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Signal and System Theory II, BSc, Spring Term 2013 Solution

Exercise 1

1 2 3 4 Exercise

4 7 7 7 25 Points

1. The eigenvalues of the system are Λ(A) = {−1, 6}. Since |6| > 1, the system is
unstable hence it is not asymptotically stable.

2. The transfer function is

G(z) = C(zI −A)−1B =
[
1 2

] [ z − 1 −5
−2 z − 4

]−1 [
0.5
2

]

=
1

(z − 1)(z − 4)− 10

[
1 2

] [ z − 4 5
2 z − 1

] [
0.5
2

]
=

4.5z + 6

(z + 1)(z − 6)
.

There are no zero/pole cancellations hence the system is both observable and con-
trollable. Indeed non-observable or non-controllable modes do not appear in the
transfer function and this is possible only if zero/pole cancellations are present.

3. Substituting u(k) = Kx(k) in system (??) yields

x(k + 1) = (A+BK)x(k) = AKx(k),

y(k) = Cx(k).

hence AK = (A+BK). The closed loop system is asymptotically stable if and only
if all the eigenvalues of AK are inside the unit circle.

AK = (A+BK) =

[
1 5
2 4

]
+

[
0.5
2

] [
k1 k2

]
=

=

[
1 + 0.5k1 5 + 0.5k2
2 + 2k1 4 + 2k2

]
.

As the hint suggested, select k1 = −1 so that AK is upper triangular

AK =

[
0.5 5 + 0.5k2
0 4 + 2k2

]
,

and note that the eigenvalues are the elements on the diagonal. Therefore any k2
such that |4+ 2k2| < 1 leads to a stable matrix, choose for example k2 = −2 so that

AK =

[
0.5 4
0 0

]
.

4. The error dynamic is

e(k + 1) = x̂(k)− x(k) = Ax̂(k) +Bu(k) + L [y(k)− Cx̂(k)]−Ax(k)−Bu(k)

= [A− LC] e(k) = ALe(k).

2



Signal and System Theory II, BSc, Spring Term 2013 Solution

Note that the corresponding solution is

e(k) = Ak
Le(0),

and that, since x̂(0) is arbitrary, also e(0) is arbitrary. Therefore the error goes
to zero in k̄ steps if and only if the matrix Ak̄

L is the zero matrix. That is AL is
nilpotent, i.e. all its eigenvalues are zero.

AL = A− LC =

[
1 5
2 4

]
−

[
l1
l2

] [
1 2

]

=

[
1− l1 5− 2l1
2− l2 4− 2l2

]
.

Selecting l1 = 1 and l2 = 2 yields

AL =

[
0 3
0 0

]
,

which is nilpotent as required, with k̄ = 2.
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Exercise 2

1 2 3 4 Exercise

5 6 7 7 25 Points

1. To check stability we compute the eigenvalues of the system matrix A.

det(λI −A) = det




λ+ 1 0 0
−1 λ− 3 5
−1 0 λ+ 2


 = (λ+ 1)(λ − 3)(λ+ 2).

Hence, the eigenvalues are λ1 = −1, λ2 = 3, λ3 = −2. λ2 is real and positive and the
system is therefore unstable.

2. With x̂(t) = Tx(t) and x(t) = T−1x̂(t) it holds that

˙̂x(t) = T ẋ(t) = TAx(t) + TBu(t) = TAT−1x̂(t) + TBu(t)

y(t) = Cx(t) = CT−1x̂(t).

Hence, the matrices Â, B̂, Ĉ can be found as follows:

Â = TAT−1 =




−1 0 0
0 3 0
0 0 −2




B̂ = TB =
[
1 −1 0

]⊤

Ĉ = CT−1 =
[
2 0 1

]

Clearly, Â is diagonal. Consequently, T−1 has as columns the eigenvectors of A.

3. To check controllability of the new system we compute the controllability matrix:

P̂ =
[
B̂ ÂB̂ Â2B̂

]
=




1 −1 1
−1 −3 −9
0 0 0


 .

P̂ does not have full rank since the third row consists only of zeros and hence the
system is not controllable.

To check observability of the new system we compute the observability matrix:

Ô =




Ĉ

ĈÂ

ĈÂ2


 =




2 0 1
−2 0 −2
2 0 4


 .

Ô does not have full rank since the second column consists only of zeros and hence
the system is not observable.
These results are also clear because Â is a diagonal matrix and both B̂ and Ĉ contain
a zero entry.
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To address stabilizability and detectability we first note that the new system (2)
is the Kalman decomposition of the original system (1) with x̂1 as the part which
is controllable and observable, x̂2 as the part which is controllable but not observ-
able, x̂3 as the part which is not controllable but observable and no part which
is neither controllable nor observable. Writing Â in accordance with the Kalman
decomposition form as

Â =




Â11 0 0

0 Â22 0

0 0 Â33




we can conclude that the system is stabilizable because Â33 = −2 is real and negative
(the uncontrollable part x̂3 is stable) but not detectable because Â22 = 3 is real and
positive (the unobservable part x̂2 is unstable).

Since the matrix T is an invertible transformation, the two systems are equivalent
and hence the original system is controllable/observable/stabilizable/detectable if
and only if the new system is controllable/observable/stabilizable/detectable. Hence,
the original system is neither controllable nor observable nor detectable, but it is
stabilizable.

4. To compute the zero input response we make use of the results of subquestion (2),
from which we know that A = T−1ÂT and CT−1 = Ĉ.

y(t) = CeAtx0 = CT−1eÂtTx0 = ĈeÂtTx0

=
[
2 0 1

]



e−t 0 0
0 e3t 0
0 0 e−2t


Tx0

=
[
2e−t 0 e−2t

]



1 0 0
0 1 −1
−1 0 1


x0

=
[
2e−t − e−2t 0 e−2t

]
x0

Clearly y(t) → 0 as t → ∞ which tells us that the output converges to zero even
though the system is unstable as seen in part 1 of this exercise. This is a consequence
of the system not being detectable as found in part 3 of this exercise which tells us
that there are unstable parts which are unobservable.
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Exercise 3

1 2 3 4 Exercise

7 7 7 4 25 Points

1. By applying Newton’s law to the first mass we get

mξ̈1 = −kξ1 − dξ̇1 + k(ξ2 − ξ1). [2 Points]

Similarly, the equation of motion for the second mass is

mξ̈2 = −k(ξ2 − ξ1)− dξ̇2 + k(u− ξ2). [2 Points]

Hence,

ξ̈1 = −2
k

m
ξ1 −

d

m
ξ̇1 +

k

m
ξ2

ξ̈2 = −2
k

m
ξ2 −

d

m
ξ̇2 +

k

m
ξ1 +

k

m
u,

which in state space form is given by

d

dt




ξ1
ξ̇1
ξ2
ξ̇2


 =




0 1 0 0

−2 k
m

− d
m

k
m

0
0 0 0 1
k
m

0 −2 k
m

− d
m







ξ1
ξ̇1
ξ2
ξ̇2


+




0
0
0
k
m


u. [2 Points]

The output can be written as

y =
(
1 0 −1 0

)



ξ1
ξ̇1
ξ2
ξ̇2


 . [1 Point]

2. Using the given change of coordinates

˙̂x1 =
1

2
(ξ̇1(t) + ξ̇2(t)) = x̂2, [0.5 Points]

˙̂x2 =
1

2
(ξ̈1 + ξ̈2)

=
1

2

(
− 2

k

m
ξ1 −

d

m
ξ̇1 +

k

m
ξ2 − 2

k

m
ξ2 −

d

m
ξ̇2 +

k

m
ξ1 +

k

m
u

)

= − k

m
z1 −

d

m
ż1 +

k

2m
u, [2 Points]

˙̂x3 =
1

2
(ξ̇1(t)− ξ̇2(t)) = x̂4, [0.5 Points]

˙̂x4 =
1

2
(ξ̈1 − ξ̈2)

=
1

2

(
− 2

k

m
ξ1 −

d

m
ξ̇1 +

k

m
ξ2 + 2

k

m
ξ2 +

d

m
ξ̇2 −

k

m
ξ1 −

k

m
u

)

= −3
k

m
z2 −

d

m
ż2 −

k

2m
u. [2 Points]
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One can see that this change of coordinates decouples the the equations of motion
and has the matrix form representation

d

dt
x̂(t) =




0 1 0 0

− k
m

− d
m

0 0
0 0 0 1

0 0 −3k
m

− d
m


 x̂(t) +




0
k
m

0

− k
m


u(t)

y(t) =
(
0 0 2 0

)
x̂(t). [1 Point]

Hence, α1 =
k
m
, α2 =

3k
m
, β1 = β2 =

d
m
, γ1 = γ2 =

k
m

and δ = 2. [1 Point]

3. Define the state variables x = (x1, x2, x3, x4)
⊤ := (z1, ż1, z2, ż2)

⊤, which gives




ẋ1
ẋ2
ẋ3
ẋ4


 =




0 1 0 0
−α1 −β1 0 0
0 0 0 1
0 0 −α2 −β2




︸ ︷︷ ︸
=:A




x1
x2
x3
x4


+




0
γ1
0
γ2


u,

where α1 =
k
m
, α2 =

3k
m
, β1 = β2 =

d
m
, γ1 =

k
2m , and γ2 =

−k
2m . [2 Points]

Note that A is block diagonal with A =

(
A1 0
0 A2

)
, where

Ai =

(
0 1

−αi −βi

)
for i = 1, 2.

Therefore,

det(λI4 −A) = det(λI2 −A1)det(λI2 −A2). [3 Points]

Furthermore,

det(λI2 −Ai) = det

(
λ −1
αi λ+ βi

)
= λ2 + βiλ+ αi

!
= 0

⇒ λ
(i)
1,2 =

−βi±

√
β2

i
−4αi

2 for i = 1, 2. Since we know that αi, βi > 0 for i = 1, 2, all
eigenvalues of A have strictly negative real part. Hence, the system is asymptotically
stable. [2 Points]

4. In the new coordinates the output is given by y(t) = 2z2(t), i.e., C =
(
0 0 2 0

)
.

Since the state matrix is block diagonal A =

(
A1 0
0 A2

)
, the observability matrix

has the following form

Q =




C

CA

CA2

CA3


 =




0 0 2 0
0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗


 ,
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which clearly has not full rank. Hence the system is not observable. [3 Points]

A physical interpretation why the system is not observable is that given the measure-
ment, which is the difference between position of the first mass and of the second,
we cannot uniquely determine the absolute position of the masses (which are states).
[1 Point]
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Exercise 4

1 2 3 4 5 Exercise

4 6 6 6 3 25 Points

1. The system is only linear, if it admits homogeneity and additivity. Since the initial
condition of the second experiment is twice the initial condition of the first experi-
ment, also the system response should double. For the given responses we have

2
1

4et − 3
=

2

4et − 3
6= 2

7et − 6
(1)

and hence, the system cannot be linear.

2. Setting t = 0 in the provided solution, one can easily verify that x(0) = x0. Taking
the derivative of the solution yields

ẋ(t) = − x0(e
t + 3etx0)

(et − 3x0 + 3etx0)2
(2)

= − x0(e
t + 3etx0 − 3x0)

(et − 3x0 + 3etx0)2︸ ︷︷ ︸
x(t)

−3
x20

(et − 3x0 + 3etx0)2︸ ︷︷ ︸
x2(t)

(3)

= −x(t)− 3x2(t) (4)

3. The equilibria can be found be setting the system equation to zero:

0 = −2x̂2 − x̂ (5)

Hence, we obtain

x̂1 = 0 and x̂2 = −1

3
. (6)

Linearization around the equilibria gives

ẋ(t) = Ax(t) (7)

with A = −1 − 6x̃. For x̃1 we obtain A = −1 and consequently, the equilibrium is
stable. For x̃2 we find A = 1 which indicates instability.

4. The phase-plane plot is given in Fig. 1.

5. In order to show that a system is not time-invariant, we would have to measure the
system response for a fixed initial condition two times in a row. Every time-invariant
system (no matter if it is linear or not) must yield one and the same response for
both measurements. Hence, if the both responses differ, the system cannot be time-
invariant.
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Figure 1: Phase-plane plot of the identified system.
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