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1 Introduction

The aim of this exposition is to introduce Whitney stratifications in the context of algebraic ge-
ometery. Broadly speaking, stratification theory aims to partition topological spaces into subsets
that glue togther in a nice manner. One of the original motivations was to analyze singular spaces,
since a lot of results in algebraic geometery and algebraic topology fail when one considers singular
spaces. These include fundamental duality theorems such as Poincaré duality. Consider for example
Poincaré duality and how it fails on reasonable spaces such as the pinched torus.

1.1 Poincaré duality fails on singular spaces

To see why Poincaré duality fails on signular spaces, it is convinient to recall the formulation
of the theorem in terms of intersections of cycles rather than the modern formulation involving
fundamental classes. Indeed, this is the language Poincaré used in his original paper and by Goresky
and MacPherson in their introduction of intersection homology in [GMS0].

Theorem 1.1 (Poincaré duality). Let M be a an n-manifold and suppose a and b are cycles in M
with dima =4 and dimb = j. Then, the following statements hold:

1. The intersection of a N b is a cycle, i.e. (aNb) = 0.



2. The homology class of a Nb depends only on the homology classes of a and b, i.e. if a’ and ¥/
are homologous to a and b respectively then a’ Nd’ is homologous to a N b. Thus intersection
defines a product

Hi(M) x Hy(M) 5 Hyyj_n(X).

3. Poincaré duality. If i + j = n,the pairing is nondegenerate and there exists an augmentation
map

Hi(M) x Hy(M) -5 Hy(X) <> Z
where € simply counts the number of points in the intersection.

Remark 1.1. Strictly speaking, one needs to take the orientation of M into account with positive
and negative signs when defining the map e. This will not be relevant for us so we do away with
the signs for simplicity.

However, fails for “reasonable” spaces with singularities. Consider first the sus-
pension S(T) of the torus T with singularities at A and B, depicted in Denote by a and
b the two 1-cycles of the torus T. In the suspension the corresponding cycles S(a) and S(b) are
homeomorphic to S?, since S(S') is homeomorphic to S2. S(a) and S(b) form 2-cycles in S(T) but
their intersection S(a)NS(b) is just a line segment which is not a cycle. Thus point 1 of[Theorem 1.1]
does not hold for S(T).
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Figure 1: Suspension of a torus (taken from [Bra96))



Even in cases when point 1 holds, point 2 might fail to hold rendering the intersection ill defined.
To see this, consider the pinched torus depicted in In this case the cycle b can be shrunk
to a point by moving it along the surface to the singularity A. The cycle ¢ is also clearly trivial.
Hence, the cycles b and ¢ are homologous, but we have

anb={x}#0=anc

contradicting point 2.

Figure 2: Pinched torus (taken from [Bra96|)

Thus the hypotheses excludes a large class of spaces. Whitney stratifications break up singu-
lar spaces into smooth chunks in a manner that allows one to draw certain analagous conclusions
about the space by analyzing each smooth stratum. The Whitney conditions impose constraints
on the strata, that ensure that they fit together in a manner that allows us to draw these conclusions.

2 Definition and first examples

To understand what nice means in this setting, let us first define what we mean by a general
startification and use an example to see why we might want to impose extra niceness conditions.

Definition 2.1 (Stratification). A stratification of a topological space X is a finite filtration
§cFCF C---CF,1CF,=X
such that

1. F; is closed in X for all 1.



2. The sets S; = F; \ F;_1 are smooth manifolds of dimension i of finitely many connected
components and are called the strata of X.

The family S = {S;}: forms a partition of X and is referred to as a stratifiction of X.

Remark 2.1. Each stratum is defined as the difference of two closed subsets and is thus locally
closed.

Let us now construct a naive stratification of an algebraic set, that exhibits certain bad behavior
and hence motivates Whitney’s condition on strata. The example we consider is Whitney’s umbrella,
which is the algebraic variety V' C R3 given by the zero locus of f = 22 — zy?. Set S = {X,Y},
where X denotes the z-axis and Y = V \ X. The resultant stratification is depicted in
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Figure 3: A bad stratification (taken from |Gib+76|)

To see why this stratification is undesirable, let us examine the intersection of the stratum
X with neighborhoods around the origin. Let ¢ > 0, then the intersection of a neighborhood of
(0,0, —¢) in V with X is simply X itself since V lies completely in the region where z is nonnegative.
On the other hand, if we examine the intersection of a neighborhood around (0,0,0) in V' with X
we get a self intersecting parabola. Finally the intersection of a neighborhood around (0,0, ¢€) in V
with X, yields yet another shape. All three situations are depicted in which is also taken
from |Gib+76).
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Figure 4: Topology changes along the startum X (from [Gib+76])

Moving about the origin on straum X causes the topology to vary substantially. This is rather
undesirable, because one of the points of stratification is to break up the original variety into pieces
whose topology we understand and then use this information to draw conclusions about the space
as a whole.

Remark 2.2. The stratification we just described was obtained by taking the singular part of V' to
be one stratum and its complement in V' to be the other stratum. One can use this method to
inductively stratify an arbitrary algebraic variety V. Indeed, let dim V = d, then we can define a
filtration V = V; D V41 D ... inductively as follows. Begin by setting V; = V, then for i < d

V. — Sing(Viy1) dimViy =i+1
Vi dimV;; <i=1

where SingV;1 denotes the set of singular points of V.

A stratification S is obtained by taking the differences V; \ V;_; as the strata. There are only
finitely many such differences and each one gives rise to a smooth submanifold of dimension ¢ (or
is empty if V; = V;_1).

We can improve this stratification, by further breaking up the z-axis into three strata. This is
depicted in We will later see that this stratification is an example of one that satisfies
Whitney’s conditions and known as a Whitney stratification. Whitney formalized the concept we
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Figure 5: A Whitney stratification of Whitney’s umbrella (taken from |Gib+76|)

just described using the two stratifications into two conditions.



Figure 6: Whitney’s Conditions (from [Ban07])

Definition 2.2 (Whitney’s conditions (A) and (B)). Let X and Y be manifolds.

(A) The pair (X,Y) satisfies the Whitney regularity condition (A) at © € X if the following
condition holds. Suppose there exist a sequence {yn}tn €Y, such that lim, oy, = x. Then,
T, X Climp,oe Ty, Y.

(B) The pair (X,Y) satisfies the Whitney regularity condition (B) at @ € X if the follow-
ing condition holds. Suppose there exist sequences {xn}n € X and {yn}tn € Y, such that
lim, oo Tp, = limy 00 Y = . Then, lim, o0 Iy, C limy 0Ty, Y, where 1, denotes the line
spanned by Yy, — Ty, .

We say that Y is Whitney reqular over X, if (X,Y) satisfies condition (B) at every x € X.

Notation 2.1. Denote by B(X,Y) the set {z € X|(X,Y) does not satisfy condition (B) at x}.
These are precisely the points in X at which Y fails to be Whitney regular over X and will play a
key role in the next section.
Remark 2.3 (Condition (B) = (A)). In his widely referenced notes [Mat12] on Whitney’s condi-
tions, Mather noted that condition B implies condition A. On the other hand, it is easy to come
up with examples to prove that the converse (A = B) is false.

Unless otherwise specfied, we mean condition B when referring to Whitney’s conditions.

Definition 2.3 (Whitney stratification). A stratification S of a topological space X is a Whitney
stratification, if it is locally finite and (S;, S;—1) is Whitney regular for every i.

The local finiteness of S simply means that every point z € V posseses an open
neighborhood U C X such that only finitely many S € S satisfy U NS # 0. In other words, U
meets only finitely many strata. Indeed Whitney’s condition weed out the first naive stratification
of the Whitney umbrella. It is instructive to work this out completely.

Ezample 2.1 (Naive stratification of Whitney’s umbrella is not regular). We claim that the strat-
ification depicted in fails condition (A4) (and hence condition (B)) at the origin. Indeed,
along the y-axis we have

VV = (22, —2zy, —y*) = (0,0,9%).

If we pick a sequence {y,} with lim,_,., = 0, then the sequence of tangent planes T, Y converges
to the plane z = 0 and clearly To X C {z = 0} (recall that X is the z-axis).



3 An intrinsic fomulation of condition (b)

In order to prove which is critical to proving that semialgebraic sets admit Whitney
stratification, we need to rephrase condition (B) of in intrinsic terms. We will do this
using blow ups, which is not surprising since we are dealing with singularities after all.

Recall that we can define the blow up of a manifold M along a submanifold U as

BuM = P,, U(M\U)

where P, denoting the projective normal bundle of U in M. The projection 7 : By M — M can
be obtained by setting it to be the normal projection P, on P,, and the inclusion M \ U — M
on M\ U.

Let M be a manifold, then the blowup of M? along its diagonal Ay = {(m, m)|m € M} is

Ba,, M? =P, (M*\ Ay)

where P, is the projective normal bundle of Ay in M? (we suppressed the Ay in the notation for
convenience). But we can canonically identify the normal bundle n of Ay in M? with the tangent
bundle TM. Indeed, given m € Ay

N = (T M @ T, M)/ Ay

Finally, we can define a map T, M & T,, M — T,, M by sending v & w — v — w. This map induces
an isomorphism on eta,, allowing us to identity n,, with T;, M and n with TM. Consequently, we
can identify the projective normal bundle P, with the projective tangent bundle PT'M to obtain

Bpa,,M? = PTM U (M?\ Ayy).

An element of the blow up may either be a point (m,n) € M? with m # n or it may be a tangent
direction in on M.

To rephrase condition (B) of we need to discuss what it means for a sequence
of points (m;,n;) € M?\ Ay to converge to a direction | € PTM. This can only happen if
lim; oo m; = lim;_, . n; and the direction from x; to y; converges to I. More concretely if M = R"™
the sequence (m;,n;) converges to (x,1) € R™ x RP" 1 if lim; ;o m; = lim; .o n; = x and the
direction of the line passing through x; and y; converges to [. Putting all this together we obtain

Proposition 3.1 (Intrinsic formulation of condition (B)). Let X and Y be submanifolds of a
manifold M. The pair (X,Y) satisfies condition (B) at x € X if and only if the following condition
holds. Let {x,} € X and {yn,} € Y be a sequence of points with x,, # y, for all n. Suppose that
limy, o0 Tr, = My 00 Y = @, (@0, yn) converges tol € PTM,. Then, | C lim, T}, Y.

Notice that we now have a condition on points of the blow up and in particular on the projective
tangent bundle.

4 Algebraic sets admit a Whitney stratification

The Whitney conditions are widely used in many fields, because a large class of objects admit
Whitney stratifications. At the highest level of generality, one can prove that every definable set



in an o-minimal structure admits a Whitney stratification. A wide range of objects including
semialgebraic sets and subanalytic sets are definable on o-minimal structures. Since the focus of
this exposition is primarily on stratifications and their application in algebraic geometery, we will
limit ourselves to stratifications of semialgebraic sets and refer the reader to lectures 3 and 4 of
|[Fuk+10] for details on o-minimal structures and stratifications of definable sets.

We recall some properties of semialgebraic sets that are required to prove that they admit a
Whitney stratification.

Definition 4.1 (Semialgebraic sets). Let k be a field, then S C k™ is semialgebraic if it can be
written as a finite union of sets carved out by polynomial inequalites and equalities. In other words
S is the finite union of sets of the form

{z € k"|f(z) >0, f€k[r1,..., ]} and
{z e k™ f(x) =0, f€klx,...,zn]}.

Semialgebraic sets have some nice closure properties. We omit the proofs of the next two results
for the sake of brevity.

Lemma 4.1 (Closure under unions, intersections and projections). Similar to algebraic varieties,
semialgebraic sets are closed under finite unions and intersections. However unlike algebraic vari-
eties, semialgebraic sets are also closed under projection by the Tariski-Seidenberg theorem.

Further, the singularities of a semialgebraic set form a semialgebraic set.

Lemma 4.2. Let V be a semialgebraic set. Then the set of singularities Sing(V) of V is also
semialgebraic and has dim Sing(V) < dim V.

The following theorem, is perhaps the most involved in this exposition and is critical to con-
structing Whitney stratifications of semialgebraic sets. It was first proven by Whitney but we follow
the more geometeric account provided in [Mat12].

Theorem 4.1 (Whitney). Let X and Y be semialgebraic sets in k", then the set B(X,Y) is also
semialgebraic and has dim B(X,Y) < dim X.

Proof. If + € B(X,Y), then by there exist sequences {z,} € X and {y,} €
Y with x,, # y, for all n such that {(z,,y,)} € R** \ Agen that converge to (x,1) but | ¢

limp—ooTy, Y. This just means that B(X,Y) form a subset of PT'M. We can project PTM — M
by the standard projection (strictly speaking it is the complement of the set that satisfies the
condition, but complements of semialgebraic sets are semialgebraic). By the Tariski-Seidenberg
theorem, a projection of a semialgebraic set is semialgebraic, so B(X,Y) is semialgebraic. The
statement regarding dimension is rather involved and we refer the interested reader to [Wal75]. W

Proposition 4.1 (Semialgebraic sets admit Whitney stratifications). Let V' be a semialgebraic set
with dimV = d. Then, V admits a Whitney stratification F composed of finitely many semialgebraic
strata.

Proof. The naive construction we described in can be adapted to produce a Whitney
stratification. We do this by explicitly removing the points where the Whitney condition fails from
each stratum.



Inductively construct a filtration V.=V; D V;_1 D ... as follows. Begin by setting V; =V and
Va—1 = Sing(Vy). Next assume by induction that filtration has been constructed until V;, i.e. we
have V. =V; D Vy_1 D --- D V; and wish to construct V;_;. Set

closure(|J* WV, V;\ V1)) dimV; =1

v {v; dimV; < i
j=i+1

where W(X,Y) = Sing(X) U B(X \ Sing(X),Y \ Sing(Y)).

By |[Lemma 4.1} [Lemma 4.2 and [['heorem 4.1| V;_; is semialgebraic and has dimV;_; <17 — 1.
Moreover, there are only finitely many non-empty differences F; = V; \ V;_;. By construction,
(F;, F;—1) is Whitney regular for all ¢ and thus setting F = {F;} yields the desired finite Whitney
stratification by semialgebraic sets. |

It is instructive to apply the construction we just described applied to the Whitney umbrella.

Ezample 4.1 (Applying[Proposition 4.1|to Whitney’s umbrella). Consider again the algebraic variety
V = Z(2? — zy?) with dim V' = 2. Following we set Vo =V and V; = Sing(V) =
z — axis. Next, since dim V; = 1, we have

Vo=W(Vi,V2\ 1)

= Sing(V1) U B(V4 \ Sing(V1), (V2 \ V1) \ Sing(V2 \ V1))

= B(Vi, (Ve \ V1))

L)

={(0,0,0)}
where (©) is due to Sing(Vi) = Sing(V2 \ V1) = 0. This is because V; is simply the z-axis and
has no singularities, while V5 \ V; is simply the complement of the z-axis in V' and is composed of
the two nonsingular connected components depicted in Finally, (&) is just the result of
Example 2.1| where we proved that the complement V5 \ V; fails to be Whitney regular over V; at

the origin.
Observe that the resultant stratification

F={W\Vi,Vi\ Vo, \ 0}

= {V'\ z-axis, z-axis \ origin, origin}

is precisely the good stratification we obtained in by following our intuition and removing
the origin from the one dimensional stratum.

5 Psuedomanifolds and intersection homology

A key property of Whitney stratified sets is that each straum is locally topologically trivial, in the
sense that each point has a neigborhood homeomorphic to an open cone. Recall first the definition
of a cone over a space.

Definition 5.1 (Open cone). The cone



Definition 5.2 (Psuedomanifold). A n-psuedomanifold is a n-dimensional topological space with
a stratification S induced by a finite filtration of closed sets

0lcFycFcCc---CF, 1CF,=X

such that the following local triviality condition is fulfilled: every x € S; possesses a neighborhood
U, C X, a stratified space L and a stratification preserving homeomorphism

@ : U, — cone(L) x R

L is called the link of the stratum S; at x. If S; is connected then the link is independent of x.
Furthermore, the strata containing singularities have codimension at least 2.

Remark 5.1. The requirement that the codimension of singular strata be bounded is to ensure the
intersection homology groups and the perversity vectors used to define them make sense, but this
is out of the scope of this exposition.

Proposition 5.1. Whitney stratified sets are psuedomanifolds The filtration corresponding to a
Whitney stratification of a compelex algebraic variety defines a psuedomanifold

Proof. Result due to Thom (see |[Nicll] for a modern handling) |

Remark 5.2. Real algebraic varieties may have singular strata of codimension lesser than 2.

We are now ready to give an informal definition intersection homology groups. The idea here
is to restrict cycles by forcing them not to hit the singular strata. We do this by assigning to each
stratum S, a perversity 0 < pg.

Definition 5.3 (Intersection chains). Let X be a n-dimensional psuedomanifold with a stratification
S and a collection p that assigns to each stratum a perversity. Then,

ICY(X) = {o € C;(X)|dim(o N Sy) < i — codim(Sa) + pa and dim(do N Sy) < i — 1 — codim(Sa) + pa}

The first condition places restrictions on intersecting with certain strata, with higher p,, allowing
for more cycles to hit the stratum S,, while the second condition makes the intersection chain
complex a chain complex. The intersection homology is the homology of the intersection chain
complex and satisfies a version of the Poincare duality.

We will not go into the details here as it requires us to introduce more machinery. Instead,
we present the intersection homology groups of the pinched torus. The pinched torus has a single
isolated singularity at the pinch point, so we can define a suitable stratification by with one 0-dim
stratum comprised of the pinch point and one 2-dim stratum defined as the complement of the
pinch point. Consider different perversities for the 0-dim stratum. Let X denote the pinched torus,
b denote the 0-homologous 1-cycle, and a the only non trivial cycle (refer to [Figure 2)). Denote by
p the perversity of the zero dimensional stratum, then

(a,by p>0
This is due to the fact that

dim(aNSy) = {*} =0
dim(anSp) =0= -1
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and
i—codim({*})+p=1—-2+p=p—1.

Consequently,

5 0 p=0
IHf(X):{Z P> 0"

When the perversity is 0 we do not allow any cycles to hit the singular straum and thus the one
cycle generated by a does not enter the picture. However, increasing the perversity to 1 allows it
back in.
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