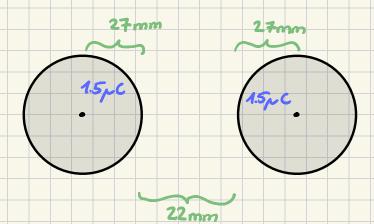
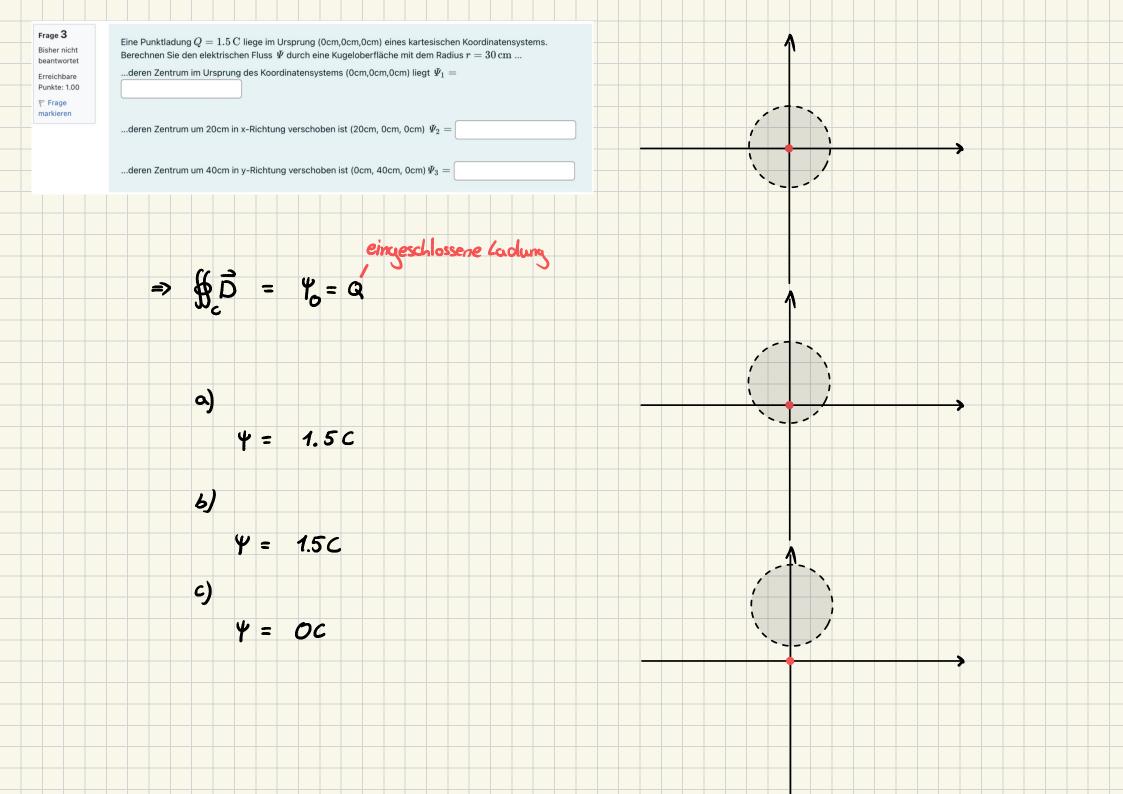

Losung FS 24

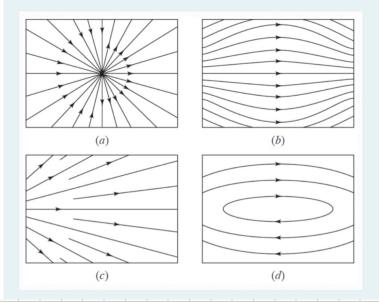

Frage 2 Bisher nicht beantwortet Erreichbare Punkte: 1.00 ▼ Frage markieren

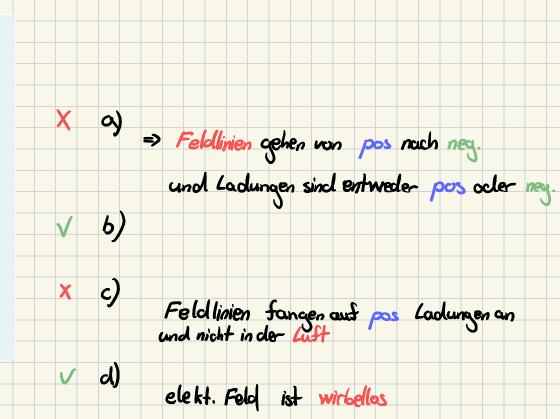
Zwei Metallkugeln mit dem Durchmesser $d=54\,\mathrm{mm}$ sind mit der Ladung $Q_1=1.5\,\mu\mathrm{C}$ (Kugel 1) und $Q_2=-Q_1=-1.5\,\mu\mathrm{C}$ (Kugel 2) geladen.


Der Abstand zwischen den Kugeloberflächen sei $s=22\,\mathrm{mm}.$

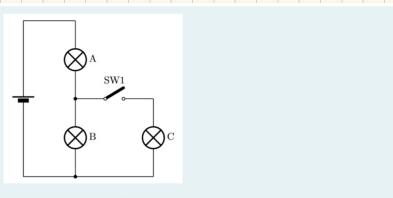
Welche Kraft $|ec{F}|$ wirkt zwischen den beiden Kugeln?

$$|ec{F}|=$$

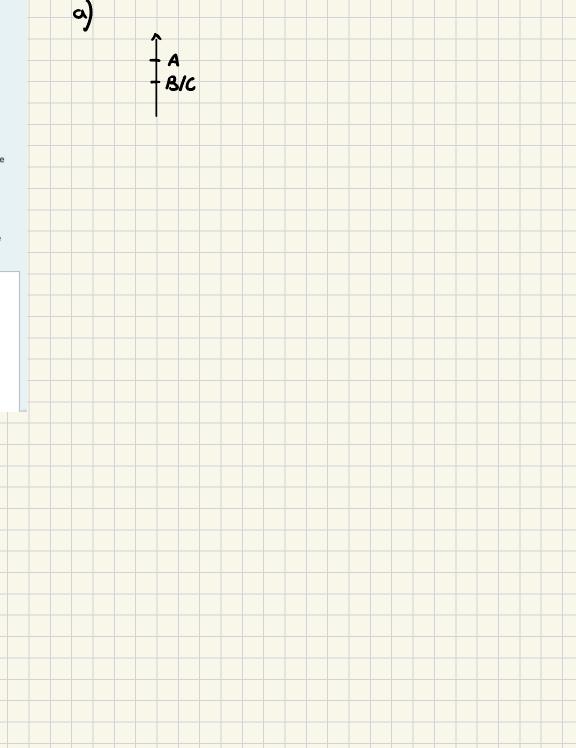

$$\Rightarrow |\vec{F}| = \frac{1}{4\pi\epsilon_0} \frac{|q_1 \cdot q_2|}{r^2} = 3,501 \, N$$



Frage 4
Bisher nicht beantwortet
Erreichbare
Punkte: 1.00


Frage markieren

In den folgenden Diagrammen sind vier elektrische Feldlinienbilder dargestellt. Es befinden sich keine elektrischen Ladungen im gezeigten Abschnitt. Beurteilen Sie mit Wahr/Falsch welche der dargestellten Feldlinienbilder ein mögliches elektrostatisches Feld darstellt.

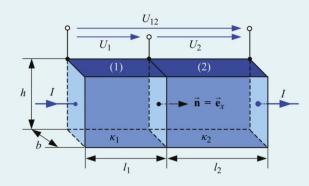


Drei identische Glühbirnen A, B, und C seien wie in der Abbildung gezeigt miteinander und mit einer Batterie («ideale Spannungsquelle») verbunden.

- a) Ordnen Sie die drei Glühbirnen nach ihrer Helligkeit bei geschlossenem Schalter und begründen Sie Ihre Antwort.
- b) Wie ändern sich die Helligkeiten der drei Glühbirnen, wenn der Schalter geöffnet wird? Begründen Sie Ihre Antwort.

B wird genau so hell wie A
c geht aus
A wird dunkler

Bisher nicht beantwortet


Erreichbare

Punkte: 1.00 markieren

beantwortet

Erreichbare Punkte: 1.00

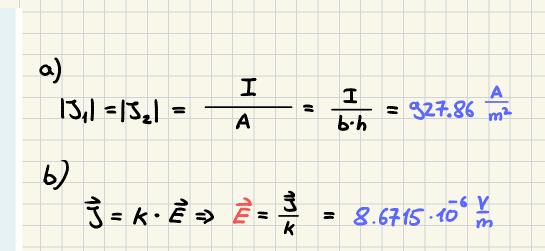
markieren

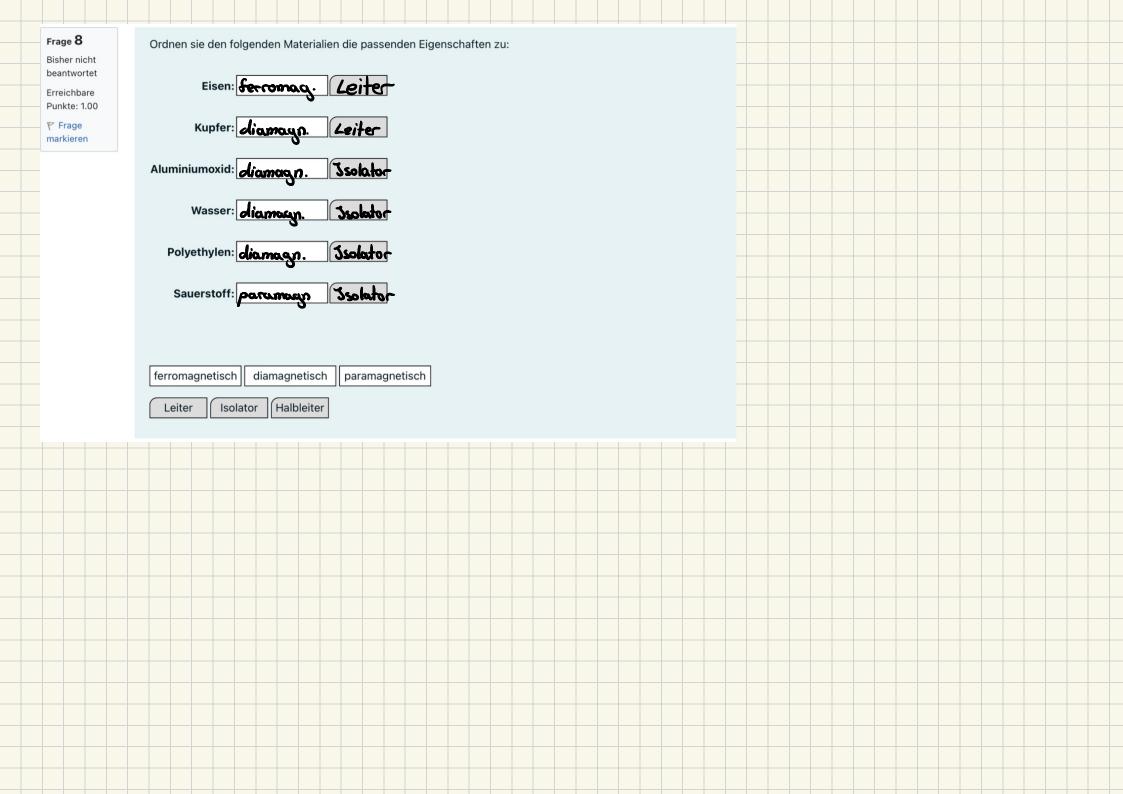
Zwischen ideal leitfähigen Elektroden ($\kappa o \infty$) befindet sich ein quaderförmiger Leiter mit der Breite $b=72.2\,\mathrm{mm}$ und der Höhe $h=113\,\mathrm{mm}$. Der Leiter wird in x-Richtung von einem Gleichstrom der Stärke $I=7.57\,\mathrm{A}$ durchflossen. Das Leitermaterial besitzt im Bereich (1) der Länge $l_1=1055\,\mathrm{mm}$ die Leitfähigkeit $\kappa_1=107.0\cdot 10^6\,\mathrm{S/m}$ und im Bereich (2) der Länge $l_2=530\,\mathrm{mm}$ die Leitfähigkeit $\kappa_2=43.0\cdot 10^6\,\mathrm{S/m}$.

?

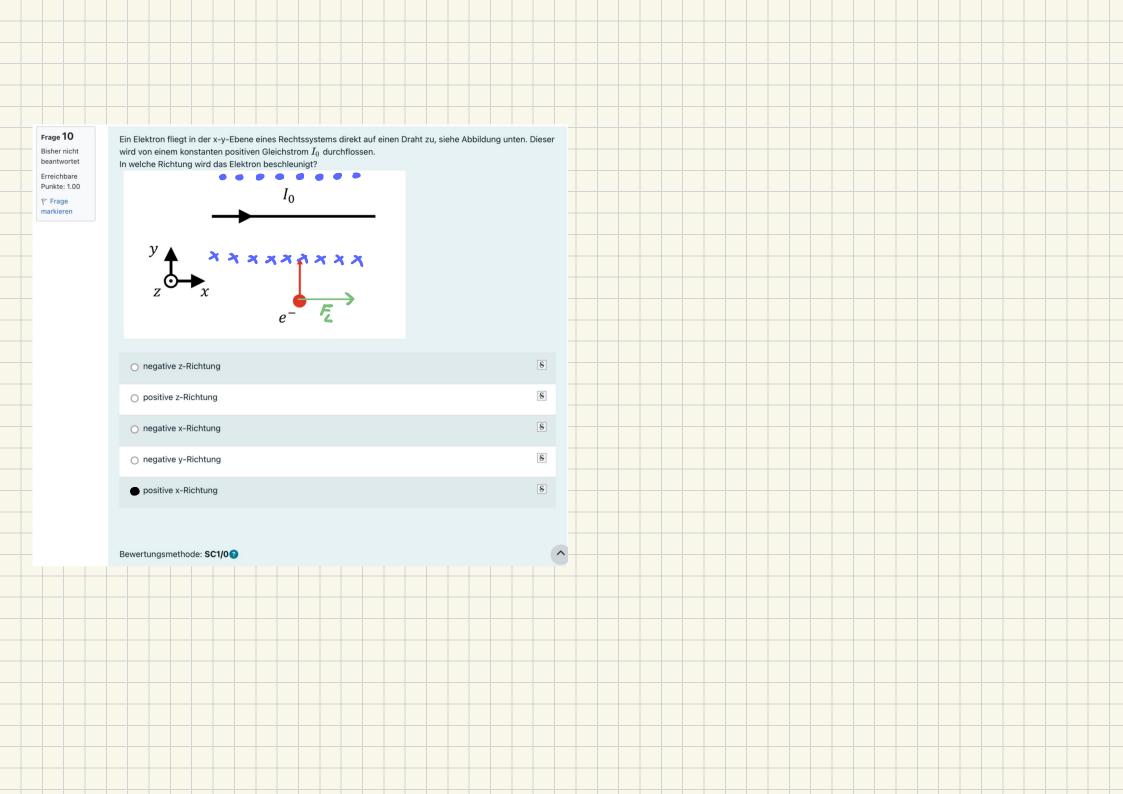
Berechnen Sie den Betrag der Stromdichte im Bereich (1) $|\overrightarrow{J_1}|$.

$$|\overrightarrow{J_1}| =$$


Ermitteln Sie den Betrag der elektrischen Feldstärke in Bereich (1) $|\overrightarrow{E_1}|$

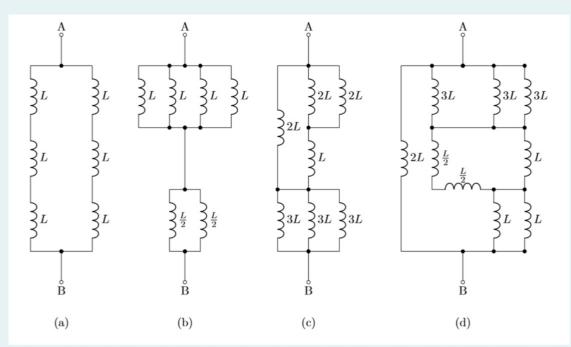

$$|\overrightarrow{E_1}|=$$

Frage 7 Vervollständigen Sie folgenden Lückentext: Bisher nicht


Die Stromdichte in Bereich (2) ist **qleich** † in Bereich (1).

Der Betrag des elektrischen Felds in Bereich (2) ist

Frage 9 In einem Netzwerk mit 2 Spannungsquellen und 1 Stromquelle, 15 Widerständen, 4 Knoten, 7 Maschen und 6 Zweigen: Wie viele unabhängige Gleichungen müssen Sie aufstellen um das System eindeutig zu lösen? Wie Bisher nicht beantwortet viele davon sind Knotengleichungen, wie viele Maschengleichungen? Anzahl unabhängiger Gleichungen: $6 \Rightarrow G_{u} = Z$ Anzahl Knotengleichungen: $3 \Rightarrow G_{k} = k-1$ Anzahl Maschengleichungen: $3 \Rightarrow G_{u} = Z-k+1 = G_{u}-G_{k}=3$ Erreichbare Punkte: 3.00 **♥** Frage markieren



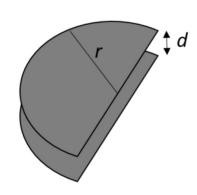
	Frage 11 Bisher nicht beantwortet Erreichbare Punkte: 1.00 Frage markieren	Sie spannen zwei exakt $l=1000.0\mathrm{mm}$ lange dünne Drähte parallel zueinander im Abstand von $a=100.0\mathrm{mm}$ auf. Berechnen Sie die Stromstärke I_0 welche durch beide Drähte fliessen muss, damit sich diese mit exakt $F=10.0\mathrm{N}$ anziehen. $I_0=\boxed{2236,07}$		
	Frage 12 Bisher nicht beantwortet Erreichbare Punkte: 1.00 Frage markieren	In welcher relativen Richtung zueinander fliessen die Ströme in den Leitern?		
		○ egal	S	
		gleiche Richtung	S	
		o entgegengesetzte Richtung	S	
		Bewertungsmethode: SC1/0 3		
	a)	$F = \frac{\mu_0 I^2 c}{2\pi \alpha} \implies I = \sqrt{\frac{2\pi \alpha F}{\mu_0 \cdot b}} = 2236,068 A$		
	Ы			

Bisher nicht beantwortet

Erreichbare Punkte: 1.00

Bestimmen Sie für die obigen vier Induktionsnetzwerke (a) bis (d) die Ersatzinduktion in Abhängigkeit von L zwischen den Anschlussklemmen A und B (z.B. $L_{AB}=42L$)

(a)
$$L_{
m AB}=$$
 4.5 L

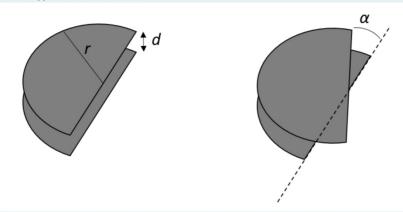

(b)
$$L_{
m AB}=$$
 0.5 $m m L$

(c)
$$L_{
m AB}=$$
 2 L

(d)
$$L_{
m AB}=iggl[$$
 4 $iggl[$

Aufgabe 2 - Elektrostatisches Potential

Gegeben sei folgende Anordnung eines Kondensators. Es sind zwei halbskreisförmige $(r=21.4\,\mathrm{cm})$, parallel liegende Leiterplatten mit dem Abstand $d=1.68\,\mathrm{cm}$ dargestellt. Die gesamte Anordnung befindet sich in Luft $(arepsilon_{
m r}=1.00)$. Ein elektrisches Feld zwischen den Platten kann als homogen angenommen werden. Das Feld ausserhalb der Platten wird vernachlässigt.


Wie gross ist die Kapazität C dieses Kondensators?

$$C = 3,7913 \cdot 10^{11} F$$
 (2 Punkte)

Wie gross ist die Flächenladungsdichte σ_0 auf den Platten wenn zwischen den Platten eine Spannung

$$\sigma_0 = 2.208 \cdot 10^{-4}$$
 (2 Punkte)

der unteren Platte verdreht. Betrachten Sie nur das homogene elektrische Feld im Raum zwischen den sich überlappenden Teilen der Platten.

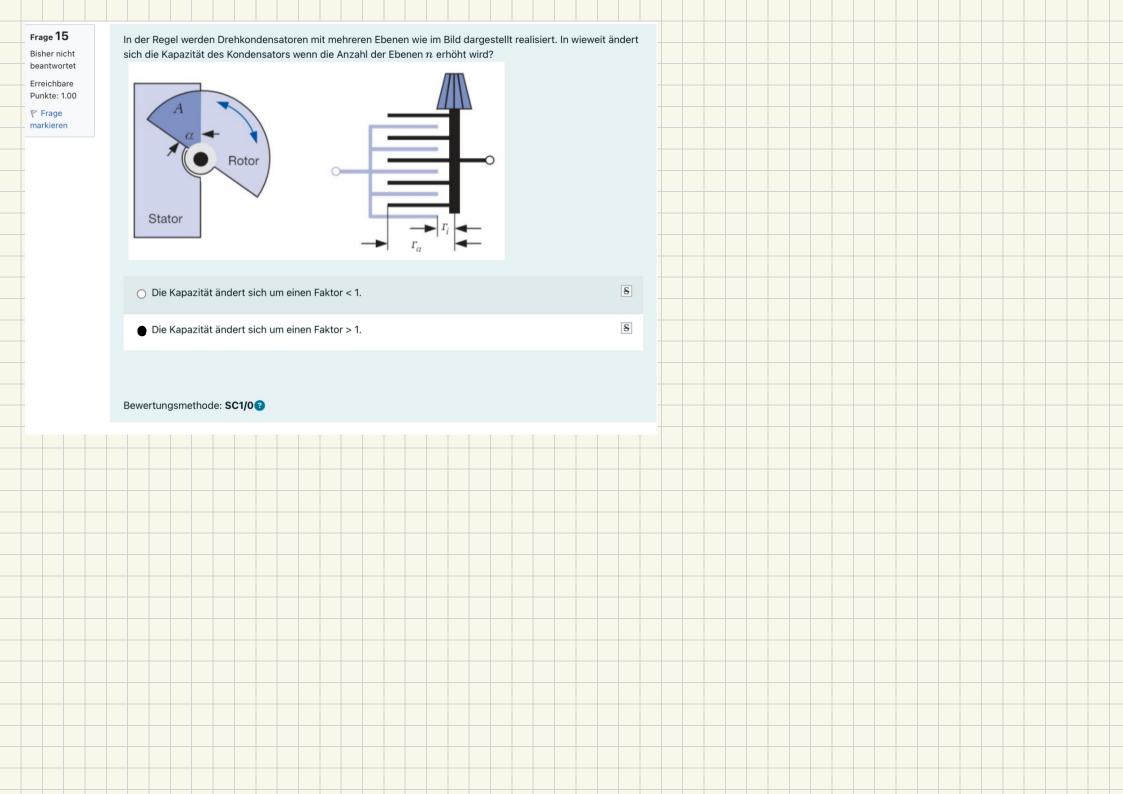
Berechnen Sie zunächst die neue wirksame Kondensatorfläche A_{lpha} .

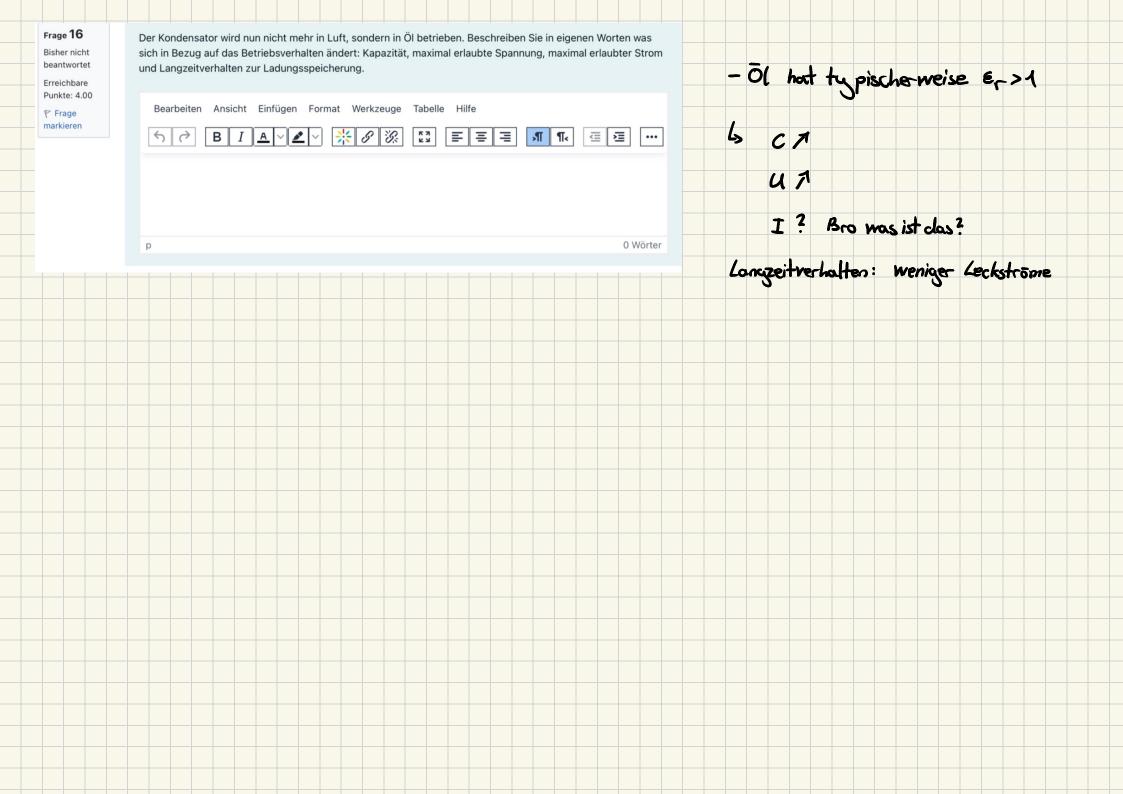
$$A_{\alpha} = \boxed{\textbf{O.O311 m}^2}$$
 (2 Punl

Wie gross ist die Spannung U_{lpha} zwischen den zwei Kondensatorplatten, wenn vor dem Verdrehen $U=419\,\mathrm{V}$ anliegt, und beim Verdrehen die Gesamtladung konstant bleibt?

$$U_{\alpha} =$$
 368 V (3 Pun

(3 Punkte)

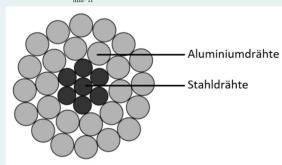

$$C = \mathcal{E} \frac{A}{d} = \mathcal{E} \frac{\frac{1}{2}\pi r^2}{d} = 3,7913 \cdot 10^{-14} F$$


$$D = \frac{Q}{A} = \frac{UC}{A} = 2.208 \cdot 10^{-14} \frac{C}{m^2}$$

$$A_{\alpha} = \frac{1}{2}\pi r^2 \cdot \frac{(\pi - \alpha)}{\pi} = 0.0311 \text{ m}^2$$

$$\Rightarrow u_{\alpha} = u_{0} = 367,67$$

 $C_{\propto} = \varepsilon \frac{A_{\sim}}{d} = 1.64 \cdot 10^{-11}$


Bisher nicht beantwortet Erreichbare

Punkte: 7.00

Frage
markieren

Aufgabe 3 - Elektrostatisches Strömungsfeld

Ein Freileitungsseil besteht aus einzelnen Teildrähten. Um die mechanischen Zugkräfte aufzunehmen werden häufig einige der Aluminiumdrähte in der Mitte durch Stahldrähte ersetzt. Die **sieben** Stahldrähte haben jeweils einen Durchmesser von $d_{\rm St}=2.03~{\rm mm}$ und die **26** Aluminiumdrähte haben jeweils einen Durchmesser von $d_{\rm Al}=3.95~{\rm mm}$. Stahl hat einen spezifischen Leitwert von $\kappa_{\rm St}=\frac{8.4~{\rm m}}{{\rm mm}^2~\Omega}$ und Aluminium hat einen spezifischen Leitwert von $\kappa_{\rm Al}=\frac{30.5~{\rm m}}{{\rm mm}^2~\Omega}$.

In der folgenden Aufgabe soll der längenbezogene Widerstand R' des Freileitungsseils berechnet werden. Berechnen Sie dafür zunächst den längenbezogenen Widerstand $R'_{\rm St}$ in $\frac{{
m Widerstand}}{{
m Lange}}$ für Stahl (Hinweis: Nutzen Sie die Gesamtfläche vom Stahl):

 $R'_{
m St} =$ (2 Punkte)

Berechnen Sie den längenbezogenen Widerstand $R'_{
m Al}$ in $\frac{
m Widerstand}{
m Lange}$ für Aluminium (Hinweis: Nutzen Sie die Gesamtfläche vom Aluminium):

 $R'_{
m Al} =$ (2 Punkte)

Berechnen Sie den längenbezogenen Gesamtwiderstand des Leiterseils.

R' = (2 Punkte)

Berechnen Sie den Gesamtleitwert des Leiterseils der Länge $L=1.0\,\mathrm{km}$.

G=ig| (1 Punkt)

 $R_{st}' = \frac{1}{\kappa \cdot A_{s}^{2}} = 0.00525 \frac{a}{m}$

$$R_{AL}' = \frac{1}{k_{A_s} \cdot 46} = 1.02 \cdot 10^{-4} \frac{1}{m}$$

$$\frac{1}{R'} = \frac{1}{R'_{s+}} \frac{1}{R'_{A}} \implies R' = 1.009 \cdot 10^{-4} \frac{2}{m}$$

$$S = \frac{1}{R' \cdot S} = \frac{1}{R} = 9.9S$$

Bisher nicht beantwortet Erreichbare

Punkte: 6.00

Frage
markieren

c)

Aufgabe 3 Fortsetzung

Das Leiterseil hat im Betrieb eine Temperatur von $\vartheta_{Betrieb}=80.0~^{\circ}C$. Dabei ändert sich der Widerstand des Leiterseils.

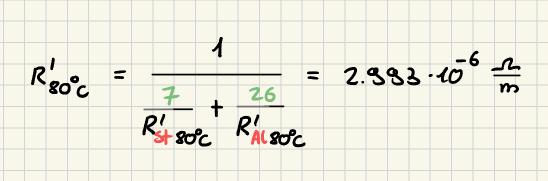
Stahl hat einen Temperaturkoeffizient von $lpha_{\mathrm{St}} = rac{0.00612}{\mathrm{K}}$.

Berechnen Sie den längenbezogenen Widerstand $R'_{\mathrm{St,80^{\circ}C}}$ für Stahl im Leiterseil unter der Annahme, dass bei $20.0~^{\circ}\mathrm{C}$ der längenbezogene Widerstand $\frac{1.23~\mathrm{m}\Omega}{\mathrm{m}}$ entspricht.

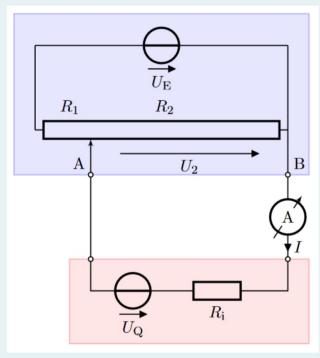
$$R'_{
m St.80^{\circ}C}=$$
 (2 Punkte)

Aluminium hat einen Temperaturkoeffizient von $lpha_{
m Al}=rac{0.00346}{
m K}.$

Berechnen Sie den längenbezogenen Widerstand $R'_{
m Al,80^{\circ}C}$ für Aluminium im Leiterseil unter der Annahme, dass bei $20.0\,^{\circ}{
m C}$ der längenbezogene Widerstand $\frac{0.0653\,{
m m}\Omega}{{
m m}}$ entspricht.


$$R'_{
m Al,80^{\circ}C} =$$
 (2 Punkte)

Nutzen Sie die oben berechneten längenbezogenen Widerstände zur Bestimmung des längenbezogenen Gesamtwiderstands des Leiterseils bei Betriebstemperatur.


$$R'_{
m 80^{\circ}C}=$$
 (2 Punkte)

(a)
$$a \cdot b = 60^{\circ} c$$
 $R'_{s+;80^{\circ} c} = R'_{s+20^{\circ} c} \cdot (1 + \alpha_{s+4^{\circ} c})$
 $= 1.682 \cdot 10^{-3} \frac{n}{m}$

(b) $a \cdot b = 60^{\circ} c$
 $R'_{Al;80^{\circ} c} = R'_{Al;20^{\circ} c} \cdot (1 + \alpha_{s+4^{\circ} c})$
 $= 0.0788 \cdot 10^{-3} \frac{n}{m}$

Aufgabe 4 - Elektrische Netzwerke

Mit Hilfe der oben gezeigten Kompensationsschaltung soll die Quellenspannung $U_{
m O}$ einer unbekannten Spannungsquelle bestimmt werden. Die Versorgungspannung $U_{
m E}$ sei bekannt. Der Abgriff am Potentiometer kann verschoben werden, so dass R_1 und R_2 stufenlos variabel eingestellt werden kann.

Frage 19

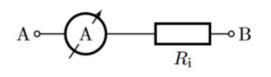
Bisher nicht beantwortet

Erreichbare Punkte: 1.00

markieren Beschreiben Sie in ihren eigenen Worten wie Sie vorgehen, um die unbekannte Spannung U_{O} zu bestimmen.

- Schieberegler verschieben bis I=0

 => Spannungsteiler verwenden für Ua


Frage 20 Stellen Sie eine analytische Gleichung für $U_{
m Q}\,$ in Abhängigkeit von $U_{
m E}$, $R_1\,$ und $R_2\,$ auf. Bisher nicht Beachten Sie, dass $R_{
m i}$ ebenfalls unbekannt ist und in der Lösung nicht mehr enthalten sein darf. beantwortet Erreichbare Punkte: 1.00 $U_{\mathrm{Q}}\left(U_{\mathrm{E}},R_{1},R_{2}
ight)=\left[% \left(R_{\mathrm{E}},R_{1},R_{2}
ight)
ight] =\left[\left(R_{\mathrm{E}},R_{1},R_{2}
ight)
ight] =\left(R_{\mathrm{E}},R_{1},R_{2}
ight) =\left(R_{\mathrm{E}},R_{1},R_{2}
ight)
ight] =\left[\left(R_{\mathrm{E}},R_{1},R_{2}
ight)
ight] =\left(R_{\mathrm{E}},R_{1},R_{2}
ight) =\left(R$ markieren $U_{Q} = \frac{R_{2}}{R_{1} + R_{2}} U_{E}$

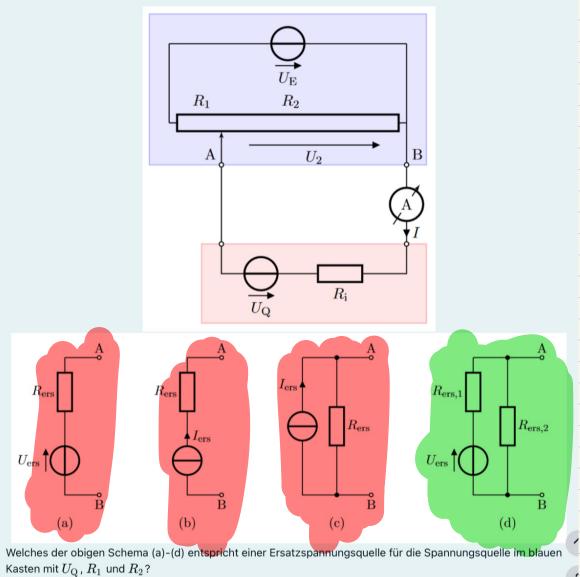
Bisher nicht beantwortet

Erreichbare Punkte: 1.00

markieren

Oben sehen Sie ein Ersatzschaltbild eines Amperemeters. Sollte ein Amperemeter eine möglichst grossen oder möglichst kleinen Innenwiderstand $R_{\rm i}$ haben? Warum?

Erklären Sie, welchen Einfluss der Innenwiderstand des Amperemeters in diesem Aufbau auf die Genauigkeit des Messergebnisses bei der Bestimmung von $U_{
m O}$ hat.


Ri sollte möglichst klein sein => 3m aleichgewichtszustand: kein unterschied

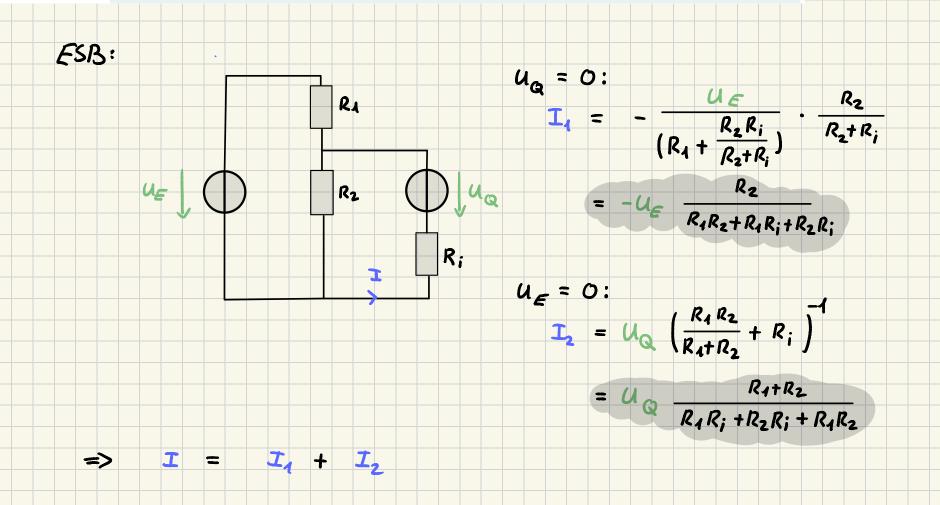
Bisher nicht beantwortet

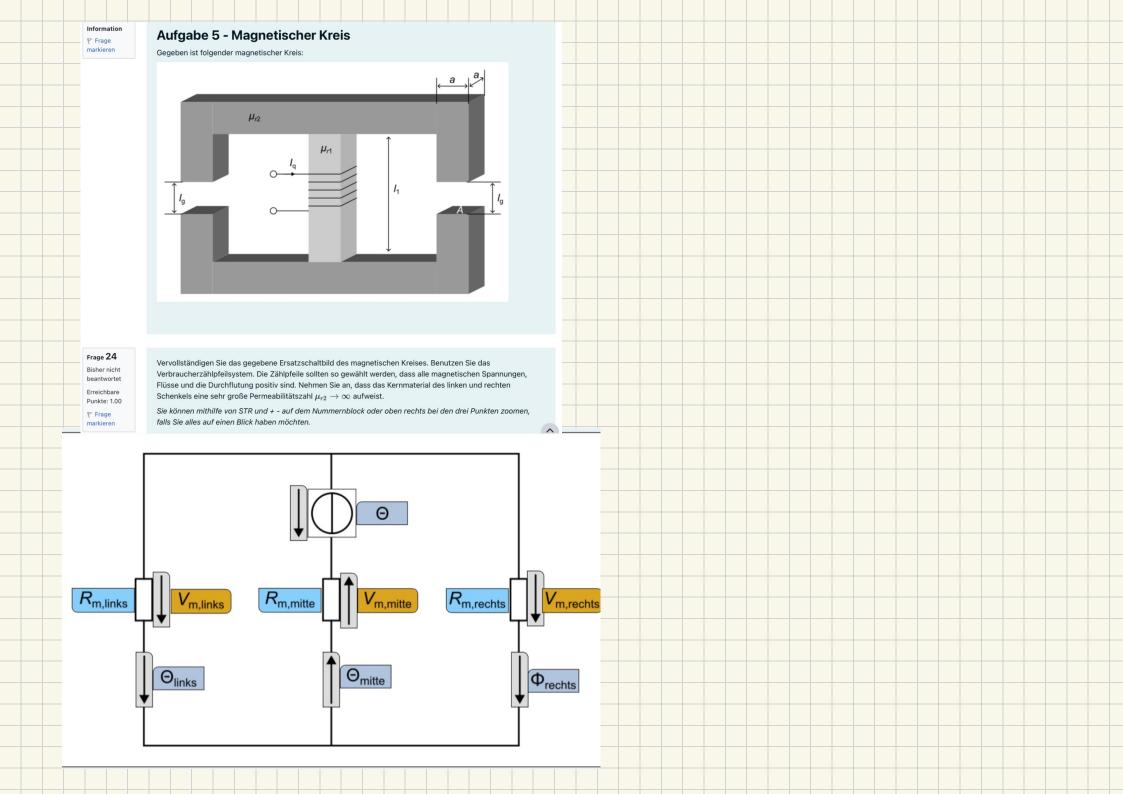
Erreichbare Punkte: 1.00

markieren

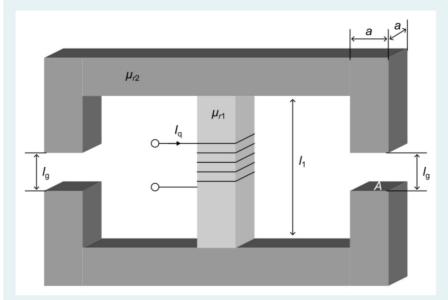
Kasten mit $U_{
m Q}$, R_1 und R_2 ?

Bisher nicht beantwortet


Erreichbare Punkte: 1.00


Frage markieren

Was ist die analytische Formel zum berechnen von $I\left(U_{\mathrm{Q}},U_{\mathrm{E}},R_{1},R_{2},R_{\mathrm{i}}
ight)$ für beliebige R_{1} und R_{2}


Tipp: Bestimmen Sie zur Herleitung eine passende Ersatzspannungsquelle.

$$I\left(U_{\mathrm{Q}},U_{\mathrm{E}},R_{1},R_{2},R_{\mathrm{i}}
ight)= igg[$$

Bisher nicht beantwortet Erreichbare Punkte: 16.00

Auf einem Kern in E-Form ist entsprechend der obigen Abbildung eine Wicklung mit N=625 Windungen angebracht. Alle Schenkel haben die gleiche quadratische Querschnittsfläche $A=a^2$ mit $a=31.2~\mathrm{mm}$, wobei das Kernmaterial des mittleren Schenkels die Permeabilitätszahl $\mu_{r1}=1542$ und das Kernmaterial des linken und rechten Schenkels eine sehr große Permeabilitätszahl $\mu_{r2}\to\infty$ aufweist. Während die effektive Weglänge des mittleren Schenkels $l_1=34.8~\mathrm{cm}$ beträgt, besitzen der linke und rechte Schenkel jeweils einen Luftspalt mit der sehr kleinen Breite $l_{\mathrm{g}}=1.50~\mathrm{mm}$. Das magnetische Feld kann in den Luftspalten als homogen angenommen werden. Durch die Wicklung fliesst der Gleichstrom mit der Stärke $I_{\mathrm{g}}=822~\mathrm{mA}$.

Bestimmen Sie den magnetischen Widerstand $R_{
m mMitte}$ des mittleren Schenkels.

$$R_{
m mMitte} =$$
 (3 Punkte)

Bestimmen Sie nun auch den magnetischen Widerstand $R_{
m mLinks}$ des linken und $R_{
m mRechts}$ des rechten Schenkels und anschliessend die Durchflutung des mittleren Schenkels Θ .

(Hinweis: Auch wenn Sie die obigen Werte falsch berechnet haben, können Sie in den folgenden Aufgaben die volle Punktzahl erreichen.)

Bestimmen Sie nun weiter die Teilflüsse in den drei Teilarmen $\phi_{\rm Links}$, $\phi_{\rm Mitte}$ und $\phi_{\rm Rechts}$.

 $\phi_{
m Mitte}=$ (2 Punkte) $\phi_{
m Links}=$ (2 Punkte) $\phi_{
m Rechts}=$ (2 Punkte) Berechnen Sie zuletzt den $A_{
m L}$ -Wert der Anordnung.

$$A_{
m L}=$$
 (2 Punkte)

$$R_{m,\text{Withe}} = \frac{C_A}{pA} = 184,5 \cdot 10^3 \frac{A}{V_S}$$

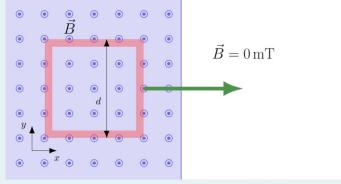
$$R_{m,\text{Links}} = R_{m,\text{Rechts}} = 1.226.230 \frac{A}{V_S}$$

$$\Theta = N \cdot I_q = 513,75A$$

$$R_{m,\text{Links}} = R_{m,\text{Withe}} + \frac{1}{2}R_{m,\text{Links}}$$

$$\Phi_{\text{Links}} = \frac{\Theta}{R_{m,\text{links}}} = 6.44 \cdot 10^4 \text{ Wb}$$

$$\Phi_{\text{Links}} = \Phi_{\text{Rechts}} = \frac{1}{2}\Phi_{\text{Links}} = 3.22 \cdot 10^4 \text{ Wb}$$


$$A_L = \frac{1}{R_{m,\text{links}}} = \frac{1}{R_{\text{Mithe}} + \frac{1}{2}R_{\text{Rechts}}} = 1.25 \cdot 10^3 \text{ H}$$

Bisher nicht beantwortet Erreichbare Punkte: 1.00

markieren

Aufgabe 6 - Induktion

Eine quadratische Drahtspule mit der Seitenlänge $d=429\,\mathrm{cm}$ enthält N=386 Schleifen und befindet sich entsprechend der obigen Abbildung senkrecht zu einem homogenen Magnetfeld mit der Flussdichte $|\vec{B}|=855\,\mathrm{mT}$, wobei $\vec{B}||\hat{e}_z^\dagger$. Die Spule wird schnell und gleichmässig nach rechts vollständig aus dem Feld heraus in einen Bereich gezogen, in dem $|\vec{B}|$ abrupt auf null fällt (die Bewegungsrichtung ist senkrecht zu \vec{B}). Zum Zeitpunkt t=0 befindet sich die rechte Seite der Spule am rechten Rand des Magnetfelds. Es dauert $\Delta t=1506\,\mathrm{ms}$, bis sich die gesamte Spule im feldfreien Bereich befindet.

Bestimmen Sie die absolute Änderungsrate $|\Delta arPhi/\Delta t|$ des Flusses.

$$\left|\frac{\Delta \Phi}{\Delta t}\right| =$$
 (3 Punkte)

Berechnen Sie nun den Betrag der induzierten Spannung $|U_{
m ind}|$ während des Herausziehens:

 $|U_{
m ind}| = igl[$ (3 Punkte)

Bestimmen Sie auch die Stärke des induzierten Stroms $|I_{
m ind}|$ während des Herausziehens . Der Widerstand der Spule sei $R=246\,\Omega$.

 $|I_{
m ind}|=$ (2 Punkte)

Wie gross ist die in der Spule verbrauchte Energie W?

W = (3 Punkte)

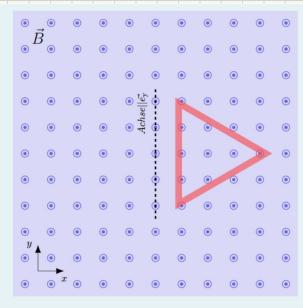
Wie gross ist der Betrag der zum Herausziehen benötigte Kraft F?

F = (3 Punkte)

$$\left|\frac{\Delta\phi}{\Delta\dot{t}}\right| = N \cdot \left|\frac{\Delta\phi_A}{\Delta\dot{t}}\right| = N \cdot \left|\frac{B \cdot A}{\Delta\dot{t}}\right| = 4033V$$

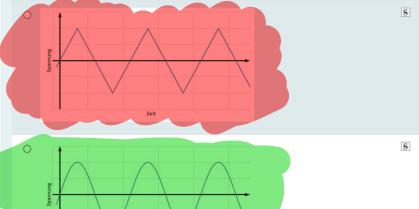
$$|u_{ind}| = 4033V$$

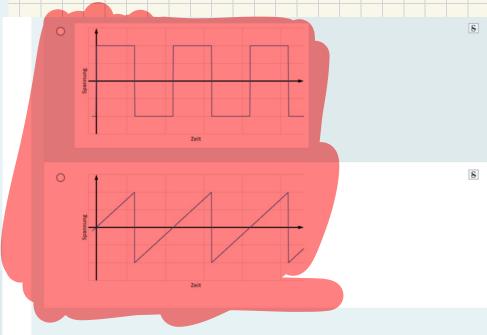
$$I_{ind} = \frac{u_{ind}}{R} = 16,39A$$


၉)

$$\int_{S} \vec{F} d\vec{s} = F \cdot d = P = U \cdot I$$

$$\Rightarrow F = \frac{U \cdot I}{d} = 15.413 N$$


Frage 27
Bisher nicht beantwortet
Erreichbare
Punkte: 1.00
Frage


markieren

Die dargestellte dreieckige Spule rotiert nun um die eingezeichnete Achse mit einer konstanten Winkelgeschwindigkeit ω . Sie verlässt das Magnetfeld der Flussdichte \vec{B} dabei nicht.

Welche Form hat die induzierte Spannung?

Bewertungsmethode: SC1/0 ?