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Abstract
With the recent hype around the Metaverse and NFTs, Web3
is getting more and more popular. The goal of Web3 is to
decentralize the web via decentralized applications. Wallets
play a crucial role as they act as an interface between these
applications and the user. Wallets such as MetaMask are being
used by millions of users nowadays. Unfortunately, Web3 is
often advertised as more secure and private. However, decen-
tralized applications as well as wallets are based on traditional
technologies, which are not designed with privacy of users in
mind.

In this paper, we analyze the privacy implications that Web3
technologies such as decentralized applications and wallets
have on users. To this end, we build a framework that mea-
sures exposure of wallet information. First, we study whether
information about installed wallets is being used to track users
online. We analyze the top 100K websites and find evidence
of 1,325 websites running scripts that probe whether users
have wallets installed in their browser. Second, we measure
whether decentralized applications and wallets leak the user’s
unique wallet address to third-parties. We intercept the traffic
of 616 decentralized applications and 100 wallets and find
over 2000 leaks across 211 applications and more than 300
leaks across 13 wallets. Our study shows that Web3 poses
a threat to users’ privacy and requires new designs towards
more privacy-aware wallet architectures.

1 Introduction

Web3 has gained tremendous adoption over the past few years.
This is mainly fueled by the rise of decentralized applications
(DApps) such as the Metaverse, NFTs, and decentralized fi-
nance (DeFi). DappRadar.com currently lists over 13,000
DApps across various blockchain platforms [17]. A report
from 2022 states that NFTs generated 12 Billion USD in
trades and that DeFi even reached a value of 127 Billion USD
in total value locked on Ethereum [67]. The promise of Web3
is the ability to run traditional applications in a decentralized

way, thus assuring better transparency and privacy. An impor-
tant aspect of such decentralized infrastructure are wallets,
which act as an interface between decentralized applications
and the user. Wallets enable users not only to perform com-
mon blockchain operations such as managing their credentials
(i.e., public and private key pairs) or signing of transactions,
but also operations on DApps such as trading tokens or buy-
ing NFTs. All of these operations are provided to the user
via a convenient and easy to use interface. There are several
wallet operators that act as intermediaries and interact with
decentralized apps on the behalf of the user. MetaMask is
currently one of the most popular wallet operators with over
10 Million active users [12].

While built with the goal of better transparency and privacy,
decentralized applications as well as wallets are still based
on traditional web technologies, which are prone to privacy
issues. Wallets, in particular have access to sensitive user
information and are therefore a rich target for attacks. To make
matters worse, wallet operators often use centralized providers
by default to retrieve information from the blockchain, making
them a single point of failure and allowing providers to easily
track user activity across DApps. For example, Infura’s recent
privacy policy update mentions that IP addresses and wallet
addresses of users will be collected [15]. Since Infura is the
default blockchain provider of MetaMask, this means that
Infura is capable of linking wallet addresses with IP addresses
of millions of users. While users might accept trusting the
wallet operators, they may not realize to what extent they are
exposing their wallet information to third-parties.

Wallets operate by injecting a wallet object into the DOM
of every website the user visits. This facilitates the interac-
tion between DApps and wallets. DApps can then simply
use JavaScript to access wallet information. However, the
browser does not take any particular measures to safeguard
the wallet object. Thus, any malicious website, third-party, or
browser extension can read this object or use this object to
trick users into approving malicious actions (e.g., send assets
to an attacker-controlled address). While these attack vectors
have been exploited in the traditional web in the past, their
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prevalence in the context of Web3 is yet unclear.
In this paper, we investigate whether wallet extensions are

being used to track users online and whether DApps as well
as wallet extensions leak the user’s wallet address to third-
parties. To answer this question systematically, we build a
framework that is capable of simulating wallet objects and
monitoring access to these objects. Hence, if a website checks
the presence of a wallet object in conjunction to several other
JavaScript attributes, we deem it as a tracking attempt to
fingerprint the user. Moreover, our framework is also capable
of automatically interacting with DApps as well as wallets
and intercepting any cookies as well as requests made via
HTTP and WebSockets. We identify a DApp or wallet to leak
the user’s wallet address if we find that any of the intercepted
cookies or requests include the user’s wallet address.

Results. We report three main findings. First, of the 100K
websites that we analyzed, 1,325 of them track users via
wallet objects either directly or via third-party scripts. Sec-
ond, of the 1,572 DApps that we analyzed, 211 of them leak
the user’s wallet address to third-parties such as blockchain
providers or tracking and analytics platforms. Lastly, of the
100 wallets that we analyzed, 13 wallets leak the user’s wal-
let address to third-parties. All together wallets include over
137 unique third-parties, thereby giving third-parties access
to sensitive user information. In summary, our investigation
shows that the existing wallet infrastructure is not in favor
of users’ privacy. Websites are abusing wallets to fingerprint
users online, and DApps as well as wallets leak the user’s
wallet address to third-parties.

Ethics Considerations. Throughout our analysis, we took
adequate measures to avoid overloading the websites (e.g.,
limited ourselves to the landing page). We have informed the
websites and third-parties about potentially unintentional data
collection from their side.

Contributions. We summarize our contributions as follows:

• We present the first study that systematically measures
the prevalence of websites and third-party scripts that use
wallet information to track users online. We found evi-
dence that 1,325 websites out of the top 100K websites
probe their users for wallets.

• We conduct the first large-scale measurement to assess
the leakage of wallet addresses on various DApps and
wallets. We find that 211 out of 616 DApps and 13 out of
100 wallets leak the user’s wallet address to third-parties.

• We measure the efficacy of 5 popular blocklists and ob-
serve that when all combined 44% of the third-parties
would not be blocked.

2 Background

We provide background on Ethereum, decentralized applica-
tions, wallets, and privacy concerns that might arise when
combining all these technologies together.

2.1 Ethereum

Ethereum is a blockchain or distributed ledger where trans-
actions are grouped into batches of blocks and where each
block points to its previous block via a cryptographic hash.
Blockchains are typically maintained by a distributed peer-to-
peer network, which is responsible for broadcasting transac-
tions, appending new blocks, providing access to stored data,
and executing smart contracts. Smart contracts are programs
that are deployed and executed across a blockchain. As of
January 2023, Ethereum has a market capitalization of over
180 billion USD [14], making it the most popular blockchain
technology that offers Turing-complete smart contract capa-
bilities. Ethereum peers (i.e., nodes) may expose a JSON-RPC
interface [27], which defines an API that users or applications
can use to interact with the blockchain (e.g., sending trans-
actions or querying the state of a smart contract). Similar to
other blockchains, Ethereum has its own native cryptocur-
rency (i.e., Ether), that enables users to transfer value across
accounts and to pay for transactions. However, unlike Bitcoin
for example, Ethereum follows an account-based model. The
idea is similar to traditional bank accounts, where users own
an account number and other users may transfer currency to
this account number. In Ethereum, users do not own an ac-
count number, instead they own an account address, which is
a unique 160-bit long hexadecimal string. However, similar
to a bank account number, addresses act as a unique identifier
that can be used to link transactions back to users and which
should therefore be shared only with trusted parties.

2.2 Decentralized Applications

Decentralized Applications, also known as DApps, are appli-
cations that are accessible via the web, but where either all
or some of the parts are hosted on decentralized platforms.
However, for ease-of-use, availability requirements, and com-
patibility with existing technologies (e.g., DNS, HTTP client-
server model, etc.), in most cases the user interface (UI) of
DApps is hosted on a centralized web hosting service such as
AWS. Only parts of the business logic are decentralized via
the use of smart contracts. There are a number of different use
cases for DApps, ranging from gambling platforms and online
games (e.g., CryptoKitties), to decentralized marketplaces and
exchanges (e.g., Uniswap). DappRadar currently lists over
3,000 DApps for the Ethereum blockchain alone [17]. How-
ever, to be able to interact with DApps, users are required to
use a wallet, which acts as a bridge between the DApp and
the user’s identity on the blockchain.
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Figure 1: Conceptual flow between a user, a wallet, a DApp
and an Ethereum node. 1⃝ User visits a DApp website and
clicks on “Connect Wallet” button located on the website, 2⃝
website requests user’s wallet address by calling the wallet
extension’s Ethereum Provider API [49], 3⃝ wallet extension
asks user for permission and user grants it via the wallet’s
UI, 4⃝ wallet returns wallet address to DApp website, 5⃝
website can now interact with the Ethereum blockchain either
directly or through the wallet extension which is connected
to an Ethereum node via JSON-RPC API [27].

2.3 Wallets

Users typically manage their accounts and cryptocurrency via
a wallet. A popular choice are wallets in the form of a browser
extension. A browser extension is a software module that
users can install in their browser to enhance their browsing
experience. Browser extensions have the capability to modify
the Document Object Model (DOM) of websites and enjoy
access to privileged browser APIs such as browsing history.

MetaMask [47] currently is the most popular wallet ex-
tension for Ethereum with over 10 Million downloads on
Google Chrome’s web store [12]. Wallet extensions such as
MetaMask inject a Web3 object into the DOM of any web-
site that the user visits, regardless of whether the website is a
DApp or not. Specifically, MetaMask adds a new object called
ethereum to the existing window object, which exposes the
Ethereum Provider API [49]. The API enables DApps to inter-
act via JavaScript with the Ethereum blockchain as well as the
user’s wallet. For example, DApps can call unprivileged prop-
erties such as window.ethereum.isMetaMask, which will
return true if MetaMask is installed, but also privileged prop-
erties such as window.ethereum.selectedAddress, which
will return the user’s wallet address to the DApp. Wallets
are required to ask the user for prior permission and the user
needs to grant it before a DApp is able to access privileged
properties such as the user’s wallet address.

Figure 1 depicts the conceptual flow of a user interacting
with a DApp. A user starts by visiting the DApp’s website.
DApps usually expose a visual UI button on their website,
which users must click if they wish to “connect” their wallet
to the DApp (i.e., grant DApp access to their wallet). The
DApp will then request permission to the wallet via that wal-
let’s injected Ethereum Provider API. The wallet will display
a popup to the user asking if it wants to grant permission

to the DApp. In case the user grants the access, the wallet
returns the requested information back to the DApp. Note
that while a subset of the Ethereum Provider API is handled
directly by the wallet extension (e.g., signing of transactions),
another subset (e.g., retrieving latest block number) is sim-
ply forwarded to an Ethereum node (e.g., Infura [35]) via
JSON-RPC. Also note that a DApp is not required to rely on
a wallet extension to interact with the blockchain. A DApp
can simply talk directly to a blockchain node. In fact, many
DApps limit their interaction with the wallet extension to the
bare minimum of only requesting the user’s wallet address
and the signing of transactions.

2.4 Privacy Concerns

Tracking is omnipresent on the web. Users are constantly
being tracked across websites for purposes of analytics or tar-
geted advertising, either via explicit (e.g., cookies) or implicit
(e.g., browser fingerprinting) information. In the past, third-
party cookies have been a popular way to track users across
the web [45], but most modern browsers nowadays block
third-party cookies by default [50, 64]. A popular alternative
is browser fingerprinting [38]. The idea is to uniquely identify
users based on differences of their browser’s configuration
(e.g., fonts, screen resolution, plugins, etc.). A fingerprint is
generated by combining properties that are exposed to a web-
site via JavaScript. As opposed to cookies, which are stateful,
browser fingerprinting is stateless and thus difficult to mitigate
without breaking usability (i.e., disabling JavaScript) [53].

Since DApps are developed using traditional web technolo-
gies, many DApps also include several third-party tracking
scripts. DApps cannot sign transactions without the consent
of the user. However, once a user has connected its wallet to a
DApp, all third-party scripts embedded within the DApp can
access the injected Web3 object via JavaScript. This grants
third-party scripts access to sensitive information such as the
user’s account address or balance, without requiring prior
consent of the user. Additionally, without being connected
to a wallet, third-party scripts can check for the existence of
a Web3 object in the DOM and thus infer that a user owns
cryptocurrency and possibly which cryptocurrency and which
wallet. This information can be leveraged to augment existing
browser fingerprints as it adds additional bits of entropy [23].

While blockchains do provide some level of anonymity
(i.e., pseudonymity), they do not provide full anonymity. All
transactions from and to a given account can easily be linked
to a user’s account address, but not necessarily to its real-
world identity. Yet, third-party scripts pose a threat to a user’s
anonymity since they also have access to a user’s IP address
and thus can potentially link multiple wallet addresses to their
respective IP address [41]. In fact, Infura’s recent privacy
policy update has raised several concerns among the commu-
nity as it states that wallet addresses and IP addresses will be
collected [15].
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Figure 2: Overview of our measurement framework and its individual components. Our framework takes as input a list of websites
or extensions and logs all results in a JSON file. We develop a wallet simulator and integrate it into DuckDuckGo’s Tracker
Radar Collector (TRC) [19]. We leverage TRC to crawl websites and log any calls to Wallet APIs. We also develop a Request
Interceptor that captures cookies as well as HTTP and WebSocket traffic from websites and extensions. Moreover, we create
a MetaMask automator that automates the task of setting up MetaMask [47] as well as connecting to DApps, and integrate a
leakage detector to find wallet address leaks. Both, TRC and our Request Interceptor are based on Puppeteer [33], which uses the
Chrome DevTools Protocol [31] to interact with a browser.

3 Methodology

Next, we describe our approach for detecting Web3-based
browser fingerprinting and identifying wallet address leakage
across DApps and wallet extensions. A high-level overview
of our measurement framework is depicted in Figure 2.

3.1 Web3-Based Browser Fingerprinting

Browser fingerprinting is a prevalent online tracking tech-
nique [25, 30, 38, 53, 61]. Our goal is to find evidence of
whether websites or third-party scripts are leveraging any
of the JavaScript properties that wallet extensions expose,
to track users on the web. For that purpose, we use Duck-
DuckGo’s Tracker Radar Collector (TRC) [19] to crawl pop-
ular websites and measure their behavior. TRC is a crawler
that is designed for large-scale web measurements. It is mod-
ular and leverages multi-threading to speed up crawling. It
uses Puppeteer [33] under the hood, which is a library that
allows developers to control Chromium-based browsers for
automation and testing purposes via the Chrome DevTools
Protocol [31]. This gives TRC the capability to intercept net-
work requests, read cookies, and instrument JavaScript calls.

3.1.1 Detecting Wallet API Calls

In contrast to OpenWPM [25], another popular crawler which
uses inline instrumentation by overriding JavaScript functions
and objects with getters, TRC uses the Chrome DevTools
Protocol to set breakpoints in the JavaScript engine. These
breakpoints cannot be detected by websites and are only trig-
gered when a certain function is called or property is accessed.
Whenever the debugger hits any of the configured breakpoints,

Wallet TRC Breakpoint Simulated JavaScript Property

MetaMask window.ethereum isMetaMask: true [48]
Coinbase window.ethereum isCoinbaseWallet: true [13]
Binance window.BinanceChain chainId: "0x38" [6]
Phantom window.solana isPhantom: true [52]
Nami window.cardano nami.name: "Nami Wallet" [9]

Table 1: List of breakpoints added to TRC and JavaScript
properties simulated by our wallet simulator.

TRC will collect the JavaScript stack trace (e.g., filename, line
number, etc.) and other metadata about the property access or
function invocation and store it in a JSON file.

We set breakpoints for five popular wallets (see Table 1).
We started by first only hooking the window.ethereum ob-
ject, and added the other wallet API hooks after manually
checking reported scripts during initial test runs. Moreover,
after our final crawl we performed a manual inspection of all
several scripts and were not able to find any other wallet APIs,
which gives us confidence that the four breakpoints in Table
1 are sufficient. However, breakpoints only get triggered if
the object actually exists in the DOM. For example, to detect
whether websites are trying to identify if MetaMask is in-
stalled, we set a breakpoint to be triggered whenever a script
accesses the window.ethereum object. Thus, in the case of
MetaMask, the object window.ethereum has to be injected
into the DOM for it to be detected by our breakpoint. We there-
fore simulate each wallet listed in Table 1 by injecting (prior
to any script execution) wallet specific properties into the
DOM. For instance, to simulate MetaMask we inject the prop-
erty window.ethereum.isMetaMask into the DOM and set
it to true as defined in MetaMask’s documentation [48]. This
allows us to hook future accesses by the website, thus catch-
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ing any access to the object beyond the simulated property.
In other words, by hooking window.ethereum via the prop-
erty window.ethereum.isMetaMask, we will also be able to
detect access to, for instance, window.ethereum.request.

3.1.2 Identifying Fingerprinting Behavior

The idea behind browser fingerprinting is to collect a large
amount of diverse but stable information about a user’s
browser configuration, such that when combined together,
enough entropy is provided to generate a unique fingerprint
that identifies the same user across different sessions and web-
sites. We leverage a similar approach as proposed in [59] to
detect fingerprinting behavior in Android applications, and
adapt it for JavaScript. TRC already provides a curated list of
JavaScript properties and functions, that websites are known
to leverage, to generate browser fingerprints [20]. We group
each property and function call into one of 22 self-defined
categories (see Appendix A). A script is marked as a finger-
printing script if it calls JavaScript properties and functions
belonging to at least 10 different categories, where at least one
of the categories must belong to a list of 8 explicit browser
fingerprinting categories. We tried values of 5, 10, 15, and 20
during earlier experiments with a small set of identified fin-
gerprinting scripts and achieved the best accuracy when using
10 as threshold. Explicit browser fingerprinting categories in-
clude JavaScript properties and functions that are heavily used
for fingerprinting purposes (e.g., CanvasRenderingContext2D,
WebGLRenderingContext, AudioBuffer).

3.2 Wallet Address Leakage

Nothing prohibits DApps or wallet extensions from sharing
a user’s wallet address with third-parties. This sharing can
either happen with or without the knowledge of the DApp
or wallet extension. Our goal is to measure whether, how,
and with whom DApps and wallet extensions share wallet
addresses. To that end, we developed an automator for Meta-
Mask (see Figure 2) that not only automatically installs and
sets up MetaMask when visiting a DApp, but also automati-
cally tries to connect MetaMask to the Dapp. Once connected
to a DApp or a wallet extension is installed, our request inter-
ceptor will intercept any outgoing traffic as well as cookies
and search for wallet address leaks.

3.2.1 Connecting MetaMask to DApps

For a DApp to be able to leak a user’s wallet address, the user
needs to have set up a wallet and connected its wallet to the
DApp. As we do not want to repeat this step manually for
thousands of DApps, we develop a component called Meta-
Mask automator. First the automator sets up MetaMask. This
is done even before visiting the website of the DApp. Our
automator starts by launching a fresh instance of a browser

and installing MetaMask’s wallet extension. Afterwards, it
launches MetaMask’s UI in a new browser page and auto-
matically clicks on the button to import an existing wallet.
Browser extensions, including MetaMask, contain UIs that are
essentially HTML pages with JavaScript code. Our automator
leverages Puppeteer to extract all HTML elements (e.g., but-
tons, input fields, etc.) from MetaMask’s UI. Puppeteer also
provides functions that allows our automator to interact with
the HTML elements such as clicking on buttons or typing in
text into input fields. Once the “import wallet UI” has loaded,
our automator will read a fixed passphrase and password from
a file and automatically type in the passphrase and password
into MetaMask’s UI to import the wallet and finish setting up
MetaMask with a wallet address that we control.

After setting up the wallet, our automator visits the DApp’s
website. Once loaded, it searches for a “connect” button by
scanning the HTML of the DApp’s website for elements that
contain keywords such as “Connect Wallet”, “Sign In”, “Ac-
count”, etc. We leveraged the 78 DApps by Winter et al. [66]
to extract a list of common keywords for connect buttons (see
Appendix B). Afterwards, the automator tries to perform a
click on every element that it found. It detects the connect
button if it finds an element where the click succeeds. Once
the automator finds the connect button, it searches for a Meta-
Mask button. Often DApps allow users to connect via differ-
ent wallets and therefore they let users select which wallet
they want to use. The automator finds the MetaMask button
by scanning the HTML for elements containing keywords
such as “MetaMask” or “Browser Wallet” (see Appendix B).
Some DApps require users to click on a checkbox to agree to
the terms and conditions before being able to connect. Our
automator handles this case by searching the HTML for check-
boxes and selecting them before clicking on any button. After
successfully clicking the MetaMask button, a popup window
will show up asking the user for permission to connect. Our
automator intercepts this popup window and automatically
clicks on the “confirm” button to finalize the connection re-
quest and give permission to the DApp to access our wallet’s
information. However, in some cases our automator might not
be able to find the MetaMask button via text search because
either the DApp uses an image or the text is not detectable.
Thus, whenever our automator does not find any MetaMask
button, it infers the dimensions of the browser’s window and
tries to perform hard-coded blind clicks on various offsets
starting off from the middle of the window (e.g., 100 pixels
to the bottom right, 50 pixels to the top left, etc.).

3.2.2 Intercepting Outgoing Traffic and Cookies

There are multiple ways in which DApps or wallet extensions
can exfiltrate wallet addresses. Previous works have only fo-
cused on intercepting HTTP GET requests [66]. However, in
our work we also intercept HTTP POST requests since DApps
and wallet extensions may also leak information via the post
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body. Moreover, we also intercept WebSocket payloads. Web-
Sockets became a popular alternative to HTTP polling due to
their high efficiency (e.g., low latency and fast transmission).
They establish a long-lived connection between the DApp or
wallet extension and the server. While WebSockets allow for
messages to be sent in a bi-directional manner, we are only
interested in intercepting outgoing messages (i.e., requests
going from the DApp or wallet extension to the server). To
that end, we leverage the capabilities of the Chrome DevTools
Protocol to intercept network requests to capture any HTTP
GET and POST requests as well as outgoing WebSocket mes-
sages. Finally, cookies can also be used to exfiltrate wallet
addresses. These can either be set by the server or by the
client via JavaScript. We therefore capture cookies that are set
via the response headers of HTTP requests and also leverage
the capability of the Chrome DevTools Protocol to dump any
cookies that were set via JavaScript.

3.2.3 Identifying Wallet Address Leaks

We identify wallet address leaks in websites and browser
extensions by checking if any of the intercepted traffic (i.e.,
cookies, HTTP, and WebSockets) contains the wallet address
in plain text. More specifically, for cookies, we check whether
the value or name of the cookie contains the wallet address.
For HTTP GET requests, we check whether the URL of the re-
quest contains the wallet address within the GET parameters.
For HTTP POST requests, we check whether the post body
contains the wallet address. Finally, for WebSockets, we check
whether the payload contains the wallet address. However,
checking for the wallet address in plain text is not sufficient.
Prior studies [24, 55, 57] have shown that many third-parties
often obfuscate their leaks by encoding or hashing them.
Identifying obfuscated leaks is a challenging task, which of-
ten boils down to a brute-force search. We employ Senol et
al.’s [55] technique, borrowed from Englehardt et al.’s [24]
method, to identify email addresses in obfuscated strings.
The method consists of searching for a variety of encodings
and hashes within strings, by precomputing a set of strings,
which contains all possible encodings (e.g., Base64, URL
encoding, LZstring, etc.) and hashes (e.g., MD5, SHA256,
MurmurHash3, etc.) of the wallet address. Afterwards, the
contents of cookies, HTTP requests, and WebSocket payloads
are split into multiple strings by potential separator characters
(e.g., ‘=’, ‘&’, etc.) and compared with the strings contained
in the precomputed set. This process is repeated until a level
of three layers of encodings and decodings is reached.

4 Measurements

We describe our experimental setup and present the results
of our large-scale measurement to detect web3-based user

Category DApps Valid URLs

Collectibles 615 533
DeFi 360 339
Games 291 186
Other 220 158
Marketplaces 97 87
High Risk 149 85
Exchanges 87 80
Gambling 145 74
Social 34 30

Total 1,998 1,572

Table 2: DApps crawled from DappRadar.com.

tracking and wallet address leakage1.

4.1 Experimental Setup

We ran all our experiments on a desktop machine with 10
cores and 32GB of RAM. Moreover, we used Chromium ver-
sion 108.0.5351.0 as our browser and our automator was build
based on MetaMask version 10.22.2 for Google Chrome.

Browser Fingerprinting. We measured browser fingerprint-
ing using the top 1 Million Tranco [40] websites as of Novem-
ber 8th, 2022.2 However, Tranco only provides domains and
not URLs. Therefore, we tried matching Tranco domains to
URLs using Google’s Chrome User Experience (CrUX) Re-
port [11] of November 2022. Whenever a domain did not
match any URL contained in CrUX report, we tried insert-
ing the prefixes http(s):// and http(s)://www. in front
of the domains (prioritizing the prefix https://www.) and
checked whether these were accessible (i.e., got an HTTP
response). We skipped domains that were neither accessible
nor contained in the CrUX report. We started with the top
websites (i.e., highest rank to lowest rank) and repeated this
process until we had a list of the top 100K accessible websites.
For each website, we limited the maximum crawl duration to
60 seconds and only visited the landing page.

Wallet Address Leakage. We measured wallet address leak-
age using three different datasets. The first dataset consists of
66 DeFi websites from Winter et al.’s study [66]. The second
dataset consists of 1,998 DApps that we crawled from Dap-
pRadar.com’s top Ethereum Dapps [17]. Table 2 provides an
overview of the number of DApps per category. Note that not
all URLs listed on DAppRadar.com are valid. For instance,
many URLs in the category collectibles are simply pointing
to a collection on opensea.io. Moreover, some of the URLs
are not accessible. We filtered out these URLs and were left
with 1,572 DApps with valid URLs (see Table 2), which we

1Our framework and data are publicly available at: https://github.c
om/christoftorres/Web3-Privacy.

2Available at: https://tranco-list.eu/list/6JXYX/1000000.
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Rank Website Script Domain Wallet API

74 tiktok.com ttwstatic.com All
96 nytimes.com googletagmanager.com window.ethereum

160 xhamster.com xhcdn.com window.ethereum
window.BinanceChain
window.solana

185 tiktokv.com ttwstatic.com All
224 tinyurl.com tinyurl.com All
270 cnbc.com googlesyndication.com window.BinanceChain
359 mega.co.nz mega.io window.ethereum
381 weather.com taboola.com window.ethereum
400 mega.nz mega.io window.ethereum
481 pexels.com pexels.com All

Table 3: Top 10 most ranked websites calling wallet APIs.

Wallet APIs Combinations Scripts

window.ethereum 210
window.solana, window.ethereum 13
window.solana 11
window.ethereum, window.BinanceChain 8
window.BinanceChain 5
window.cardano 4
window.ethereum, window.solana, window.BinanceChain 3
window.ethereum, window.solana 2
window.ethereum, window.BinanceChain, window.solana 2
window.ethereum, window.cardano, window.solana 1
window.BinanceChain, window.ethereum 1

Table 4: Observed combinations of explicit wallet API calls.

then crawled during our experiment. Finally, the third dataset
consists of 100 popular wallet extensions that we downloaded
from Google’s Chrome Web Store [32]. We installed and set
up each wallet extension manually using separate browser
profiles for reproducibility. We stored the password and ad-
dress of each wallet extension in a separate file such that we
can afterwards search for the intercepted requests for wallet
address leakage. For each DApp website that we crawled, we
limited the maximum crawl duration to 30 seconds and only
visited the landing page. To measure wallet address leakage
on wallet extensions, we wrote a script to randomly click on
10 clickable HTML elements. The interaction with the wallet
extension either stops after 10 elements have been clicked or
if 60 seconds have passed.

4.2 Web3-Based Browser Fingerprinting

Wallet API Calls. TRC was able to crawl 96,905 out of
100K websites successfully (i.e., 96.91%). We found 1,114
unique scripts on 1,325 websites which made in total 1,517
JavaScript calls to at least one wallet APIs listed in Table 1.
Table 3 lists the top 10 most ranked websites which we found
to call at least one wallet API. This list includes websites
with millions of daily users such as TikTok and the New
York Times. Interestingly, websites such as TikTok called

...
f = Math.trunc((new Date).getTimezoneOffset() / -60),
m = Boolean(window.web3 || window.ethereum),
...
return {

...
isAdBlock: n,
isMetaMaskActive: m,
...

}
...

Figure 3: Code snippet accessing window.ethereum from
https://js.wpadmngr.com/static/adManager.m.js.

all of our wallet APIs. After inspecting their code we found
that these websites detect whether objects were added to the
DOM. We checked whether this only occurs via our wallet
simulator or if it also happens when visiting TikTok with
MetaMask installed. Our check revealed the same results.
This is because MetaMask and any other wallet will, sim-
ilar to our wallet simulator, inject a new Web3 object into
the DOM. This will be detectable by those websites and
used for either analytical or tracking purposes. We there-
fore differentiate between explicit calls and implicit calls,
where explicit means that a script includes an explicit call to
a wallet API in their code and where implicit means that a
script implicitly calls a wallet API when searching for new
objects that were added into the DOM. In our experiments, we
found that browser fingerprinting scripts (see Table 6) often
enumerate the entirety of the window object using, for ex-
ample, Object.getOwnPropertyNames(window) to create
a unique fingerprint and thereby implicitly calls a wallet API
as it is often part of the window object. We found 249 scripts
performing explicit calls (22%) and 866 scripts performing
implicit calls (78%). Table 4 lists all combinations that we
observed of explicit wallet API calls. We observed in total 11
combinations, where a simple call to window.ethereum was
the most popular call with 210 scripts calling this wallet API.

Browser Fingerprinting Prevalence. Following our method
defined in Section 3.1.2 to identify browser fingerprinting,
we find that 878 scripts (79%) belonging to 1,099 websites
(83%) engage in browser fingerprinting and leverage wallet
information to enhance the fingerprints they generate. The
maximum number of fingerprinting categories collected by
a single script was 19 out of 22. Both mean and average
number of fingerprinting categories collected by browser fin-
gerprinting scripts is around 12. Also, 71 (8%) of the scripts
performing browser fingerprinting, collected wallet informa-
tion explicitly whereas 808 (92%) of the scripts collected
wallet information implicitly. Figure 3 and Figure 4 list each a
small snippet from two third-party scripts that were detected
by our framework. Both snippets check for the existence of
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https://js.wpadmngr.com/static/adManager.m.js


Category Websites Third-Party Calls Top Website (Rank) Top Third-Party (Websites)

Pornography & Sexuality 200 138 (69%) xhamster.com (160) adsco.re (45)
Computers & Internet 108 56 (52%) tinyurl.com (224) cloudflare.com (10)
News & Media 89 65 (73%) nytimes.com (96) googlesyndication.com (19)
Finances 79 25 (32%) opensea.io (1096) cloudflare.com (7)
Adult Sites 64 46 (72%) hitomi.la (1066) adsco.re (11)
Entertainment 48 24 (50%) bustle.com (2386) googlesyndication.com (7)
E-commerce 41 16 (39%) beget.com (1124) cloudflare.com (6)
Business 40 15 (38%) bytedance.com (2693) cloudflare.com (6)
Shopping 39 15 (38%) moneysavingexpert.com (5419) cloudflare.com (5)
Games 38 11 (29%) steamdb.info (4589) m2.ai (2)

Table 5: Top 10 categories sorted by number of websites detected performing calls to wallet APIs.

document.addEventListener("DOMContentLoaded",
(function() {
var e = (0, t.getSettings)(),

n = void 0 !== window.ethereum,
o = void 0 !== window.BinanceChain,
a = void 0 !== window.solana;

...
var u = new XMLHttpRequest;
u.open("post", "/x-api", !0), ...,
u.send(JSON.stringify([{
...
requestData: {
model: {
...
key: "ext_detection",
data: {

ethereum: n,
BinanceChain: o,
solana: a

}
}

}
}]))

}))

Figure 4: Code snippet hosted at https://static-lvlt.xh
cdn.com/xh-shared/js/v1d487c898d.ext-detect.js
accessing window.ethereum, window.BinanceChain, and
window.solana wallet APIs to detect whether the user has
any of the three wallet extensions installed.

wallet APIs. Figure 4 tries to check whether Ethereum, Bi-
nance Chain, or Solana wallet extensions are installed and
sends this information back to the third-party server via an
HTTP POST request.

Categories. We compared wallet API calls across website
categories. Table 5 lists the top 10 categories in terms of num-
ber of websites that access wallet APIs. We used SafeDNS’s
website categorization service [54] to assign a category to
each website. As shown in Table 5, Pornography & Sexuality
is where we detected the most number of websites (i.e., 200)
accessing wallet information, where the most popular web-
site was xhamster.com (ranked 160 in Tranco). Moreover,
69% of the wallet API calls were performed by a third-party

script, where adsco.re is the most widespread third-party
with wallet API calls on 45 different websites. Websites with
most third-party calls are in the category News & Media
(73%), whereas websites with least third-party calls are in the
category Games (29%).

Third-Parties. We found 680 websites (i.e., 51%) that in-
clude a third-party which calls a wallet API. The wallet API
calls originate from 324 third-party scripts which belong
to 118 unique third-party domains. Table 6 lists the top 10
third-parties for scripts that perform explicit (upper half) and
implicit (lower half) wallet API calls. For explicit calls, we
find that the third-party domain wpadmngr.com is the most
widespread (embedded in 55 websites). For implicit calls,
we find that the third-party domain adsco.re is the most
widespread (embedded in 111 websites).

URL and Code Similarity. When analyzing the URLs of
the 324 third-party scripts, we noticed that a large num-
ber were similar. Several third-party URLs contain the path
/cdn-cgi/challenge-platform/h/. We found that these
third-parties most likely deploy Cloudflare’s Anti-DDoS pro-
tection [58], which consists of some JavaScript code that
implicitly accesses wallet API information. We found 127
(i.e., 39%) such Cloudflare third-party scripts. We also clus-
tered the remaining 197 third-party scripts based on their
code by grouping scripts together which share the exact same
JavaScript code. We found 2 clusters, one including the two
third-parties jsdelivr.net and unpkg.com and one includ-
ing the three third-parties 6347032d45.com, wpadmngr.com,
and ba0182aa75.com. The former third-parties are content
delivery networks hosting the web3.js library, which is used
by several DApps. The other three third-parties are interesting
as we do not know who is running them, but we can see from
Table 6, that wpadmngr.com and ba0182aa75.com are the
two most widely deployed third-party scripts calling wallet
APIs explicitly. Moreover, as they share the same code, we
can infer that they belong to the same organization and that
they are together deployed on 94 different websites.

Blocklists. Given that half of the calls to wallet APIs originate
from third-parties, we checked whether blocklists could be
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https://static-lvlt.xhcdn.com/xh-shared/js/v1d487c898d.ext-detect.js
https://static-lvlt.xhcdn.com/xh-shared/js/v1d487c898d.ext-detect.js
xhamster.com
adsco.re
wpadmngr.com
adsco.re
jsdelivr.net
unpkg.com
6347032d45.com
wpadmngr.com
ba0182aa75.com
wpadmngr.com
ba0182aa75.com


Third-Party Name Third-Party Domain Third-Party Script Type Websites Min. Rank

- wpadmngr.com https://js.wpadmngr.com/static/adManager.m.js (F) Explicit 55 1902
- ba0182aa75.com https://932d007132.ba0182aa75.com/1511a82de1dab2ee0c95006298aa98af.js (F) Explicit 39 18392
xHamster xhcdn.com https://static-lvlt.xhcdn.com/xh-shared/js/v1d487c898d.ext-detect.js Explicit 23 160
Taboola taboola.com https://cdn.taboola.com/scripts/cwc.es5.js Explicit 22 381
Bustle bustle.com https://cdn2.bustle.com/2023/bustle/main-148fdc658d.js Explicit 12 2386
Amazon cloudfront.net https://d2vjcex1bx9gzc.cloudfront.net/media/tags/goldfinchfinance.js Explicit 6 18136
Google googletagmanager.com https://www.googletagmanager.com/gtm.js?id=GTM-P528B3 Explicit 5 96
Adshares web3ads.net https://app.web3ads.net/-/view.js Explicit 3 17540
Prospect One jsdelivr.net https://cdn.jsdelivr.net/npm/@ledgerhq/connect-kit@1 Explicit 3 14898
SpookySwap spooky.fi https://spooky.fi/static/js/7.2ec90594.chunk.js Explicit 2 105612

Adscore adsco.re https://c.adsco.re/ (F) Implicit 111 1066
Cloudflare cloudflare.com https://challenges.cloudflare.com/cdn-cgi/challenge-platform/h/b/orchestrate/chl_api/v1 (F) Implicit 84 1114
Google googlesyndication.com https://pagead2.googlesyndication.com/bg/KJeI0sMyo1Q6mjhDM9mKcjS2IqRt95c1wIDqLysfd0M.js (F) Implicit 76 270
CHEQ defybrick.com https://rock.defybrick.com/placement_invocation?id=65349 (F) Implicit 38 2923
MonetizeMore m2.ai https://m2d.m2.ai/v/pg-221207-f8d-nc-434e7f97016ae258bb936353072d000e.js (F) Implicit 15 6737
CHEQ cheqzone.com https://ob.cheqzone.com/clicktrue_invocation.js?id=8911 (F) Implicit 13 2577
- zfilm-hd.biz https://go.zfilm-hd.biz/cdn-cgi/challenge-platform/h/b/orchestrate/managed/v1 (F) Implicit 9 34846
Anura anura.io https://script.anura.io/request.js?instance=3688597576 (F) Implicit 8 6035
- rageagainstthesoap.com https://d.rageagainstthesoap.com/clicktrue_invocation.js?id=11825 (F) Implicit 7 4042
ByteDance ttwstatic.com https://sf16-website-login.neutral.ttwstatic.com/obj/tiktok_web_login_static/webmssdk/1.0.0.1/webmssdk.js (F) Implicit 5 74

Table 6: Top 10 third-parties with explicit (upper half) and implicit (lower half) wallet API calls. (F) Indicates that the third-party
script has been flagged by our methodology as a browser fingerprinting script.

a reliable countermeasure. We downloaded the latest block-
lists of Disconnect [18], DuckDuckGo [21], EasyList [22],
EasyPrivacy [22], and Whotracks.me [65], and counted how
many of the detected third-parties are blocked by the individ-
ual blocklists. We manually checked all third-parties and left
out 10 of them as they are related to benign use-cases such
as helper libraries (e.g., web3.js [63]). Figure 5 depicts an
overview on the number of blocked third-parties. We observe
that Whotracks.me provides the best protection by blocking
46 third-parties (43%). The weakest protection is given by
Disconnect with only 13 third-parties blocked (12%). More-
over, we also checked whether installing all blocklists at the
same time (i.e., combining blocklists) would improve protec-
tion. As seen in Figure 5, the combination of all five blocklists
results in blocking 60 third-parties (56%), hence an improve-
ment of 12% as compared to only using Whotracks.me’s
blocklist.

4.3 Wallet Address Leakage
We analyze to what extent DApps and wallet extensions leak
the user’s wallet address to third-parties.

4.3.1 DApps

Winter et al. [66]. We compare the performance of our frame-
work using Winter et al.’s [66] DeFi dataset. The dataset con-
sists of 78 DeFi websites, however, 6 websites were down
at the time of writing, 2 websites did not support MetaMask,
and 4 were duplicates. After filtering, we were left with 66
websites to crawl. While Winter et al. connect manually to
each website via MetaMask, we automatically connect to all
of them using our MetaMask automator. Table 7 shows a com-
parison between the leaks measured by Winter et al. and our
framework. Winter et al. found that 13 out of the 66 websites
(20%), leak the user’s wallet address to a third-party, whereas

Disconnect

DuckDuckGo

EasyList

EasyPrivacy

Whotracks.me

Combined

13

38

16

33

46

60

95

70

92

75

62

48

Blocked Not Blocked

Figure 5: Third-party scripts blocked by popular blocklists.

our results show that actually 39 out of the 66 websites (59%)
leak the user’s wallet address to a third-party. Overall, Winter
et al. found 25 leaks whereas we found 2,164 leaks for the
same websites. 98% (i.e., 2,131 leaks) are performed either
via POST requests, WebSockets, or cookies. 61% of the leaks
(i.e., 1,324 leaks) occur via POST requests. This emphasizes
that solely analyzing GET requests, as Winter et al. did, is not
sufficient. While Winter et al. found that wallet addresses are
being leaked to 14 third-parties, our results show that the ac-
tual number is much higher, namely 64 third-parties. Table 7
highlights leaks that our framework and Winter et al. have
in common (number between parentheses). For example, for
bifi.finance, we detected 3 leaks which correspond to
the same leaks as detected by Winter et al. However, we ob-
serve that 1inch.io, impermax.finance, jelly.market,
and yearn.finance did not leak the user’s wallet address
in our crawls anymore. On closer inspection, we find that
jelly.market was down and we therefore were not able
to collect any data and that the remaining three websites
moved towards using their own API to retrieve blockchain
data. Interestingly, for dodoex.io and sablier.finance,
the leaks moved from GET requests to POST requests. This
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bifi.finance
1inch.io
impermax.finance
jelly.market
yearn.finance
jelly.market
dodoex.io
sablier.finance


DeFi Website GET [66] GET POST WebSockets Cookies

1inch.io 1 0 (0) 0 (0) 0 (0) 0 (0)
aave.com 0 0 (0) 6 (0) 0 (0) 0 (0)
airswap.io 0 0 (0) 0 (0) 1 (0) 0 (0)
akropolis.io 0 0 (0) 0 (0) 777 (0) 0 (0)
alchemix.fi 0 7 (0) 551 (0) 0 (0) 0 (0)
balancer.fi 0 0 (0) 7 (0) 2 (0) 0 (0)
bancor.network 2 1 (0) 30 (0) 0 (0) 0 (0)
barnbridge.com 0 0 (0) 7 (0) 0 (0) 0 (0)
bifi.finance 3 3 (3) 3 (0) 0 (0) 0 (0)
boringdao.com 0 0 (0) 6 (0) 0 (0) 0 (0)
centrifuge.io 0 0 (0) 8 (0) 0 (0) 0 (0)
codefi.network 0 0 (0) 40 (0) 0 (0) 0 (0)
cream.finance 0 1 (0) 0 (0) 0 (0) 0 (0)
debank.com 0 2 (0) 4 (0) 0 (0) 0 (0)
defisaver.com 3 2 (2) 0 (0) 0 (0) 0 (0)
dmm.exchange 0 14 (0) 0 (0) 0 (0) 3 (0)
dodoex.io 2 0 (0) 2 (2) 0 (0) 0 (0)
dydx.exchange 0 0 (0) 43 (0) 0 (0) 0 (0)
enzyme.finance 0 0 (0) 5 (0) 0 (0) 0 (0)
fei.money 0 0 (0) 7 (0) 0 (0) 0 (0)
foundation.app 0 0 (0) 6 (0) 0 (0) 0 (0)
idle.finance 0 1 (0) 3 (0) 0 (0) 0 (0)
impermax.finance 1 0 (0) 0 (0) 0 (0) 0 (0)
indexcoop.com 0 0 (0) 55 (0) 0 (0) 0 (0)
inverse.finance 0 0 (0) 2 (0) 0 (0) 0 (0)
jelly.market 1 0 (0) 0 (0) 0 (0) 0 (0)
liquity.app 0 0 (0) 0 (0) 16 (0) 0 (0)
mai.finance 0 0 (0) 53 (0) 0 (0) 0 (0)
notional.finance 0 0 (0) 27 (0) 6 (0) 0 (0)
o3swap.com 0 0 (0) 70 (0) 0 (0) 0 (0)
opensea.io 0 0 (0) 8 (0) 0 (0) 0 (0)
opyn.co 0 0 (0) 4 (0) 2 (0) 0 (0)
pickle.finance 0 0 (0) 258 (0) 0 (0) 0 (0)
rari.capital 0 0 (0) 16 (0) 0 (0) 0 (0)
rarible.com 3 0 (0) 1 (0) 0 (0) 0 (0)
reflexer.finance 1 2 (2) 1 (0) 0 (0) 0 (0)
sablier.finance 1 0 (0) 6 (3) 0 (0) 0 (0)
truefi.io 0 0 (0) 8 (0) 0 (0) 0 (0)
uniswap.org 0 0 (0) 4 (0) 0 (0) 0 (0)
warp.finance 0 0 (0) 2 (0) 0 (0) 0 (0)
yearn.finance 4 0 (0) 0 (0) 0 (0) 0 (0)
yield.is 0 0 (0) 65 (0) 0 (0) 0 (0)
zerion.io 3 0 (0) 16 (0) 0 (0) 0 (0)

Total 25 33 (7) 1324 (5) 804 (0) 3 (0)

Table 7: Leaks measured by Winter et al. [66] vs our frame-
work. Numbers in parentheses indicate common leaks.

can be due to a change in the API of the third-parties. More-
over, while alchemix.fi, cream.finance, debank.com,
dmm.exchange, and idle.finance did not leak the user’s
wallet address to any third-parties via GET requests during
Winter et al.’s study, our results demonstrate the opposite.
Since Winter et al.’s study is already more than a year ago, we
assume that those third-party leaks were added after the study
was conducted. Finally, we also observed that dmm.exchange
leaks the user’s wallet address to kyberswap.com via 3 dif-
ferent cookies set by Mixpanel (see Figure 6 for an example
of such a cookie).

DappRadar.com [17]. Winter et al.’s dataset is useful for com-
paring performance, but it is insufficient to draw any general
conclusions due to it being relatively small and only focusing
on DeFi websites. Therefore, we crawled DappRadar.com

{
"name": "mp_ff1eea26c19dcf4a7c35ebbc8631e714_mixpanel",
"value": "%7B%22distinct_id%22%3A%20%220x7e4ABd63A7C8
314Cc28D388303472353D884f292%22%2C%22%24device_id%22%
3A%20%22185bc157265a0d-0daab5a6ab23c7-17525635-16a7f0
-185bc157266f56%22%2C%22%24user_id%22%3A%20%220x7e4AB
d63A7C8314Cc28D388303472353D884f292%22%2C%22%24initia
l_referrer%22%3A%20%22%24direct%22%2C%22%24initial_re
ferring_domain%22%3A%20%22%24direct%22%2C%22wallet_ad
dress%22%3A%20%220x7e4ABd63A7C8314Cc28D388303472353D8
84f292%22%2C%22platform%22%3A%20%22Web%22%2C%22networ
k%22%3A%20%22Ethereum%22%7D",
"domain": ".kyberswap.com",
...

}

Figure 6: Cookie set on dmm.exchange by Mixpanel for
.kyberswap.com domain containing user’s wallet address:
0x7e4ABd63A7C8314Cc28D388303472353D884f292.

to obtain a much larger and diverse dataset. We ended up
getting 1,572 DApp websites across 9 categories. Our au-
tomator was able to automatically connect to 616 (39%) of
them. The automator had less issues in connecting to DeFi
DApps, with a success rate of 61%. On the other hand, our
automator found it hard to connect to High Risk DApps, with
a success rate of only 20%. There are several reasons why
it was not able to connect to all DApps. Most websites are
simply down or our automator is not able to detect the connect
button by scanning the HTML. Some websites do not support
MetaMask, or require users to either agree on the terms or
register and login via an email address and a password before
being able to interact with the DApp. Section 5.1 provides a
clear breakdown regarding why our automator was not able
to connect to certain DApps.

Table 9 summarizes our detected leaks on the DappRada
r.com dataset. Our framework identified 211 unique DApp
websites (35% of the connected DApps) which leak the user’s
wallet address across 137 unique third-parties. As shown in
Table 9, Gambling DApps leak the least (6%), whereas Ex-
changes leak the most (59%). Our data also shows that 1,400
DApps (89%) embed at least one third-party. On average
DApps embed 7 different third-parties. The maximum we
observed was 61 third-parties embedded on a single DApp’s
website. Table 8 lists the top 20 third-parties where the user’s
wallet address is leaked to. As we can see, most third-parties
are JSON-RPC providers (75%) and the rest are tracking
& analytics platforms (25%). DApps need to connect to a
blockchain node to retrieve blockchain related information.
This connection is often performed via JSON-RPC providers.
While leaks to JSON-RPC providers are unavoidable, they
still may pose a threat to user’s privacy as they may collect
additional information such as what DApps the user visited
or its IP address. Often users do not know to which JSON-
RPC provider the DApp is connected to. Leaks to tracking &
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alchemix.fi
cream.finance
debank.com
dmm.exchange
idle.finance
dmm.exchange
kyberswap.com
dmm.exchange
.kyberswap.com
DappRadar.com
DappRadar.com


# Third-Party Name Third-Party Domain Category Collects IP Address DApps GET POST WebSockets Cookies

1 Infura infura.io JSON-RPC Provider Yes 42 0 818 12 0
2 Alchemy alchemyapi.io JSON-RPC Provider Yes 39 0 638 772 0
3 The Graph thegraph.com JSON-RPC Provider Yes 22 0 230 0 0
4 Sentry sentry.io Tracking & Analytics Yes 21 0 122 0 0
5 Google google-analytics.com Tracking & Analytics Yes 18 38 6 0 0
6 Alchemy alchemy.com JSON-RPC Provider Yes 16 3 132 6 0
7 Amplitude amplitude.com Tracking & Analytics Yes 13 0 37 0 0
8 Blocknative blocknative.com JSON-RPC Provider Yes 12 0 0 25 0
9 Ankr ftm.tools JSON-RPC Provider Yes 11 0 166 0 0

10 Binance binance.org JSON-RPC Provider Yes 10 0 99 0 0
11 Ankr ankr.com JSON-RPC Provider Yes 9 0 316 0 0
12 Mixpanel mixpanel.com Tracking & Analytics Yes 9 17 26 0 0
13 Etherscan etherscan.io JSON-RPC Provider Yes 8 38 0 0 0
14 Binance ninicoin.io JSON-RPC Provider Yes 7 0 52 0 0
15 Arbitrum arbitrum.io JSON-RPC Provider Yes 6 0 67 0 0
16 Avalanche avax.network JSON-RPC Provider Yes 6 0 47 0 0
17 Cloudflare cloudflare-eth.com JSON-RPC Provider Yes 6 0 19 0 0
18 Google firestore.googleapis.com Tracking & Analytics Yes 6 22 17 0 0
19 Pocket Network pokt.network JSON-RPC Provider No 6 0 25 0 0
20 Ankr polygon-rpc.com JSON-RPC Provider Yes 6 0 22 0 0

Table 8: Top 20 third-parties detected by our framework on the DappRadar.com to which the wallet address was leaked.

Category DApps Third-Parties GET POST WebSockets Cookies

Collectibles 32 (20%) 23 (4%) 38 77 9 0
DeFi 93 (45%) 87 (17%) 319 2533 807 0
Games 22 (30%) 20 (6%) 43 95 6 0
Other 21 (35%) 22 (6%) 32 227 2 0
Marketplaces 21 (45%) 25 (8%) 7 102 4 0
High Risk 3 (18%) 5 (4%) 6 9 0 0
Exchanges 19 (59%) 42 (18%) 46 574 38 0
Gambling 1 (6%) 1 (0%) 0 1 0 0
Social 3 (37%) 5 (4%) 4 25 0 0

Total Unique 211 (35%) 137 (9%) 495 3643 866 0

Table 9: Leaks identified on the DappRadar.com dataset.

analytics platforms are unnecessary and a clear privacy viola-
tion. These platforms should not have access to sensible user
information such as wallet addresses. For example, Figure 7
shows an HTTP GET request from degens.farm that leaks
the user’s wallet address to google-analytics.com. We
studied the privacy policies of the top 20 third-parties and
observe that 95% state that they collect the user’s IP address.
Pocket Network is the only third-party in Table 8 that does not
collect the IP address of its users. We also observe that Infura
is the most widespread third-party, with 42 DApps leaking
the user’s wallet address to Infura. For the DappRadar.com
dataset, none of the DApps shared the user’s wallet address
via cookies. However, similar to Winter et al.’s dataset, most
DApps share the user’s wallet address via HTTP POST re-
quests, then WebSockets, and finally HTTP GET requests.

4.3.2 Wallet Extensions

We analyzed whether any of the 100 wallet extensions con-
tained in our dataset include third-parties and with whom
they share the user’s wallet address and potentially even the
password or browsing history. Fortunately, none of the ana-
lyzed browser extensions seem to leak the user’s password.
At least we were not able to identify the password in any of

Wallet Extension Third-Party GET POST WebSockets Cookies

NuFi milkomeda.com (R) 0 4 0 0
Petra Aptos Wallet segment.io 0 22 0 0
Pitaka sentry.io 0 2 0 0
Nabox Wallet mytokenpocket.vip 0 11 0 0
GameStop Wallet loopring.network 97 0 0 0

immutable.com 116 0 0 0
Martian Wallet dialectapi.to 16 2 0 0
Crust Wallet subscan.io 0 17 0 0
JulWallet swapliquidity.org 0 1 0 0
Ethos Sui Wallet shinami.com (R) 0 16 0 0
G.U. Smart Wallet infura.io (R) 0 1 0 0
Coinbase Wallet fantom.network 0 1 0 0

blockscout.com 2 0 0 0
binance.org 0 1 0 0
etherscan.io 4 0 0 0
avax-test.network 0 1 0 0
bscscan.com 4 0 0 0
snowtrace.io 4 0 0 0
arbiscan.io 4 0 0 0
polygonscan.com 4 0 0 0
ftmscan.com 4 0 0 0

Ethereum AllInOne ethplorer.io 21 0 0 0
Verto pulsechain.com (R) 0 3 0 0

volentix.io 25 1 0 0

Total 24 301 83 0 0

Table 10: Third-party leaks detected in 100 wallet extensions.
(R) stands for JSON-RPC provider.

the requests that we analyzed (including requests to the first-
parties themselves). We analyzed the manifest file of each
wallet extension and checked whether they can inject content
scripts on any website and if they request access to sensible
permissions. 89 of the 100 wallet extensions can inject con-
tent scripts on any website (i.e., the manifest includes one
of the following patterns: ’http://*/*’, https://*/*’,<all_urls>’,
*://*/*’). Hence, these 89 wallet could potentially read the
URL of the current page and send it to a backend. We also
found that 66 wallet extensions request permission for ei-
ther accessing “history”, “tabs”, or “activeTab”. We visited
three different websites (nytimes.com, etherscan.io, and
uniswap.org), using each extension and checked whether
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https://www.google-analytics.com/collect?v=1&_v=j99&a=1044933369&t=event&ni=0&_s=1&dl=https%3A%2F%2Fdegens.farm%2Fwallet&
ul=en-us&de=UTF-8&dt=Degen%27%24%20Farm%3A%20Wallet&sd=30-bit&sr=1512x982&vp=1512x749&je=0&ec=WalletConnected&ea=0x7e4abd
63a7c8314cc28d388303472353d884f292&el=labelForWalletConnect&ev=7.20999590401511e%2B47&_u=aADAAEABAAAAACAAI~&jid=&gjid=&ci
d=437541385.1675387202&tid=UA-201259489-1&_gid=196110690.1675387203&gtm=2wg2105PC69BZ&z=1330733511

Figure 7: Wallet address leaked via HTTP GET request to google-analytics.com on the degens.farm DApp.

there are requests that include any of the three websites. We
were not able to detect any extension leaking any of the vis-
ited websites. However, we did find that wallet extensions do
leak the user’s wallet address to third-parties. Table 10 lists
the wallet extension that leak the user’s wallet address. We
found 13 out of 100 analyzed extensions which leak the user’s
wallet address to at least one of 24 third-parties. In total we
found 139 third-parties across all browser extensions. While
most wallet extensions only leak the wallet address to a single
third-party, Coinbase’s wallet extension leaks the user’s wallet
address to 10 different third-parties. Surprisingly, none of the
wallet extensions’ third-parties seem to overlap. However, we
do observe that sentry.io and infura.io are present in
both of our datasets, DApps and wallet extensions. Although,
Infura is a benign platform, since it is a JSON-RPC provider
and therefore required for the wallet extension work, the user
is not made aware of this connection and the fact that Infura
can link requests across websites and infer for example that a
user X uses wallet Y and visits DApps A and B regularly. Sen-
try on the other hand is clearly not benign as it is a tracking
& analytics platform, hence sensitive information such as the
user’s wallet address should not be leaked to such platforms.

5 Discussion

We discuss the limitations of our methodology and elaborate
potential countermeasures, including their pitfalls.

5.1 Limitations

Our methodology for detecting wallet API calls is based on
TRC which comes built in with an anti-bot detection. How-
ever, anti-bot detection solutions are not perfect and thus web-
sites can still detect whether a bot is crawling them and thus
behave differently or block access to the website. Moreover,
our methodology leverages a wallet simulator that we build
to inject fake JavaScript objects into the DOM such that we
can simulate wallets without requiring to install them and
setting them up. However, our simulator does not simulate a
full-fledged wallet. It is limited to the simulated JavaScript
properties listed in Table 1 in Section 3.1.1. Thus, third-party
scripts could detect our wallet simulator by checking for in-
consistencies such as missing JavaScript properties in the dif-
ferent wallet APIs. Although, the likelihood that third-party
scripts currently do this is rather low. We did not experience

such checks when analyzing the code of third-party scripts
manually. However, it could be that in the future third-party
scripts will adapt and try to probe for multiple properties of a
wallet before making any decisions.

Our MetaMask automator was only able to automatically
connect to 39% of the analyzed DApps. Appendix C, provides
a detailed breakdown on connection failures that occurred
over the DeFi subset of the DappRadar.com dataset. In 24%
of the cases, the URLs did not point to a valid DApp and
in 14% of the cases the DApp’s website was simply down.
3% of the DApps did not support MetaMask. For 18% of
the DApps our automator could simply not detect a connect
button or MetaMask button within the HTML despite the
DApp’s buttons containing labels that match the keywords
in Appendix B. However, there are also Dapps that contain
buttons that do not match any of our keywords (8%) or which
represent their buttons as images (8%). 15% require users to
give their consent by ticking a checkbox before being able
to interact with them. Finally, 7% require users to create an
account and login via email and password.

Moreover, during our crawl we only visited the landing
page of a website or DApp and might have missed any third-
party scripts that perform tracking or leak the user’s wallet
address. This and the fact that we were not able to connect to
all the DApps and limited ourselves to a handful of wallets
(extensions are well as simulated wallet APIs), highlights that
our results should only be considered as a lower bound.

5.2 Countermeasures
Privacy-conscious users want to prevent their wallet address
to be leaked to third-parties, but also minimize their footprint
(i.e., the fact that they have a wallet installed on their browser)
for online tracking. Initially, wallets would expose the user’s
unique wallet address to any website without asking the user
for prior permission. However, this changed with the release
of EIP-2255 [16] which requires wallets to ask user’s for per-
mission prior to returning any sensitive information to DApps.
However, the permission system is still flawed. Any third-
party that is embedded inside the DApp also has access to
the sensitive information once, although the user has granted
only permission to the DApp and not the third-parties.

Winter et al. [66] proposed a countermeasure which does
not prevent wallet address leakage per-se, but limits its useful-
ness in linking users across DApps as it generates individual
wallet addresses for each DApp a user visits. This follows
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a similar idea that has been proposed in the past to prevent
linking users across websites by using different yet consistent
web identities across websites [60]. Specifically, DApps al-
ways interact with a fake proxy wallet address that is derived
from the user’s real wallet address. All requests that either go
through MetaMask or via an JSON-RPC provider are then
intercepted and the fake address is swapped with the user’s
real wallet address such that the DApp is able to perform
actions on real data.

However, this approach has several pitfalls. First, the fact
that the user’s real balance is returned allows DApps and
other third-parties to map the fake address to the real address
by scanning the blockchain for an address that has the exact
same balance. This is trivial because the balance has a high
resolution (e.g., 256-bit resolution in the case of Ethereum)
and thus the likelihood that two users having the exact same
balance is very low. Second, the interception of traffic as well
as the swapping between fake and real requires complex man-
agement and is prone to errors. For example, transactions are
usually not directly mined and most DApps rely on a trans-
action receipt which includes a transaction hash that allows
them to continuously poll the blockchain for the transaction’s
confirmation status. Hence, the countermeasure also needs
to fake transaction hashes otherwise DApps and third-parties
might use this information to obtain the users real wallet
address. But in fact this might break the usability of many
DApps as they sometimes point to other websites such as
Etherscan using the transaction hash. Third, the proposed
countermeasure does not hide the existence of a wallet exten-
sion from third-parties. Trackers will still be able to detect
whether or not a user has a wallet installed on its browser.

As an alternative, users could rely on Ad blockers [18,
21, 22, 65] to simply block requests from and to third-party
tracking scripts. In Section 4.2, we measured the effectiveness
of popular blocklists against the third-parties that we found
to access wallet information. The best performing blocklist
only managed to block 46 out of 118 third-parties (i.e., 39%).
Moreover, even with all the blocklists combined, only 51% of
the third-parties are blocked. Blocklists do not scale, they can
simply be evaded by deploying the same script to a different
domain that is not yet blacklisted. For instance, we found that
the script which is hosted on wpadmngr.com (top 1 in our
list of detected third-party scripts) is identical to the scripts
hosted on ba0182aa75.com and 6347032d45.com. Since
the two last domains appear to be random, we assume that
they might be used by wpadmngr.com to avoid blocklists.

6 Related Work

There are several ways to track users online, ranging from clas-
sical stateful methods such as third-party cookies [1, 26, 42]
to novel stateless methods such as browser fingerprinting
[8, 39, 51]. A number of studies have been conducted over
the past years in order to measure the prevalence of third-

party cookies and novel browser fingerprinting techniques
[30, 36, 38, 61]. Essentially, any JavaScript API that pro-
vides stable yet user-configuration specific information can be
leveraged to generate together with other attributes a unique
browser fingerprint. This information may range from simple
properties such as screen resolution to more advanced tech-
niques such as canvas fingerprinting [2]. For instance, Engle-
hardt et al. [25] were the first to provide evidence that third-
party trackers enhance their browser fingerprinting scripts
with information provided by the WebRTC API, Audio API,
and Battery Status API. Our work analyses whether trackers
are leveraging wallet APIs to enhance their browser finger-
printing scripts to better track users online.

Recently, Senol et al. [55] discovered that a large number of
websites leak the user’s email address and password to third-
parties. In a similar vein, our work aims to shed light into the
inner workings of DApps and wallets to uncover if they might
leak a user’s wallet address or password to third-parties.

Privacy is not only difficult to achieve on the web, but it
is also challenging to achieve when dealing with cryptocur-
rencies. Security and privacy concepts are often not well
understood by cryptocurrency users. For instance, Kromb-
holz et al. [37] surveyed over 900 users with respect to their
knowledge on security and privacy of Bitcoin. None of the
users made a backup of their wallet passphrase on a separate
computer. 22% report that they already lost some of their
cryptocurrency due to scams or loss of their passphrase. Also,
32% think that Bitcoin is anonymous, despite the fact that
transactions can be traced. This is in line with the findings
of Mai et al. [44] and Voskobojnikov et al. [62] where users
do not understand the concept of public and private keys or
believe that transactions are confidential and cannot be seen
by third-parties. These works point out that users might have
a misconception of wallets with respect to the privacy that
they provide.

As more and more online vendors accept cryptocurrencies
as a payment method and an increasing number of decentral-
ized applications begin to emerge, the question around link-
ability and user privacy becomes indispensable. A number
of previous works have focused on analyzing the linkabil-
ity of cryptocurrency transactions [4, 10, 46] including their
deanonymization via network-layer attacks [3, 7]. Goldfeder
et al. [29] were the first to analyze the intersection between
cryptocurrencies and online privacy. The authors find that
online trackers are able to collect enough information to link
cryptocurrency transactions to online purchases. Béres et
al. [5] demonstrate how attackers can link different Ethereum
addresses to the same user by analyzing meta information
such as time of the day and gas price. Even mixers (i.e., ser-
vices that shuffle transactions in order to break linkability)
have been found to be broken [28, 34, 56]. Users often do
not understand how to use mixers properly and use, for ex-
ample, the same wallet address for depositing and retrieving
cryptocurrency, thereby making mixing essentially useless.
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Li et al. [43] present a denial-of-service attack against
blockchain providers, which are frequently used by DApps
and wallets to retrieve blockchain information. Blockchain
providers often do not impose a gas limit on certain opera-
tions and thus malicious users may exploit this fact to make
blockchain providers engage in heavy computations.

The work by Winter et al. [66] is the closest to our work.
However, their goal is to analyze the security, privacy, and
decentralization properties of popular DeFi front ends, while
we aim to analyze the privacy implications of wallets. The
authors analyzed 78 handpicked DeFi websites for wallet ad-
dress leakage and found that 17% of the websites leak the
user’s wallet address. We found that 59% of the websites
leak the user’s wallet address. This is because our framework
not only analyzes HTTP GET requests but also HTTP POST
requests, WebSockets, and cookies. Moreover, while Win-
ter et al. analyzed the websites manually, our work analyzes
them automatically. This enables us to perform an automated
large-scale study on DApps. Finally, Winter et al. did not an-
alyze whether wallet extensions also leak the user’s wallet
address and whether websites make use of wallet information
to fingerprint users.

7 Conclusion

We present the first systematic study on Web3-based browser
fingerprinting and wallet address exfiltration. We built a frame-
work which is capable of detecting JavaScript calls on wallet
APIs as well as intercept and search HTTP requests, Web-
Sockets and cookies for leaked wallet addresses. Our frame-
work integrates a wallet simulator which imitates different
wallet extensions by injecting wallet-specific properties into
the website’s DOM, and developed an automator which auto-
matically sets up MetaMask and connects it to DApps. Using
our framework we analyzed the top 100K websites and found
evidence of 1,325 websites checking the presence of wallet
extensions installed within the user’s browser. We analyzed
1,572 DApps and found that 211 of them leak the user’s wallet
address to third-parties. Moreover, we analyzed 100 popular
wallets and found that 13 of them deliberately leak the user’s
wallet address to third-parties. We evaluated countermeasures
such as Ad blockers and found that they are not completely
effective in blocking all the third-party scripts and leaks de-
tected by our framework. We conclude that wallets pose a
serious threat to user’s privacy and that new solutions need
to be developed that allow users to interact with DApps in a
secure and privacy-preserving way.
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Appendix

A Browser Fingerprinting Categories

Table 11 lists all the JavaScript APIs that our framework
uses to detect browser fingerprinting, including the category
that we assigned to each API. For example, *userAgent*
means that any JavaScript API call that includes the string
“userAgent” will be collected and assigned to the category
browser, and the category browser is not considered as an
explicit browser fingerprinting category.
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JavaScript API Call Category Explicit

window.ethereum Wallet ✗
window.cardano Wallet ✗
window.solana Wallet ✗
window.BinanceChain Wallet ✗
RTCPeerConnection* RTC ✓
RTCPeerConnectionIceEvent* RTC ✓
WebGLRenderingContext* WebGL ✓
HTMLCanvasElement* Canvas ✓
CanvasRenderingContext2D* Canvas ✓
*Storage* Storage ✗
*indexedDB* Storage ✗
Screen* ScreenSize ✗
*screen* ScreenSize ✗
*cookie* Cookies ✗
Date* DateTime ✗
*DateTimeFormat* DateTime ✗
*getBattery* Battery ✓
*Height* WindowSize ✗
*Width* WindowSize ✗
BarProp* WindowSize ✗
*connection* Connection ✗
*onLine* Connection ✗
*devicePixelRatio* ScreenResolution ✗
*window.name* WindowLocation ✗
*plugins* Plugins ✓
*mimeType* Plugins ✓
*canPlayType* Plugins ✓
*vendor* Browser ✗
*product* Browser ✗
*platform* Browser ✗
*app* Browser ✗
*userAgent* Browser ✗
*language* Language ✗
DeviceOrientationEvent* Device ✓
DeviceMotionEvent* Device ✓
*maxTouchPoints* Device ✓
*hardwareConcurrency* Device ✓
*deviceMemory* Device ✓
*memory* Device ✓
AudioBuffer* Audio ✓
OfflineAudioContext* Audio ✓
*requestMediaKeySystemAccess* Media ✗
*mediaDevices* Media ✗
*enumerateDevice* Media ✗
*mediaCapabilities* Media ✗
Navigator* Navigator ✗
Performance* Performance ✗
speechSynthesis* SpeechSynthesis ✓

Table 11: Browser fingerprinting related JavaScript API calls
and assigned category.

B List of Keywords Used by Automator
Table 12 lists all the keywords that our automator scans for
within a website’s HTML to find a “Connect” and “MetaMask”
button.

Connect “Connect to MetaMask”, “ Connect Wallet ”,
“Connect Wallet”, “Connect wallet”, “con-
nect wallet”, “Connect to a wallet”, “Con-
nect to wallet”, “Connect your wallet”,

“Sign In”, “Connect”, “CONNECT WAL-
LET”, “CONNECT”, “SIGN IN”, “WAL-
LET”, “SIGN”, “sign”, “SIGNIN”, “Sign
Up”, “Connect Your Wallet”, “Wallet”,

“Connect a Wallet”, “Connect a wallet”,
“Sign in”, “sign in”, “connect”, “Log in via
web3 wallet”, “wallet”, “account”, “Ac-
count”

MetaMask “MetaMask”, “MetaMask ”, “metamask”,
“Connect Metamask”, “Connect MetaMask”,
“Metamask”, “Connect to MetaMask”,
“browser wallet”, “Browser Wallet”,
“Browser wallet”, “Metamask & Web3”

Table 12: Keywords used by the automator to identify connect
and MetaMask buttons on DApp websites.

C Breakdown of Connection Failures
Table 13 provides a breakdown over the reasons that resulted
in our automator in failing to automatically connect to the
DeFi related DApps from our DappRadar.com dataset.

Connection Failure # (%)

Not a DApp 32 (24%)
Button text not detectable 24 (18%)
Consent required 20 (15%)
Website down 19 (14%)
Different button label 11 (8%)
Button is an image 10 (8%)
Login required 9 (7%)
MetaMask not supported 4 (3%)
Requires blockchain network selection 3 (2%)
Captcha 1 (1%)

Total 133 100%

Table 13: Breakdown of reasons of connection failures by our
automator. The breakdown is based on the DeFi subset of our
DappRadar.com dataset.
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