Netzwerke und Schaltungen II, D-ITET Übung 4

Übertragungsfunktion, Schwingkreis & Bodeplot

Aufgabe 1 Übertragungsfunktion und Bode Diagramm

Abbildung 1: (a) Spannungsteiler, (b) RC-Tiefpassfilter, und (c) RC-Hochpassfilter.

Gegeben sind die in Abbildung 1 gezeigten Schaltungen mit einer sinusförmigen Quellenspannung $\underline{\hat{u}}_1$ und den Bauteilwerten $R_1 = R_2 = 10 \text{ k}\Omega$, $C_1 = 1 \text{ nF}$ und $C_2 = 10 \text{ nF}$. Der Lastwiderstande R_L in Abbildung 1(b) und 1(c) wird erst in Aufgabenteil 1.3) berücksichtigt.

- 1.1) Bestimmen Sie für jede der in Abbildung 1 gezeigten Schaltungen die Übertragungsfunktion $\underline{G}_{u1u2}(j\omega) = \frac{\hat{u}_2(j\omega)}{\hat{\underline{u}}_1(j\omega)}$ und konstruieren Sie die zugehörigen Bode Diagramme (Amplitudengang und Phasengang) im Bereich $\omega \in [10^1 \dots 10^7] \text{s}^{-1}$ mit Hilfe der Asymptotennäherung. Verwenden Sie die dazu angehängten Diagramme in Abbildungen 7 - 9. Geben Sie in beiden Fällen die 3 dB-Grenzfrequenz an.
- 1.2) Wie können die in Abbildung 1(b) und 1(c) gezeigten Tiefpass- und Hochpassfilter mit Induktivitäten anstelle der Kondensatoren C_1 und C_2 realisiert werden? Wie ist jeweils der Induktivitätswert zu wählen, damit sich bei gleichbleibendem Widerstandswert die 3 dB-Grenzfrequenz nicht verändert?
- 1.3) An den Ausgangsklemmen der Filterschaltungen wird nun jeweils ein Lastwiderstand $R_L = 5 \,\mathrm{k}\Omega$ angeschlossen. Zeichnen Sie für die Fälle in Abbildung 1(b) und 1(c) das durch die Belastung veränderte Bode Diagramm.

Version: 17. Februar 2020

Aufgabe 2 Übertragungsfunktion eines Bandpassfilters

Abbildung 2: (a) Bandpassfilter aufgebaut als Serienschaltung aus einem RC-Hochpassfilter und einem RC-Tiefpassfilter. (b) Äquivalentes Ersatzschaltbild des Hochpassfilters mit einer Spannungsquelle \hat{u}_q mit Innenimpedanz Z_i .

Gegeben ist die in Abbildung 2(a) gezeigte Schaltung mit der sinusförmigen Quellenspannung $\underline{\hat{u}}_1$ und den Bauteilwerten $R_1 = R_2 = 10 \text{ k}\Omega$, $C_1 = 1 \text{ nF}$ und $C_2 = 10 \text{ nF}$.

- 2.1) Bestimmen Sie die Übertragungsfunktion <u>G</u>_{u1u3}(jω) = <u>û₃(jω)</u> der in Abbildung 2(a) gezeigten Schaltung.
 Hinweis: Eine übersichtliche Lösung ergibt sich, wenn das Hochpassfilter, wie in Abbildung 2(b) gezeigt, zuerst durch eine Ersatzspannungsquelle mit Innenimpedanz <u>Z</u>_i ersetzt wird.
- 2.2) Unter welcher Voraussetzung kann die Übertragungsfunktion $\underline{G}_{u1u3}(j\omega)$ der Gesamtschaltung durch das Produkt der Einzelübertragungsfunktionen der in Serie geschalteten Hochpass- und Tiefpassfilter angenähert werden? *Hinweis: Vergleichen Sie Ihr Ergebnis aus Aufgabenteil 2.1) mit den Resultaten der Aufgabe 1.*
- 2.3) Prüfen Sie die Gültigkeit der Näherung aus Aufgabenteil 2.2) und konstruieren Sie unter Verwendung dieser Näherung das Bode Diagramm des Bandpassfilters.

Aufgabe 3 Parallelschwingkreis, Dämpfung

Abbildung 3: Parallelschwingkreis mit Spulenverlusten

Gegeben ist der Parallelschwingkreis nach Abbildung 3 mit den Zahlenwerten L = 0.1 mH, $R_L = 0.1 \Omega$ und $C = 100 \,\mu\text{F}$, wobei der Ersatzwiderstand R_L die internen Verluste einer realen Induktivität L nachbildet.

3.1) Bestimmen Sie die Resonanzfrequen
z f_p und den Resonanzstrom ${\cal I}_p$ des Parallelschwingkreises.

Hinweis: Beachten Sie, dass bei Resonanz der Eingangsblindstrom der Schaltung verschwindet, d.h. der Eingangsblindleitwert ist B = 0. Leiten Sie damit einen allgemeinen Ausdruck der gesuchten Grössen f_p und I_p in Abhängigkeit von L, C und R_L her und setzen Sie schliesslich Zahlenwerte ein.

- 3.2) Vergleichen Sie das berechnete Ergebnis f_p mit der Kennfrequenz f_0 .
- 3.3) Zeichnen Sie ein Zeigerdiagramm für die Ströme $\underline{\hat{i}}_1, \underline{\hat{i}}_2$ und die Spannungen $\underline{\hat{u}}_q, \underline{\hat{u}}_L$ und $\underline{\hat{u}}_R$ für den Resonanzfall. Welche Amplituden haben die Ströme $\underline{\hat{i}}, \underline{\hat{i}}_1$ und $\underline{\hat{i}}_2$ bei Resonanz? Nehmen Sie für diese Teilaufgabe einen Eingangsspannungseffektivwert von $U_q = 10$ V an.
- 3.4) Skizzieren Sie den Amplituden- und Phasengang der Eingangsimpedanz in der Umgebung der Resonanzfrequenz. Verwenden Sie dazu das Diagramm in Abbildung 10. In welchem Bereich verhält sich die Schaltung kapazitiv, und in welchem Bereich induktiv?
- 3.5) Berechnen Sie die Güte Q und die Bandbreite b_{ω} des Parallelschwingkreises.

Aufgabe 4 Strommessung mit nicht idealem Widerstand

Abbildung 4: (a) Ersatzschaltbild des Shunts und (b) Shunt inkl. Kompensationsnetzwerk

Zur Messung des Stromes in einer elektrischen Schaltung werde ein aus Widerstandsdraht gewickelter Widerstand eingesetzt, der neben dem ohmschen Anteil R_s auch eine induktive Komponente L_s aufweist und durch das Ersatzschaltbild in Abbildung 4(a) beschrieben werden kann. Für Gleichstrom ist dann die Spannung U_M ein unmittelbares Mass für den Strom I_M . Bei zeitlich veränderlichem Strom ist $u_M(t) \sim i_M(t)$ jedoch nicht mehr gültig.

- 4.1) Geben Sie die für einen allgemein zeitlich veränderlichen Strom $i_M(t)$ auftretende Spannung $u_M(t)$ in Form einer Differentialgleichung an. Wie ist R_s zu wählen, wenn bei einem Strom $I_M = 20$ A eine maximale Verlustleistung von $P_V = 2$ W in R_s auftreten darf?
- 4.2) Skizzieren Sie den Verlauf von $u_M(t)$ massstäblich für den in Abbildung 5 gezeigten Zeitverlauf von $i_M(t)$. Nehmen Sie für den weiteren Verlauf dieser Aufgabe die Werte für die Induktivität $L_s = 1 \,\mu\text{H}$ und den Shuntwiderstand $R_s = 5 \,\text{m}\Omega$ an.
- 4.3) Berechnen Sie die Übertragungsfunktion $\underline{G}_M(j\omega) = \frac{\hat{u}_M}{\hat{\underline{i}}_M}$ und stellen Sie den Amplitudengang graphisch dar. Welche Verstärkung tritt bei kleinen Frequenzen $\omega \to 0$ auf? Wie hoch ist die Grenzfrequenz ω_q ?
- 4.4) Parallel zum Strommesswiderstand wird nun ein Kompensationsnetzwerk geschaltet (siehe Abbildung 4(b)). Berechnen Sie nun die Übertragungsfunktion $\underline{H}(j\omega) = \frac{\hat{u}_K}{\hat{u}_M}$. Wie hoch ist die Grenzfrequenz ω_g des Kompensationsnetzwerkes für $R_K = 30 \text{ k}\Omega$ und $C_K = 10 \text{ nF}$?
- 4.5) Durch das Kompensationsnetzwerk soll nun eine frequenzunabhängige Übertragungsfunktion $G_K = \frac{\hat{\underline{u}}_K}{\hat{\underline{i}}_M}$ erreicht werden. Wie sind R_K und C_K hierfür zu wählen? Welcher Widerstand R_K ist für $C_K = 10$ nF einzusetzen?

Hinweis: Bei den Berechnungen können Sie davon ausgehen, dass der gesamte zu messende Strom i_M durch L_s und R_s fliesst $(i_s = i_M)$.

Abbildung 5: Verlauf des zu messenden Stromes (Aufgabe 4.2))

- 4.6) Skizzieren Sie den Verlauf von $u_K(t)$ massstäblich für den in Abbildung 5 gezeigten Zeitverlauf von $i_M(t)$.
- 4.7) Zusatzteilaufgabe:

Abbildung 6: Geometrische Anordnung des Shunt-Widerstands

Alternativ zu einem Kompensationsnetzwerk kann der Aufbau des Shuntwiderstands auf eine niedrige Induktivität optimiert werden. Durch die in Abbildung 6 illustrierte geometrische Anordnung zweier sehr nahe aneinander liegenden Widerstandsfolien kann die parasitäre Induktivität sehr niedrig gehalten werden. Der Strom wird über zwei Stromanschlüsse auf die U-förmig gefaltete Widerstandsfolie geführt. Das Potential wird an beiden Enden der Widerstandsfolie abgegriffen. Für den Shunt werde das Material Manganin mit spezifischem Widerstand $\rho = 62.5 \,\mu\Omega \times \text{cm}$ verwendet. Die geometrischen Abmessung ist gegeben: $d = 0.2 \,\text{mm}, b = 5 \,\text{mm}, l = 20 \,\text{mm}$ und $s = 1 \,\text{mm}$. Das Isolationsmaterial zwischen den Leitern (nicht eingezeichnet) hat eine relative magnetische Permeabilität von $\mu_r = 1$. Bestimmen Sie den Shunt-Widerstand R_s und die parasitäre Shunt Induktivität L_s .

Hinweis: Vernachlässigen Sie potentielle Randeffekte, d.h. gehen Sie von einem homogenen magnetischen Feld zwischen dem Hin- und Rückleiter aus.

Abbildung 7: Bodeplot Teilaufgabe 1.1a)

Abbildung 8: Bodeplot Teilaufgabe 1.1b)

Abbildung 9: Bodeplot Teilaufgabe 1.1c)

Abbildung 10: Bodeplot Teilaufabe 3.4