/\epsilon)$ approximation with $(1+\epsilon)z$ outliers.

Also can be extended to k-center with outliers.
Summary

The trick of Lattanzi and Sohler enables you to turn bicriteria approximation in true approximation (for incremental sampling based algorithms).

The analysis of Lattanzi-Sohler algorithm can be improved if you use that “in k-means++, most of the clusters are well approximated even if the cost is high”.