Autonomous Systems Lab
Prof. Roland Siegwart

Studies on Mechatronics

Fast Driving Concepts for a Walking Excavator

Autumn Term 2015

Supervised by:
Prof. Dr. Marco Hutter

Author:
Simon Zimmermann
Declaration of Originality

I hereby declare that the written work I have submitted entitled

Fast Driving Concepts for a Walking Excavator

is original work which I alone have authored and which is written in my own words.

Author(s)
Simon Zimmermann

Student supervisor(s)
Marco Hutter

Supervising lecturer
Roland Siegwart

With the signature I declare that I have been informed regarding normal academic citation rules and that I have read and understood the information on 'Citation etiquette' (https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/leistungskontrollen/plagiarism-citationetiquette.pdf). The citation conventions usual to the discipline in question here have been respected.

The above written work may be tested electronically for plagiarism.

Place and date __ Signature

Co-authored work: The signatures of all authors are required. Each signature attests to the originality of the entire piece of written work in its final form.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Symbols</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 The Walking Excavator</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Dimensions</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Present Driving Concept</td>
<td>5</td>
</tr>
<tr>
<td>2.2.1 Structure</td>
<td>5</td>
</tr>
<tr>
<td>2.2.2 Control</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Components</td>
<td>6</td>
</tr>
<tr>
<td>2.3.1 Hydraulic Pump</td>
<td>6</td>
</tr>
<tr>
<td>2.3.2 Hydraulic Motor</td>
<td>8</td>
</tr>
<tr>
<td>2.3.3 Planetary Gear</td>
<td>10</td>
</tr>
<tr>
<td>2.4 Calculations</td>
<td>11</td>
</tr>
<tr>
<td>2.4.1 Maximum Velocity</td>
<td>11</td>
</tr>
<tr>
<td>2.4.2 Minimum Output Torque</td>
<td>12</td>
</tr>
<tr>
<td>2.4.3 Motor Power Estimation</td>
<td>13</td>
</tr>
<tr>
<td>3 Fast Driving Concepts</td>
<td>15</td>
</tr>
<tr>
<td>3.1 Hydraulic Components</td>
<td>15</td>
</tr>
<tr>
<td>3.1.1 Motor</td>
<td>15</td>
</tr>
<tr>
<td>3.1.2 Gear</td>
<td>17</td>
</tr>
<tr>
<td>3.2 Electric Components</td>
<td>18</td>
</tr>
<tr>
<td>3.2.1 The Bonfiglioli Approach</td>
<td>18</td>
</tr>
<tr>
<td>3.2.2 The Rigitrac Approach</td>
<td>19</td>
</tr>
<tr>
<td>3.3 Dimension Check</td>
<td>22</td>
</tr>
<tr>
<td>3.4 Concept Comparison</td>
<td>22</td>
</tr>
<tr>
<td>4 Results and Conclusion</td>
<td>25</td>
</tr>
<tr>
<td>5 Future Work</td>
<td>27</td>
</tr>
<tr>
<td>Bibliography</td>
<td>31</td>
</tr>
</tbody>
</table>
A Supplier List
A.1 Gears .. 33
A.2 Hydraulic Motors 33
A.3 Electric Motors 34

B Supplier Contact Data 35
B.1 Bonfiglioli .. 35
B.2 EAAT GmbH .. 35

C Datasheets 37
Abstract

This studies on mechatronics presents the development and comparison of different fast driving concepts for a 12 ton walking excavator with the purpose of increasing its maximum reachable velocity. In order to reach this goal, different on the current market available components have been searched and compared. The best hydraulic and two possible electric solutions are presented in detail. It is shown that with these new concepts, the excavator’s maximum velocity can be increased up to four times compared to the current state.
Symbols

Symbols

\(V_g \) pump: displacement / motor: swallowing capacity
\(n \) rotational speed
\(q_V \) volume flow
\(P \) power / performance
\(T \) torque
\(m \) mass
\(i \) gear ratio
\(d \) diameter
\(r \) radius
\(l \) length
\(v \) velocity
\(T_a \) adhesion torque
\(F_{ta} \) adhesion force
\(g \) gravitational acceleration
\(C_s \) adhesion coefficient
\(z \) number of wheels
\(S_F \) safety factor
\(F_{air} \) air resistance force
\(F_{roll} \) rolling resistance force
\(F_{pit} \) pitch resistance force
\(F_{acc} \) acceleration resistance force
\(\rho_{air} \) air density
\(c_f \) flow resistance coefficient
\(A \) projected vehicle front face
\(f_{roll} \) rolling resistance coefficient
\(\alpha \) pitch angle
\(e_i \) mass factor
\(a \) acceleration
\(U \) voltage
Indices

max maximum
nom nominal
x variable
out output
tot total

Acronyms and Abbreviations

ETH Eidgenössische Technische Hochschule
ASL Autonomous Systems Lab
KTI Kommission für Technologie und Innovation
PGW Propylene Gycol
AC Alternating Current
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Source(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Menzi Muck’s walking excavator M545</td>
<td>[1]</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>Dimensions of walking excavator M545</td>
<td>[1]</td>
<td>4</td>
</tr>
<tr>
<td>2.3</td>
<td>Structure of the present driving concept</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2.4</td>
<td>Image and drawing of the current hydraulic pump</td>
<td>[2]</td>
<td>7</td>
</tr>
<tr>
<td>2.5</td>
<td>Schema of a swash plate pump</td>
<td>[3]</td>
<td>8</td>
</tr>
<tr>
<td>2.6</td>
<td>Image and drawing of the current hydraulic motor</td>
<td>[4]</td>
<td>8</td>
</tr>
<tr>
<td>2.8</td>
<td>Image and drawing of the current planetary gear</td>
<td>[5]</td>
<td>10</td>
</tr>
<tr>
<td>2.9</td>
<td>Schema of a planetary gear</td>
<td>[6]</td>
<td>11</td>
</tr>
<tr>
<td>2.10</td>
<td>Overview and results of the maximum velocity calculation</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Image and drawing of the new hydraulic motor</td>
<td>[7]</td>
<td>15</td>
</tr>
<tr>
<td>3.2</td>
<td>Overview different hydraulic motor types</td>
<td>[3]</td>
<td>16</td>
</tr>
<tr>
<td>3.3</td>
<td>Image and drawing of the new hydraulic gear</td>
<td>[8]</td>
<td>17</td>
</tr>
<tr>
<td>3.4</td>
<td>Image of the combined gear and electric motor supplied by Bonfiglioli</td>
<td>[9]</td>
<td>19</td>
</tr>
<tr>
<td>3.5</td>
<td>Picture of the Rigitrac EWD 120 (Source: [10]) and scheme of the corresponding electric wheel hub drive</td>
<td>[11]</td>
<td>20</td>
</tr>
<tr>
<td>3.6</td>
<td>Structure of the diesel electric propulsion system of the Rigitrac EWD 120</td>
<td>[11]</td>
<td>20</td>
</tr>
<tr>
<td>3.7</td>
<td>Scheme of a permanently excited synchronous motor</td>
<td>[12]</td>
<td>21</td>
</tr>
<tr>
<td>3.8</td>
<td>Dimension check of the hydraulic components, above the technical drawings of the current and below of the new components</td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>
List of Tables

2.1 Dimensions of walking excavator M545; Source: [1] 4
2.2 Technical data of the current hydraulic pump (nominal size: 90); Source: [2] ... 7
2.3 Technical data of the current hydraulic motor (nominal size: 55); Source: [4] ... 9
2.4 Technical data of the current planetary gear (type: 707 C3 B); Source: [5] ... 10
2.5 Results of the power calculation for different discrete velocity values 14
3.1 Technical data of the new hydraulic motor (nominal size: 170); Source: [7] ... 16
3.2 Technical data of the new planetary gear (type: 610W2/3); Source: [8] ... 18
3.3 Technical data of Bonfiglioli’s electric components; Source: [9] 19
3.4 Technical data of Rigitrac’s electric components; Source: [13] 21
4.1 Overview technical data of the current and the different fast driving concepts with calculation results ... 25
A.1 List of gear suppliers .. 33
A.2 List of hydraulic motor suppliers ... 33
A.3 List of electric motor suppliers ... 34
Chapter 1

Introduction

Walking excavators belong to one of the most versatile excavator types. This versatility comes with the price of making these mobile construction site machines quite complex due to many joints and degrees of freedom. They are developed for different working tasks that require advanced mobility. Examples are excavating works in hardly accessible areas like mountains and rivers. The object of research of this work is the walking excavator M545 developed by the Swiss excavator supplier Menzi Muck AG [14], which will be described in more details in chapter 2. The presented work is part of a KTI project of the Autonomous Systems Lab (ASL) [15] of ETH Zurich and Menzi Muck AG. The project goal is to automate walking excavators using control and optimization tools that were developed and tested with legged robots. The shared vision is to enhance the intelligence of these machines such that they can drive or walk on rough terrain autonomously or with little human input.

In the current state, these large-scale construction machines are able to drive at low speeds only and are unable to reach velocities higher than 10 km/h. This circumstance limits their applicability.

The goal of this studies on mechatronics is to enable the walking excavator to reach higher velocities than it does at the moment. The application benefits the most by accelerating terrain exploration tours before starting the actual excavating work.

In order to reach this goal, this work is about the development and comparison of different fast driving concepts for the proposed excavator chassis. As a first project step, only components that exist on today’s market will be considered to solve this task. Considering complete new component developments is not part of this studies. To find the best possible solutions, the technical data of over 90 components from about 15 different suppliers have been collected and compared. As a result, the best hydraulic and two possible electric solutions will be presented in chapter 3 this report.
Chapter 2

The Walking Excavator

The object of research of this work is Menzi Muck's walking excavator M545 (depicted in figure 2.1). This multi-purpose excavator is equipped with four legs that each have three degrees of freedom and an actuated wheel, which allows it to drive or walk over challenging terrain.

Before starting with the new driving concepts, the present excavator system will be presented. The analysis of the current system gives the needed information to derive the new fast driving concepts in order to increase the excavator's maximum velocity. First, the dimension of the machine will be shown in chapter 2.1 to get an idea of the scale. Then, the present driving concept will be presented in 2.2. Afterwards additional information about the single components used in this concept will be given in 2.3. Finally, some calculations will be done in chapter 2.4 in order to get the basis for the development of the new concepts. The technical data and specifications of the excavator given in these chapters have been found in [1].
2.1 Dimensions

The M545 excavator type has a total machine weight of 12’300 kg (value without excavating tools). The four wheels have a diameter of 1140 mm and a width of 600 mm. The remaining dimensions can be found in figure 2.2 with the help of table 2.1.

![Dimensions Diagram]

Figure 2.2: Dimensions of walking excavator M545; Source: [1]

<table>
<thead>
<tr>
<th>Dimensions in mm</th>
<th>M545</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Max. digging depth - with chassis adjustment</td>
<td>5140</td>
</tr>
<tr>
<td>B Max. digging depth - chassis at ground</td>
<td>4730</td>
</tr>
<tr>
<td>C Max. digging height - with chassis adjustment</td>
<td>9370</td>
</tr>
<tr>
<td>D Max. digging height - chassis at ground</td>
<td>7700</td>
</tr>
<tr>
<td>E Max. discharge depth - with chassis adjustment</td>
<td>7430</td>
</tr>
<tr>
<td>F Max. discharge depth - chassis at ground</td>
<td>5890</td>
</tr>
<tr>
<td>G Max. range</td>
<td>8210</td>
</tr>
<tr>
<td>H Min. pivoting radius</td>
<td>2480</td>
</tr>
<tr>
<td>I Telescope length</td>
<td>1800</td>
</tr>
<tr>
<td>J Adjusting range brace support</td>
<td>1250</td>
</tr>
<tr>
<td>K Adjusting range wheels</td>
<td>1650</td>
</tr>
<tr>
<td>L Transport height</td>
<td>2550</td>
</tr>
<tr>
<td>M Min. width backside (transport width)</td>
<td>2380</td>
</tr>
<tr>
<td>N Min. width front side (transport width)</td>
<td>2430</td>
</tr>
<tr>
<td>O Max. width adjustment wheels</td>
<td>4690</td>
</tr>
<tr>
<td>P Max. width adjustment brace support</td>
<td>6140</td>
</tr>
<tr>
<td>Q Chassis length</td>
<td>6190</td>
</tr>
</tbody>
</table>
2.2 Present Driving Concept

In the present version of the excavator, the driving concept is based on a diesel-hydraulic system. This means that the central power source is a diesel engine. It is combined with hydraulic components which drive the excavator’s wheels. The structure of this combination will be explained below. Detailed information about the single components will be given afterwards.

2.2.1 Structure

The excavator’s central power source is a 115 kW 4 cylinder turbo diesel engine, placed near the cabin. It drives 4 hydraulic pumps P1 to P4, which for their part drive the 220 l hydraulic oil system content through the hydraulic pipes. Each of these pumps have its own job:

- P1 is responsible for the fan operation.
- P2 drives the work hydraulic system for the excavating work.
- P3 is for the optional powerline. It is recommended for attachments which permanently demand high litre performance.
- P4 is for the drive hydraulic system.

For this work’s purpose, just P4 is of interest. This pump is connected in a closed loop to the hydraulic motors. They are placed at each of the four wheels. Together with the planetary gears, which change the ratio from the motors to the wheels, these components form a wheel hub drive. Since each of the four equally sized wheels has such a wheel hub drive, the excavator has a hydrostatic all-wheel drive. This structure is schematically depicted in figure 2.3.

![Figure 2.3: Structure of the present driving concept](image)

In general, this kind of propulsion has several advantages. The most important one is that each wheel can be controlled separately, which gives a good basis for control tasks like for example traction control. Furthermore, the “outsourcing” of
the motors to the wheels save a lot of space near the cabin. The reduction of mechanical parts in this area allows the development of optimized chassis concepts. A disadvantage is the increased mass around the wheels, which makes the excavator heavier in total and leads to higher costs since there are more components necessary.

2.2.2 Control

The hydraulic pumps are power controlled. They are connected by a control unit and are steered by the operator’s pedals and joysticks. The connection to the hydraulic motors is a closed loop. This means that the hydraulic pump is fed directly by the from the hydraulic motor returning hydraulic liquid (the pump is therefore “clamped” by the suction and the pressure side) - in contrary to an open loop, where the pump sucks the hydraulic liquid out of a tank. According to the component catalogues found in [2], the hydraulic drive pump has a proportional control electric. This means that the output flow of the pump is infinitely variable between 0 to 100%, proportional to the supplied electric current. The electric energy is converted to a force acting on the spool of the control valve. This valve spool directs control oil in and out of the stroking cylinder to adjust the pump displacement (which controls the pump’s flow) as required. A feedback lever connected to the stroking piston maintains the pump flow for any given current within the control range. The hydraulic motors placed at the wheels have two-point hydraulic control. This means that the excavator has a two-stage travel drive. This allows the displacement to be set to either the minimum or the maximum swallowing capacity by switching the pilot pressure on or off. Without pilot pressure, the motor is in the maximum swallowing capacity position. In this case it can provide the maximum torque but only the minimum speed. When the pilot pressure is switched on, the motor changes to its second stage which is at the minimum swallowing capacity position. Then it is able to provide the maximum permissible speed but only the minimum torque. The pilot pressure is controlled parallel to the power control of the pump. This means that the motor’s rotational speed and the drive pump is actuated synchronously by the operator’s accelerator pedal. This information leads to the conclusion that in this current version of the excavator, the advantage of controlling each wheel separately by the use of wheel hub drives is not fully exploited, as the power of all four motors are controlled by the flow of one single pump. This makes the current system very inert and limits the individual control capacity of the wheels.

2.3 Components

In this section, detailed information regarding structure and technical data of the before named components will be given. The information about the different operating modes of the hydraulic components have been found in [3].

2.3.1 Hydraulic Pump

Technical Data

The currently used hydraulic pump for the excavator’s drive hydraulic is the variable displacement pump A4VG/32 of the supplier Bosch Rexroth AG [16]. It works for applications in high pressure range up to 450 bar and has a nominal pressure of 400 bar. It has an integrated auxiliary pump for the feeding and control oil supply as well as combined feeding and high pressure relief valves. The nominal size of the in the excavator used type is 90. The technical data for this size can be found in table 2.2 and have been collected from [2].
2.3. Components

Figure 2.4: Image and drawing of the current hydraulic pump; Source: [2]

Table 2.2: Technical data of the current hydraulic pump (nominal size: 90); Source: [2]

<table>
<thead>
<tr>
<th>Description</th>
<th>Condition</th>
<th>Variable</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>$V_{g_{\text{max}}}$</td>
<td>cm³</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Nominal rotational speed</td>
<td>@ $V_{g_{\text{max}}}$</td>
<td>n_{norm}</td>
<td>min⁻¹</td>
<td>3050</td>
</tr>
<tr>
<td>Maximum rotational speed</td>
<td>intermittently</td>
<td>n_{max}</td>
<td>min⁻¹</td>
<td>3800</td>
</tr>
<tr>
<td>Volume flow</td>
<td>@ n_{norm}</td>
<td>q_Y</td>
<td>l/min</td>
<td>275</td>
</tr>
<tr>
<td>Power</td>
<td>$\Delta p = 400\text{bar}$</td>
<td>P</td>
<td>kW</td>
<td>183</td>
</tr>
<tr>
<td>Torque</td>
<td>$\Delta p = 400\text{bar}$</td>
<td>T</td>
<td>Nm</td>
<td>573</td>
</tr>
<tr>
<td>Mass</td>
<td>m</td>
<td>kg</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

Operating Mode

The pump is of axial piston – swash plate design, which is schematically shown in figure 2.5. The axial piston construction in general uses the principal of cylinders by linking several small cylinders mechanically. These cylinders stand axial to the rotation axis.

The piston drum is permanently fixed to the drive shaft by the shaft gearing. So when the drive shaft rotates, the piston drum rotates as well. Then the piston in the piston drum will be in rotation as well. The lifting movement of the pistons in axial direction is determined by the fixed swash plate.

The pistons are retained by the sliding pieces of the swash plate. The inclination angle of this plate can be varied by the adjust cylinder. By doing this, the piston lifts and with that the displacement of the pump (which is equal to the extracted flow rate) can be varied continuously.

The main advantage of this operating mode is the fact that it is a compact, space and weight saving construction. Furthermore, it has a high durability compared to other types, because it uses sliding bearings. Additionally, the large seal length between the piston and the cylinder wall reduces the volumetric losses even at high pressures. However, it has to be considered that the rotational speed is limited by the centrifugal forces.
2.3.2 Hydraulic Motor

Technical Data

The hydraulic motors used for the wheel hub drives are Bosch Rexroth’s variable displacement motors of the type $A6VE/63$ with the nominal size 55. Such a motor has a nominal and maximum pressure of 400 and 450 bar, respectively. The technical data for this size can be found in table 2.3. The motor is built in plug-in layout which prefers the integration into mechanical gears. This makes it a good choice for the use in a wheel hub drive. In order to allow the excavator to brake, a braking valve is integrated into the connecting plate.

Figure 2.5: Schema of a swash plate pump; Source: [3]

Figure 2.6: Image and drawing of the current hydraulic motor; Source: [4]
Table 2.3: Technical data of the current hydraulic motor (nominal size: 55); Source: [4]

<table>
<thead>
<tr>
<th>Description</th>
<th>Condition</th>
<th>Variable</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum swallowing capacity</td>
<td></td>
<td>(V_{\text{gmax}})</td>
<td>cm(^3)</td>
<td>54.8</td>
</tr>
<tr>
<td>Nominal swallowing capacity</td>
<td></td>
<td>(V_{\text{gx}})</td>
<td>cm(^3)</td>
<td>35</td>
</tr>
<tr>
<td>Nominal rotational speed @ (V_{\text{gmax}})</td>
<td>(n_{\text{nom}})</td>
<td>min(^{-1})</td>
<td>4450</td>
<td></td>
</tr>
<tr>
<td>Maximum rotational speed @ (V_{\text{g}} < V_{\text{gx}})</td>
<td>(n_{\text{max}})</td>
<td>min(^{-1})</td>
<td>7000</td>
<td></td>
</tr>
<tr>
<td>Absorption capacity @ (n_{\text{nom}})</td>
<td>(q_{\text{Vmax}})</td>
<td>l/min</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>Torque @ (\Delta p = 400\text{bar})</td>
<td>(T)</td>
<td>Nm</td>
<td>349</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td></td>
<td>(m)</td>
<td>kg</td>
<td>26</td>
</tr>
</tbody>
</table>

Operating Mode

In general, axial piston units can work as hydraulic pumps as well as hydraulic motors. This motor is of axial piston – bent axis design, which has a similar setup as the swash plate construction. The difference is that the pistons run tilted to the output shaft and the pivoting angle is varied by an axis instead of a plate. The piston drum is driven directly over a gear ring by the shaft. Out of that, the pistons run free of lateral forces in the cylinders and can be sealed much easier and generate less friction. These factors, together with the kinematic connection of shaft and piston drum, lead to the fact that the bent axis motor can reach high rotational speeds. The piston seal can be done by a lamella piston ring, which enables a lesser internal leakage and an insensibility to fast temperature changes. Therefore, at pressures up to 480 bar, very high output powers are possible. Another advantage is that mechanical connection to other components is eased by the tilted design of the motor.

It is possible to build the motor with a variable pivoting angle. But in comparison to the swash plate construction, the mass of the complete piston drum has to be moved, which reduces the adjust dynamic and increases the adjust forces.

Figure 2.7: Schema of a axial piston - bent axis motor; Source: [3]
2.3.3 Planetary Gear

Technical Data

The gear comes out of the 700C gear series of the international supplier Bonfiglioli\[17\]. The current in the excavator used gear is the 707 C3 B type. Bonfiglioli offers this gear type with ratios from 55 to 120. In the excavator’s wheel hub drives, gears with a ratio of 109.2 are integrated. Technical data and figures can be found in table 2.4 and figure 2.9, respectively.

![Image of a planetary gear]

Table 2.4: Technical data of the current planetary gear (type: 707 C3 B); Source: \[5\]

<table>
<thead>
<tr>
<th>Description</th>
<th>Variable</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>i</td>
<td>–</td>
<td>109.2</td>
</tr>
<tr>
<td>Maximum input speed</td>
<td>n_{max}</td>
<td>min$^{-1}$</td>
<td>3500</td>
</tr>
<tr>
<td>Maximum output torque</td>
<td>T_{max}</td>
<td>Nm</td>
<td>26'000</td>
</tr>
<tr>
<td>Mass</td>
<td>m</td>
<td>kg</td>
<td>135</td>
</tr>
</tbody>
</table>

Operating Mode

The planetary gear belongs to the gear types with uniform, constant translation. The power transmission from input to output shaft occurs form-closed, which has the advantage that no slip occurs within the gear. It is a special form of a pinion gear. The basic construction consists of a set of gear wheels, which are (from the inside out) the sun gear, the by the planet arms carried planet gears and a ring gear with internal gearing. This structure is depicted in figure 2.9.

The planet arms connect the center of the sun gear and the planet gears and rotate to carry the planet gears around the sun gear. Different gear ratios can be achieved by holding one of these gear components fixed and by driving another one. Most often, the ring gear is fixed and the sun gear is driven. By varying the size and configurations of these components, different gear ratios can be achieved in order to change the translation from input to output shaft.

The main advantage is that this gear type has a very compact design. Additionally, the planetary gear can transmit high torques compared to other gear types. Together with the fact that it allows a good combination with axial piston motors, it is the perfect candidate for wheel hub drives.

The in this subsection given information are from \[18\].
2.4 Calculations

Now that the technical data of the components are known, we can do the calculations of the important values which are needed to find new components in order to increase the excavator’s maximum velocity. We will start with the maximum velocity the current excavator is able to reach.

2.4.1 Maximum Velocity

The maximum velocity can be calculated with the formula

\[
v_{\text{max}} = \frac{n_{\text{max}}}{i_{\text{gear}}} \cdot \frac{1}{60} \cdot \pi \cdot d_{\text{wheel}} \cdot 3.6 \frac{\text{km}}{\text{h}} \cdot \frac{\text{m}}{\text{s}}
\]

where \(n_{\text{max}} \) is the maximum rotational speed of the gear or the motor, \(i_{\text{gear}} \) the gear ratio and \(d_{\text{wheel}} \) the wheel diameter, which together with \(\pi \) forms the wheel circumference. The remaining factors are just given to receive the velocity in km/h.

This formula is evaluated for three different rotational speeds: one time for the maximum input speed of the gear and one time for the nominal and maximum rotational speed of the motor, respectively. The results can be seen in figure 2.10.

We can learn the following things out of these calculations: first, the current excavator is able to reach a maximum velocity of about 10 km/h. This is also the velocity the Menzi Muck AG claims the excavator can reach. Furthermore, we learn that the limiting element of the maximum velocity is the maximum rotational speed of the gear.

The investigations conducted within the scope of this work have shown that there are no suitable gears available today that can endure significantly higher rotational speeds than 3500 rpm. This limit comes out of mechanical and design reasons of these gear types.

Out of this information, we can conclude that in order to increase the excavator’s maximum velocity, it has no influence when the present motor is replaced by one with a higher rotational speed. The only other possibility is to decrease the gear ratio. By doing this, the output torque at the excavator’s wheels will decrease as well, since this value depends on the gear ratio and the motor torque in the following linear way:

\[
T_{\text{out}} = i_{\text{gear}} \cdot T_{\text{motor}}
\]

When this maximum value is too low, it is possible that the drivability of the excavator is limited (this means for example that it will not be able to climb hills with high inclinations).

So as a next step, we are interested in the minimum output torque we need to reach with the components of the new driving concepts in order to ensure the excavator’s drivability.

2.4.2 Minimum Output Torque

This value can be estimated by the help of a formula which has been found in a catalogue of the specialized Italian wheel gear supplier Reggiana Riduttori [19] [20]:

\[T_a = F_{ta} \cdot r_{wheel} = \frac{m \cdot g \cdot C_s}{z} \cdot r_{wheel} \cdot S_F \quad (2.3) \]

The maximum torque that has to be transmitted by the wheel gear is the one which is obtained when the limit of adhesion between tire and ground is reached. This torque is calculated by multiplying the radius \(r_{wheel} \) under load of the wheel gear by the maximum tangential force that it can transmit to the ground by adhesion \(F_a \). This force is calculated by the total weight of the vehicle \(m \) times the gravitational acceleration \(g \) times an average vehicle adhesion coefficient \(C_s \) divided by the number of driving wheels \(z \).

The adhesion coefficient \(C_s \) has been chosen to be 0.6. This value has been found in corresponding tables in [20] and seems to be reasonable as a first guess. \(z \) has been chosen as 2, because in minimum, two wheels will have contact with the ground and we want to ensure the excavator’s driving ability in every possible configuration. Finally, an additional safety factor \(S_F \) is multiplied which has been set to 1.3.

By plugging in these values into the formula, the searched minimum output torque can be found as about 26'000 Nm. This value is just a rough estimation with the purpose to get an idea of which torque dimensions we are speaking of. To get more exact values, requirements regarding the excavator’s driving skills (for example the maximum inclination it should be able to climb) have to be fixed, and based on that, more detailed calculations have to be done. However, the resulting value seems to be reasonable since it is the same torque the present gear is able to transmit.

With the derived results, it can be concluded that in order to increase the excavator’s maximum velocity, the components of the current state have to be replaced by a gear with a lower ratio combined with a motor that can provide a higher torque.
2.4.3 Motor Power Estimation

In order to narrow down the choices of on the market available motors, the power of the new wheel hub motor will be estimated in this section. We do that with the following formula [21]:

\[P_{\text{drive}} = F_{\text{drive}} \cdot v = (F_{\text{air}} + F_{\text{roll}} + F_{\text{pit}} + F_{\text{acc}}) \cdot v \]
(2.4)

where \(P_{\text{drive}} \) is the required power to reach the velocity \(v \). This formula consists of the to achievable velocity \(v \) times the following four resistance forces:

\[F_{\text{air}} = \frac{\rho_{\text{air}}}{2} \cdot c_f \cdot A \cdot v^2 \]
(2.5)

\[F_{\text{roll}} = m \cdot g \cdot f_{\text{roll}} \cdot \cos(\alpha) \]
(2.6)

\[F_{\text{pit}} = m \cdot g \cdot \sin(\alpha) \]
(2.7)

\[F_{\text{pit}} = e_i \cdot m \cdot a \]
(2.8)

These equations consist of the following parameters:

- \(F_{\text{air}} \) is the air resistance force in [N]
- \(\rho_{\text{air}} \) is the air density, which is assumed to be 1.2 km/m³ (air at 20°C)
- \(c_f \) is the dimensionless flow resistance coefficient. It is assumed to be 0.51 (corresponds to the value of a truck, according to [22])
- \(A \) is the projected vehicle front face with the conservative assumption of being 10 m² (corresponds to the value of a train, according to [23])
- \(F_{\text{roll}} \) is the rolling resistance force in [N], caused through elastic tire deformation
- \(m = 12'300 kg \) is the total vehicle mass
- \(g = 9.81 m/s^2 \) is the gravitational acceleration
- \(f_{\text{roll}} \) is the dimensionless rolling resistance coefficient. It is assumed to be 0.6 (corresponds to a car tire on a pothole road, according to [24])
- \(\alpha \) is the pitch angle
- \(F_{\text{pit}} \) is the pitch resistance force in [N]
- \(F_{\text{acc}} \) is the acceleration resistance force in [N]
- \(e_i \) is the dimensionless mass factor (> 1) that respects the moments of inertia of the accelerated, rotating mass in the drive train
- \(a \) is the vehicle acceleration in m/s²

For the calculation of the maximum velocity, it is assumed that there is no acceleration anymore (\(a = 0 \)) and that the vehicle drives in a flat area without any inclination (\(\alpha = 0 \)). Out of that, the forces \(F_{\text{pit}} \) and \(F_{\text{acc}} \) can be neglected, which leads to the following simplified equation in order to calculate the required power:

\[P_{\text{drive}} = v^3 \left(\frac{\rho_{\text{air}}}{2} \cdot c_w \cdot A \right) + v (m \cdot g \cdot f_{\text{roll}}) \]
(2.9)
By plugging in the assumed values, we evaluate this formula for different discrete velocity values. The results can be found in table 2.5. By dividing the received values by four (number of driven wheels), we get a good guess of the power a potential motor should have.

Table 2.5: Results of the power calculation for different discrete velocity values

<table>
<thead>
<tr>
<th>Velocity in km/h</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total power in kW</td>
<td>62.1</td>
<td>73.2</td>
<td>84.4</td>
<td>96.5</td>
<td>108.8</td>
<td>121.5</td>
<td>134.8</td>
</tr>
<tr>
<td>Power per wheel in kW</td>
<td>15.5</td>
<td>18.3</td>
<td>21.2</td>
<td>24.1</td>
<td>27.2</td>
<td>30.4</td>
<td>33.7</td>
</tr>
</tbody>
</table>
Chapter 3

Fast Driving Concepts

In the last chapter, basic information has been derived in order to develop new fast driving concepts for the excavator. The idea of these new concepts is to replace the current by new components that are available on the market. Hydraulic as well as electric components have been assessed to achieve the goal of increasing the excavator’s maximum velocity. In the first two chapters 3.1 and 3.2, the best hydraulic components plus two possible electric approaches will be presented. Afterwards, the dimension check of the components will be shown briefly in chapter 3.3. To sum up, the different concepts will be compared in chapter 3.4.

The description of all the checked and compared components within this work would go beyond the scope of this documentation. All considered suppliers which are not named in this chapter are listed in appendix A.

3.1 Hydraulic Components

3.1.1 Motor

Technical Data

![Figure 3.1: Image and drawing of the new hydraulic motor; Source:](image)

As the best hydraulic motor, again a variable displacement motor from Bosch Rexroth has been found. It is of bigger size and a different type series than the current one. The type description is A6VE/71 with nominal size 170. It has a nominal and maximum pressure of 450 and 500 bar, respectively, which is 50 bar higher than before.
Out of the technical data presented in table 3.1, one can see that the maximum torque this motor is able to deliver is 1230 Nm. This is about 3.5 times more than the old one. The maximum rotational speed is lower than before, which is no problem as the limiting element concerning this criteria is the gear anyway. This motor type has a much higher swallowing and absorption capacity, which leads to the conclusion that it probably has to be combined to a bigger hydraulic pump than the current one.

A disadvantage is that it is about 2.4 times heavier than the old one. A dimension check will be seen in section 3.3.

Table 3.1: Technical data of the new hydraulic motor (nominal size: 170); Source: [7]

<table>
<thead>
<tr>
<th>Description</th>
<th>Condition</th>
<th>Variable</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum swallowing capacity</td>
<td>$V_{g_{\text{max}}}$</td>
<td>cm^3</td>
<td></td>
<td>171.8</td>
</tr>
<tr>
<td>Nominal swallowing capacity</td>
<td>$V_{g_{x}}$</td>
<td>cm^3</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>Nominal rotational speed</td>
<td>@ $V_{g_{\text{max}}}$</td>
<td>n_{nom}</td>
<td>min^{-1}</td>
<td>3100</td>
</tr>
<tr>
<td>Maximum rotational speed</td>
<td>@ $V_{g} < V_{g_{x}}$</td>
<td>n_{max}</td>
<td>min^{-1}</td>
<td>4900</td>
</tr>
<tr>
<td>Absorption capacity</td>
<td>@ n_{nom}</td>
<td>$q_{V_{\text{max}}}$</td>
<td>l/min</td>
<td>533</td>
</tr>
<tr>
<td>Torque</td>
<td>$\Delta p = 400 bar$</td>
<td>T</td>
<td>Nm</td>
<td>1230</td>
</tr>
<tr>
<td>Mass</td>
<td></td>
<td>m</td>
<td>kg</td>
<td>62</td>
</tr>
</tbody>
</table>

Operating Mode

![Figure 3.2: Overview different hydraulic motor types; Source: [3]](image)

Different hydraulic motor operating modes have been checked and compared to each other in order find the best one for the excavator. An overview of the different types is given in figure 3.2. The classification criteria is the construction. Hydraulic motors can basically be divided into gear wheel, piston, vane type and gerotor.
motors, where gear wheels can additionally be divided into internal and external construction and piston motors into axial and radial piston design. As a result, the axial piston – bent axis design – the same design the current motor is built of – has been found to be the best choice. The bent axis construction type allows to reach high rotational speeds out of his mechanical building (see section 2.3.2). Furthermore, it has a good proportion of rotational speed and torque, good operating characteristics in a wide rpm-range and a low dirt sensitivity, which is important as we want to use the component to drive an excavator. Vane types and gerotors can be neglected, as they are classified as low-speed motors in the lower and middle pressure range. Out of that they are not adequate for a use in a large-scale construction machine.

Radial piston motors could have been a good alternative. The difference to the construction of axial piston designs is that the pistons stand radial to the rotation axis. Out of that, they can be built with large swallowing capacity which leads to the advantage that these motor types can provide very high torques. On the other hand their maximum rotational speeds are significantly lower than that of the current gear. Therefore, they are not very useful to drive the excavator. External gear wheels can provide a quite high rotational speed but only low torques. That is why they have to be neglected as well. Internal gear wheel designs have been found to be promising to fulfil the given requirements. They have a high smoothness and can provide high rotational speeds as well as high torques. However, no components built in this design have been found on the market, which can provide the right combination of speed and torque and could additionally pass the dimension check. That is why the current design has been found the best for this application.

3.1.2 Gear

Technical Data

As a new gear, the wheel drive $610W2/3$ offered by Bonfiglioli is recommended. The gear can be well combined with axial pistons motors to form a wheel hub drive. It can be ordered with a ratio of 20.5, which is about 5 times lower than that of the old one. As an additional feature, Bonfiglioli offers this gear type with a Low-High-Speed switching function. With this function, the gear ratio can be changed to a higher one (exact value depends on the execution) by a hydraulic operated multidisc clutch. This clutch is also used for braking. By the use of this function, the output torque can be significantly increased while driving in this low speed mode. Additional information can be found in [8]. The gear is able to stand maximum output torques up to 40'000 Nm which is enough
to ensure the drivability of the excavator.
A disadvantage is again the mass of the component. With 200 kg it is about 1.5
times heavier than the current gear.
A summary of these technical data are given in table 3.2.

Table 3.2: Technical data of the new planetary gear (type: \(610W2/3\)); Source: [8]

<table>
<thead>
<tr>
<th>Description</th>
<th>Variable</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>(i)</td>
<td>–</td>
<td>20.5</td>
</tr>
<tr>
<td>Maximum input speed</td>
<td>(n_{max})</td>
<td>(min^{-1})</td>
<td>3000</td>
</tr>
<tr>
<td>Maximum output torque</td>
<td>(T_{max})</td>
<td>Nm</td>
<td>40'000</td>
</tr>
<tr>
<td>Mass</td>
<td>(m)</td>
<td>kg</td>
<td>200</td>
</tr>
</tbody>
</table>

Operating Mode

The new gear is again of planetary gear design. This gear type has been found
to be the only possibility for a wheel hub drive, as it has compact design, is able
to transmit high torques and has a high load capacity. Other gear types, like
for example types based on frictionally engaged power transmission cannot nearly
transmit the claimed torques and performances and are too unhandy to integrate
them into the wheel of a vehicle.

3.2 Electric Components

To give alternatives to the hydraulic components, electric components that exist on
the market have been searched as well. In contrary to the hydraulic counterparts,
electric wheel hub drives are not very common for large-scale machines yet. That is
why only suitable components have been found which are still prototypes and not
in serial production yet.
In this section, two approaches will be presented which are promising to meet the
given requirements. The intended parts have been developed as custom products
for other machine types. Out of that, some further adaptions have to be made in
order to integrate these parts into the walking excavator.
During this project, we have already been in contact with the two below presented
suppliers. The contact data of the responsible people can be found in appendix B.

3.2.1 The Bonfiglioli Approach

As a first proposal, Bonfiglioli offers a combined set of gear and electric motor as
electric wheel hub drive. The \(609W\) planetary wheel drive can be coupled to a high
power density electric motor. The solution is completely mechatronic and designed
for a high voltage hybrid powertrain system. It was originally developed for the use
on self-propelled crop sprayers. The components have compact dimensions which
are comparable to the hydraulic counterparts. The technical data of both compo-
nents are listed in table 3.3.
The proposed gear has a ratio of 44.16 and the very high value of 7600 rpm as
maximum input rotational speed. It is able to stand a maximum output torque of
23'000 Nm which is as a first step sufficiently close to the needed value.
The 44.6 kW electric motor can reach a high rotational speed but can deliver a
comparatively low maximum torque. It is based on the BPD motor technology,
developed by Bonfiglioli itself, which promises increased power density. Detailed
information can be found in [25]. This technology combines non-conventional stator windings (hairpin) with a variable reluctance rotor geometry. In contrary to the conventional round-wire windings, this hairpin technology uses precision-formed rectangular wires in order to achieve higher slot-fill factors. Furthermore, the design allows a shorter end-windings height compared to round-wire stators. This combination reduces the winding resistance, causes less heat generation and improves the torque, power density and efficiency of the motor (Bonfiglioli promises a maximum efficiency of 95.6 %). The motor has to be cooled by PGW (propylene glycol – water) 50/50 or oil.

Electric motors have to be combined with frequency converters which convert alternating current (AC) of one frequency to alternating current of another frequency for the direct feed-in of the motor. As a suitable component to manage this task for the proposed motor type, the AC motor controller of the company Sevcon [26] in execution of type Gen4 (size 10) has been recommended by Bonfiglioli. Detailed information as well as drawings of the components can be found in appendix C.

As an orientation price per unit for the combination of gear and motor, 19’000 Euro and a delivery time of about 18 weeks have been named by the supplier.

Table 3.3: Technical data of Bonfiglioli’s electric components; Source: [9]

<table>
<thead>
<tr>
<th>Description</th>
<th>Variable</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPD electric motor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal rotational speed n<sub>nom</sub></td>
<td>min<sup>−1</sup></td>
<td>4800</td>
<td></td>
</tr>
<tr>
<td>Maximum rotational speed n<sub>max</sub></td>
<td>min<sup>−1</sup></td>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>Maximum rated power P</td>
<td>kW</td>
<td>44.6</td>
<td></td>
</tr>
<tr>
<td>BUS DC Voltage</td>
<td>U</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>Maximum Torque T<sub>max</sub></td>
<td>Nm</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Compact gearbox 609W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio i</td>
<td></td>
<td>44.16</td>
<td></td>
</tr>
<tr>
<td>Maximum input speed n<sub>max</sub></td>
<td>min<sup>−1</sup></td>
<td>7600</td>
<td></td>
</tr>
<tr>
<td>Maximum output torque T<sub>max</sub></td>
<td>Nm</td>
<td>23’000</td>
<td></td>
</tr>
</tbody>
</table>

3.2.2 The Rigitrac Approach

As a second proposal, components developed for a tractor of the Swiss company Rigitrac AG [27] have been found. The development was part of a cooperation between the TU Dresden [28], the German company EAAT GmbH Chemnitz [29] and Rigitrac AG. This work contained the development of an all-electric single-
wheel drive, which can be fully integrated into the wheel rim of the 8'000 kg heavy tractor *Rigitrac EWD 120* depicted in figure 3.5.

![Figure 3.5: Picture of the Rigitrac EWD 120 (Source: [10]) and scheme of the corresponding electric wheel hub drive (Source: [11])](image1)

Similar to the walking excavator, the power source of this tractor is a 90 kW diesel engine. This one is connected to an 85 kW electric generator. This generator is connected to frequency converters, which are for their part connected to the four electric wheel hub drives. The schematic of this diesel electric structure can be seen in figure 3.6. There are additional cutting sites for the braking resistance and for the energy supply of removable attachments.

![Figure 3.6: Structure of the diesel electric propulsion system of the Rigitrac EWD 120 (in German); Source: [11]](image2)

The velocity of the tractor is continuously adjustable between 0 – 65 km/h, where each wheel can be controlled separately. The electric braking resistance promises non-wearing braking. The technical data of the components can be found in table 3.4.
Table 3.4: Technical data of Rigitrac’s electric components; Source: [13]

<table>
<thead>
<tr>
<th>Description</th>
<th>Variable</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous motor</td>
<td>n_{nom}</td>
<td>min$^{-1}$</td>
<td>157</td>
</tr>
<tr>
<td>Nominal rotational speed</td>
<td>n_{nom}</td>
<td>min$^{-1}$</td>
<td>1000</td>
</tr>
<tr>
<td>Maximum rotational speed</td>
<td>n_{max}</td>
<td>min$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>Nominal rated power</td>
<td>P_{nom}</td>
<td>kW</td>
<td>33</td>
</tr>
<tr>
<td>Maximum rated power</td>
<td>P_{max}</td>
<td>kW</td>
<td>44</td>
</tr>
<tr>
<td>BUS DC Voltage</td>
<td>U</td>
<td>V</td>
<td>650</td>
</tr>
<tr>
<td>Nominal Torque</td>
<td>T_{nom}</td>
<td>Nm</td>
<td>2300</td>
</tr>
<tr>
<td>Maximum Torque</td>
<td>T_{max}</td>
<td>Nm</td>
<td>3500</td>
</tr>
</tbody>
</table>

Single-stage planetary gear

<table>
<thead>
<tr>
<th>Description</th>
<th>Variable</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>i</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Maximum input speed</td>
<td>n_{max}</td>
<td>min$^{-1}$</td>
<td>n.a.</td>
</tr>
<tr>
<td>Maximum output torque</td>
<td>T_{max}</td>
<td>Nm</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

The electric motor is a permanently excited synchronous motor in external rotor construction (schematically depicted in figure 3.7), which is Can-Bus controlled and liquid-cooled. Synchronous machines belong to the category of induction machines, which means that the electric fields generated by the stator are rotating. In contrast to asynchronous machines, the field rotation and the mechanic turns of the rotor are synchronous. A rotational field is generated in the stator by a frequency converter. The rotor follows this field in a similar way as a magnet. The advantages of this construction type are the high power density (regarding maximum torque at given constructed space) and the convenient efficiency in a wide rpm range. The information to the synchronous motor has been found in [30].

![Figure 3.7: Scheme of a permanently excited synchronous motor; Source: [12]](image)

The gear is a single-stage planetary gear with the very low ratio of 4. It is in the execution of a standard gear, which means that the planet carrier is fixed. The data of the maximum input speed and the maximum output torque are not yet available, but in clarification with the supplier EAAT GmbH.

The motor as well as the gear are custom products and not in serial production. The frequency converters which are necessary for the electric system can be bought from EAAT GmbH as well.
3.3 Dimension Check

Another important point to check is whether the components can be integrated into the wheels of the walking excavator. That is why dimension checks have been done for the different fast driving concepts. An example can be seen in figure 3.8, where present and new hydraulic components are compared. The new components are about 1.6 times heavier and 1.3 times larger. But comparing the new ones to the wheel dimensions results in the conclusion that it should still be possible to integrate them into the Menzi Muck M545 excavator.

Similar checks have been done for the Bonfioglio electric components. They have similar mass and dimensions as the hydraulic counterparts and so passed the check as well. The detailed dimension data can be found in the technical drawing in appendix C.

For the Rigitrac components, no drawings are available yet. The dimensions of these components have been discussed with the supplier and have been found to fit to the desired application.

3.4 Concept Comparison

An advantage of the hydraulic driving concept is that all the needed power supply components like the pump and the hydraulic pipes already exist in the current excavator system. Thus, the old components can theoretically just be replaced by the new ones. For the realization of one of the electric concepts, an additional generator (and maybe electric lines as well) has to be integrated.

Another advantage is that the hydraulic components already exists in serial production and can be taken from the market without any further adjustments. The proposed electric components are just in prototype phase and some further adaptations have to be done (see chapter 4). This could lead to further costs.

A point where the electric concepts are expected to perform better is the efficiency. The hydraulic system only provides the highest possible efficiency when very high
torques are needed. On the other hand, electric motors can be overloaded by delivering more current for a short time when peak torque is needed. Under normal conditions, the electric system works in the area of the highest efficiency. Electric wheel motors also provide the opportunity to generate power by energy recuperation when braking or travelling downhill. Other benefits include greater serviceability due to the mechanical simplicity and improved reliability. Another point to mention is the motor control. With both system types the individual wheel control is possible. With which system this control can be done more easily and efficiently is to be clarified and out of scope of this work.
Chapter 4

Results and Conclusion

In table [4.1], the most important technical data of the current components and the components of the three presented fast driving concepts have been collected. In order to get the results, we do the exact same velocity and torque calculations that we did in chapter [2.4] for the current components.

The results of the evaluations for the different rotational speeds of the gears and the motors as well as the maximum output torque can be found in the lower columns of table [4.1].

Table 4.1: Overview technical data of the current and the different fast driving concepts with calculation results

<table>
<thead>
<tr>
<th>CONCEPTS</th>
<th>NOW</th>
<th>HYDR.</th>
<th>ELEC.1</th>
<th>ELEC.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTOR</td>
<td>A6VE 55</td>
<td>A6VE 170</td>
<td>BPD</td>
<td>PE SM</td>
</tr>
<tr>
<td>Nom. rotational speed min^{-1}</td>
<td>4450</td>
<td>3100</td>
<td>4800</td>
<td>157</td>
</tr>
<tr>
<td>Max. rotational speed min^{-1}</td>
<td>7000</td>
<td>4900</td>
<td>8000</td>
<td>1000</td>
</tr>
<tr>
<td>Max. torque Nm</td>
<td>349</td>
<td>1230</td>
<td>400</td>
<td>3500</td>
</tr>
<tr>
<td>GEAR</td>
<td>707 C</td>
<td>610W2/3</td>
<td>609W</td>
<td>SS PG</td>
</tr>
<tr>
<td>Ratio</td>
<td>–</td>
<td>109.2</td>
<td>20.5</td>
<td>44.16</td>
</tr>
<tr>
<td>Max. input speed min^{-1}</td>
<td>3500</td>
<td>3000</td>
<td>7600</td>
<td>n.a.</td>
</tr>
<tr>
<td>Max. transm. torque Nm</td>
<td>26’000</td>
<td>40’000</td>
<td>23’000</td>
<td>n.a.</td>
</tr>
<tr>
<td>CALCULATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. output torque Nm</td>
<td>38’111</td>
<td>25’215</td>
<td>17’664</td>
<td>14’000</td>
</tr>
<tr>
<td>Max. velocity gear km/h</td>
<td>7</td>
<td>31</td>
<td>37</td>
<td>n.a.</td>
</tr>
<tr>
<td>Nom. velocity motor km/h</td>
<td>9</td>
<td>33</td>
<td>23</td>
<td>8</td>
</tr>
<tr>
<td>Max. velocity motor km/h</td>
<td>14</td>
<td>51</td>
<td>39</td>
<td>54</td>
</tr>
</tbody>
</table>

We can see that maximum velocities between 39 and 54 km/h can be reached with the new components. This is about four times of what the current excavator is able to reach. Again, the gear limits the velocity to 31 and 37 km/h, respectively. The transgression of this velocities is possible, but doing it for a longer time will lead to an increased wear of the gears and could in worst case lead to a breakdown of the components.

By having a look at the maximum output torques, we can see that with the hydraulic components, the targeted value of 26’000 Nm can be reached quite well. Additionally, there is the option to change to the low-speed-mode in which the gear has a higher ratio. This will lead to a further increase of the by output torque.

The values for both electric approaches are clearly below the minimum value. This
leads to the conclusion that some further adaptations have to be made in order to reach a higher output torque. Otherwise, the drivability of the excavator won’t be guaranteed. Options to do so are on one hand building gears with a higher ratio, which would lead to a maximum velocity decrease, and on the other hand increasing the motor’s maximum torque. These adjustments should be possible as the components are still in the prototype phase, but have to be discussed with the suppliers. In contrast, the hydraulic parts are already in serial production and can be bought directly from the market.
Chapter 5

Future Work

As a next step of this project, further discussions with the suppliers regarding the sales and delivery terms of the components have to be done. Furthermore, it has to be clarified how and with which effort the electric components can be adjusted so that a higher output torque can be achieved. In order to do that, one has to specify the requirements for the excavator’s drivability (for example which inclination it has to be able to climb). With this information, further and more detailed calculations regarding the maximum output torque of the excavator’s wheels can be done.

Another important point is the power supply to the wheel hub drives. For realizing the hydraulic fast driving concept, bigger hydraulic motors have to be used, which have higher absorption capacities. Therefore, there is likely the need for a bigger hydraulic pump which can deliver a higher volume flow. Bosch Rexroth offers hydraulic pumps of axial-piston swash plate design in different sizes which are promising to fulfill this requirement (see [31]). Additionally, one can think about introducing several pumps of the same nominal size instead of one with a bigger size. This could lead to advantages in the individual wheel control, but will require more construction space and will probably be more expensive. These ideas should be discussed with the experts of Bosch Rexroth. Another idea is to use the already existing powerline pump in order to support the drive hydraulic pump for high speed driving. The feasibility of this proposal should be discussed with Menzi Muck.

For the realization of the electric approaches, an additional electric generator has to be integrated into the excavator. The required power of this generator has to be determined with the use of the data of the electric motors. The Rigitrac EWD 120, for example, uses an 85 kW generator. One has to consider the fact that this component will need additional constructed space.

Another open question is if the current diesel engine is able to handle these additional efforts or if the engine has to be replaced by a new, more powerful one. As soon as these open questions have been answered, a prototype can be built in order to run test drives.
Bibliography

synchronmaschine-mit-oberflächenmagneten.html, December 2015.
mavt.ethz.ch/education/lectures_FS/dimension2/lectures_index ETH Zurich,
FS 2014, Chapter 10: Zugmittelgetriebe.
Mobile_Hydraulics/Planetengantriebe/RR_Radnabenantriebe.pdf December 2015.
c1234c2d7b55/ivt_bonfiglioli_agritechnica.pdf Agritechnica, December 2015.
http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheitPre.do?semkez=
2014S&lerneinheitId=90513&ansicht=ALLE&lang=de] ETH Zurich, FS 2015,
Part 1, Chapter 6.

[31] Bosch Rexroth AG, “Axialkolbeneinheiten - Verstelleinheiten,”
http://www.boschrexroth.com/mobile-hydraulics-catalog/Vornavigation/
VorNavi.cfm?Language=DE&Variant=internet&VHist=g54076%2Cg54069%
2Cg55969&PageID=m127367] December 2015.
Appendix A

Supplier List

All the components which have been considered within the scope of this work are listed in the following tables.

A.1 Gears

Table A.1: List of gear suppliers

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Homepage</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonfiglioli</td>
<td>www.bonfiglioli.de</td>
<td>600 & 700 series</td>
</tr>
<tr>
<td>Brevini</td>
<td>www.brevini.de</td>
<td>RSF, RFL & RFD</td>
</tr>
<tr>
<td>Bosch Rexroth Group</td>
<td>www.boschrexroth.com</td>
<td>HYDROTRAC CFT</td>
</tr>
<tr>
<td>Reggiana Riduttori</td>
<td>www.reggianaridutt.it</td>
<td>RRM, RRWD & RRTD</td>
</tr>
<tr>
<td>ATP GmbH</td>
<td>www.atp-antriebtechnik.at</td>
<td>PGR / PGW</td>
</tr>
<tr>
<td>ASG GmbH</td>
<td>www.allweier.com</td>
<td>PGR 500 & PGR 1500</td>
</tr>
</tbody>
</table>

A.2 Hydraulic Motors

Table A.2: List of hydraulic motor suppliers

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Homepage</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosch Rexroth Group</td>
<td>www.boschrexroth.com</td>
<td>Axial piston motors A6VE/63 & 71</td>
</tr>
<tr>
<td>Bosch Rexroth Group</td>
<td>www.boschrexroth.com</td>
<td>Radial piston motors MCR</td>
</tr>
<tr>
<td>paul forrer</td>
<td>www.paul-forrer.ch</td>
<td>Radial wheel hub drives BB & BBC</td>
</tr>
<tr>
<td>Hydromot</td>
<td>www.hydromot.lu</td>
<td>Hydraulic motors CPMS</td>
</tr>
<tr>
<td>Linde Hydraulics</td>
<td>www.linde-hydraulics.com</td>
<td>Variable displacement motors HMV-02</td>
</tr>
<tr>
<td>Danfoss</td>
<td>www.powersolutions.danfoss.com</td>
<td>Piston motors OMS, OMT & OMV</td>
</tr>
</tbody>
</table>

A.3 Electric Motors

Table A.3: List of electric motor suppliers

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Homepage</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonfiglioli</td>
<td>www.bonfiglioli.de</td>
<td>BPD electric motor</td>
</tr>
<tr>
<td>Leroy Somer</td>
<td>www.leroysomerservice.de</td>
<td>Synchronous motors with permanent magnet (LSRPM)</td>
</tr>
<tr>
<td>Pfeiffer Elektromotoren GmbH</td>
<td>www.electromotoren.at</td>
<td>Norm and standard motors</td>
</tr>
<tr>
<td>Etel</td>
<td>www.etel.ch</td>
<td>TMB torque motors</td>
</tr>
<tr>
<td>Moog</td>
<td>www.moog.com</td>
<td>DB matrix series</td>
</tr>
<tr>
<td>Heinzmann GmbH & Co. AG</td>
<td>www.heinzmann.com</td>
<td>Electric wheel hub drives</td>
</tr>
</tbody>
</table>
Appendix B

Supplier Contact Data

B.1 Bonfiglioli

Bonfiglioli Deutschland GmbH
i.A. Jörg Riffel
Vertriebsingenieur Mobile Solutions
BU Mobile & Wind Solutions
Address: Sperberweg 12, 41468 Neuss, Deutschland
Tel.: +49 7251 36753 80
Fax.: +49 7251 36753 78
E-Mail: j.riffel@bonfiglioli.de
Webpage: www.bonfiglioli.de

B.2 EAAT GmbH

EAAT GmbH Chemnitz
M.Sc. Michael Tomasini
Leiter Vertrieb und Marketing / Director of Sales and Marketing
Address: Annaberg Str. 231, 09120 Chemnitz, Deutschland
Tel.: +49 (0)371 5301914
Mobil.: +49 (0)172 9793900
Fax.: +49 (0)371 5301913
E-Mail: m.tomasini@eaat.de
Webpage: www.eaat.de
Skype: m.tomasini_eaat
Appendix C

Datasheets
An AC motor controller designed to meet the high performance requirements of on-road and off-road Electric (EV) and Hybrid Electric Vehicles (HEV).

A compact, rugged and cost effective design, the Gen4 is well suited for EV OEMs, EV conversions and EV drive train system integrators.

Its high voltage range, up to 800VDC, is well matched to the needs of the automotive and commercial transport markets. The same hardware platform handles both AC Induction and Permanent Magnet AC motor technologies.

AC MOTOR CONTROLLER

FEATURES

- AC Permanent Magnet synchronous motor
- AC Induction motor
- Up to 800V DC peak supply voltage
- Up to 300kW peak power output
- Up to 150kW continuous power output
- Advanced flux vector control
- Integrated logic circuit
- Includes an additional dedicated safety supervisory processor
- 12V or 24V nominal supply
- Designed for ISO26262 ASIL C compliance
- Safety interlock pulsed enable signal
KEY PARAMETERS

- Operating voltage range at full current 50V to 800V
- Output motor phase current:
 - 400A rms (2 min)
 - 200A rms (Continuous)
- Water/Glycol coolant. Oil cooling available - contact Sevcon
- Safety:
 - Electrical safety to ISO 6494, IEC 60664 and UL840
 - Functional safety to ISO26262
 - Pulsed safety enable input
 - Pulsed status output
- Environmental:
 - -40°C to +85°C operation
 - IP6k9k and IP67 protection
 - ISO 16750
- 12V or 24V nominal supply
- Weight: 10.9kg

MULTIPLE MOTOR FEEDBACK OPTIONS

Gen4 Size 10 provides a number of motor feedback possibilities from a range of hardware inputs and software control, allowing a great deal of flexibility.

- Absolute UVW encoder input
- Absolute Sin/Cos encoder input
- Incremental AB encoder input
- Resolver input
- Programmable 5V to 10V encoder power supply

INTEGRATED I/O

Gen4 Size 10 includes a fully-integrated set of inputs and outputs (I/O) designed to handle a wide range of vehicle requirements. This eliminated the need for additional external I/O modules or vehicle controllers and connectors.

- All I/O protected to 40V
- 4 analogue inputs 0-10V
- 4 digital inputs
- 3 power supplies 0-10V 100mA
- 3 digital outputs PWM max 2A

OTHER FEATURES

- A CANopen bus allows easy interconnection of controllers and devices such as displays and driver controls.
- The CANbus allows the user to wire the vehicle to best suit vehicle layout since inputs and outputs can be connected to any of the controllers on the vehicle and the desired status is passed over the CAN network to the relevant motor controller.
- The Gen4 Size 10 controller can dynamically change the allowed battery current by exchanging CAN messages with a compatible Battery Management System.
- Configurable as vehicle control master or motor slave.

CONFIGURATION TOOLS

Sevcon offers a range of configuration tools for the Gen4 Size 10 controller, with options for Windows based PC or calibrator handset unit. These tools provide a simple yet powerful means of accessing the CANopen bus for diagnostics or parameter adjustment. The handset unit features password protected access levels and a customized logo start-up screen.