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Signals and Systems II, BSc, Spring Term 2020 Solutions

Exercise 1

1 2 3 4 5 Exercise

5 5 4 5 6 25 Points

1. It follows from

y(t) = αh2(t), f(t) = β(h1(t)− h2(t)),

[1 point] ḣ1(t) =
1

v1
(u1(t)− f(t)) and [1 point] ḣ2(t) =

1

v2
(u2(t) + f(t)− y(t)),

we have

[2 + 1 points] ḣ(t) =

[− 1
v1
β 1

v1
β

1
v2
β −1

v2
(α+ β)

] [
h1(t)
h2(t)

]
+

[ 1
v1

0

0 1
v2

] [
u1(t)
u2(t)

]
y(t) = [0 α]

[
h1(t)
h2(t)

]
.

2. A =

[
−1 1
1 −2

]
, B =

[
1 0
0 1

]
and C =

[
0 1

]
.

Stability: [2 points]

det(sI −A) = (1 + s)(3− s) + 1

= s2 + 3s+ 1

Then, we have

s1 =
−3 +

√
5

2
and s2 =

−3−
√

5

2
.

All Re[si] ≤ 0, i.e., the system is stable.

Controllability: [1 point] P:=
[
B AB

]
. Since P has full row rank, and therefore

the system is controllable.

Observability: [2 points] O:=

[
C
CA

]
. Since O has full column rank, and therefore

the system is observable.

3. The transfer function is defined as [2 points] G(s) = C(sI − A)−1B, therefore, a
direct calculation yields

[2 points] G(s) =
1

s2 + 3s+ 1
[1 s+ 1].
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4. Remember that from final value theorem, we have

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

sG(s)U(s) = lim
s→0

sG(s)[
1

s

1

s
]T = G(0)[1 1]T = 2.

Each equality accounts for [1 point].

5. The singular values for constant input signals are given by the square root of
the largest and smallest eigenvalues of the matrix G(0)TG(0). The eigenvalues of
G(0)TG(0) are 0 and 2.

[2 points] The largest singular value corresponds to the input signal vector

u(t) =

[
1
1

]
,

[1 point] which gives the steady state output signal y(t) = 2.

[2 points] The smallest singular value corresponds to the input signal vector

u(t) =

[
1
−1

]
,

[1 point] which gives the steady state output signal y(t) = 0.

Alternatively, it follows from final value theorem that

[2 points] lim
t→∞

y(t) = lim
s→0

G(s)u(t) = [1 1]

[
u1(t)
u2(t)

]
= u1(t) + u2(t),

which implies that the steady state output is u1(t) + u2(t). Since ‖u(t)‖ = 1, [2
points] the absolute value of the sum |u1(t) +u2(t)| is maximized if u1(t) = u2(t) =
1√
2
, while [2 point] the absolute value of the sum u1(t) + u2(t) is minimized if

u1(t) = −u2(t) = 1√
2
.
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Exercise 2 1 2 3 4 5 Exercise

3 6 3 7 6 25 Points

1. Noticing that the matrix A is upper triangular, its eigenvalues are λ1 = −2, λ2 = −3
and λ3 = a. 2 p. So the system will be asymptotically stable for a < 0. 1 p.

2. The controllability matrix is

P = [B AB A2B] =

0 a −5a− 1
0 1 a− 3
1 −3 9

 .1 p.

The submatrix

[
a −5a− 1
1 a− 3

]
has determinant (a + 1)2 1 p.. Thus, if a = −1, the

rank of P is not 3, and the system is uncontrollable. 1 p.

For a = −1, since range{P} = span


0

0
1

 ,
 1
−1
0

 1 p., the reachable space is the

span of these vectors, so from 0 the only reachable states are those where the first
component is equal and opposite in sign to the second 1 p.

For a 6= −1, the matrix P is full rank. Hence, the system is controllable for a 6= −1

and the state

1
2
3

 is reachable. 1 p.

3. The observability matrix is

Q =

 C
CA
CA2

 =

0 1 1
0 a −2
0 a2 a+ 6

 .1 p.

which will never have full rank for any a. Thus the system will never be observable.
2 p.

4. The system is unobservable for all values of a. Hence, there will be at least one
pole-zero cancellation in the transfer function, i.e., the transfer function will have
less than three poles. 1 p.
To determine whether the transfer function has one or two pole-zero cancellations,
we have to determine for which values of λ the matrices[

C
λI −A

]
and [B λI −A]

lose rank.
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It is easy to see that

[
C

λI −A

]
=


0 1 1

λ+ 2 1 −a
0 λ− a −1
0 0 λ+ 3

1 p.

loses rank for λ = −2. 1 p.

On the other hand, the matrix

[B λI −A] =

0 λ+ 2 1 −a
0 0 λ− a −1
1 0 0 λ+ 3

1 p.

evaluated at a = −1 is 0 λ+ 2 1 1
0 0 λ+ 1 −1
1 0 0 λ+ 3

1 p.

which loses rank for λ = −2. 1 p.

Therefore, we conclude that for any a, only the pole λ = −2 is cancelled, and the
other two will appear in the transfer function. 1 p.

5. This means that the original system is stable. 1 p.

Considering Q, the square root of P , such that Q2 = P , we have

Q2A+ATQ2 = −I,1 p.

multiplying both sides by Q−1 we have

QAQ−1 +Q−1ATQ = −P−1.1 p.

So considering the transformation T = Q 1 p., we have Â = QAQ−1 1 p. and thus

Â+ ÂT = −P−1.1 p.
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Exercise 3

1 2 3 4 5 Exercise

4 5 8 5 3 25 Points

1. The transfer function is given by G(s) = C(sI − A)−1B (1 pt.), for the system Σ1

this results in

G1(s) =
[
0 1000

2

] [s+ 12 11
−2 s− 1

]−1 [
1
0

]
, (1 pts.)

=
[
0 1000

2

] 1

(s+ 1)(s+ 10)

[
s− 1 −11

2 s+ 12

] [
1
0

]
, (1 pts.)

=
1000

(s+ 1)(s+ 10)
, (1 pts.).
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Figure 1: Bode plot for Σ1

2. Option 2, see Figure 1, (1 pt). each for starting value, changes due to each pole in
both magnitude and phase plots. ⇒ (5 pts.)

(OR)
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Option 1 has incorrect phase plot because it drops only by 60◦ per pole (1 pt.).

Option 3 has an incorrect gain (1 pt.).

Option 4 has an incorrect pole (1 pt.).

So Option 2 is the correct answer (2 pt.).

3. Using the fact that Σ1 is asymptotically stable and its phase and magnitude are
monotonically decreasing we see that one can use the Bode stability criterion (2
pt.).

The phase margin is infinite, since the magnitude is below 1 for all ω (2 pt.).

The phase plot attains the value −180◦ roughly at ω ≈ 100c/s (1 pt.) and
|Gf (100j)| ≈ 10−4 (1 pt.), so the gain margin is approx. 104 (1 pt.), the closed
loop system will be stable for K < 104 (1 pt.).

4. We want Z = 0. Since we have P = 0, we want N = 0 (1 pt.). Therefore, only
those K for which the point (−1/K, 0) has 0 encirclements is stable (1 pt.). This
is possible for approx. K < 104 (1 pt.) and K > −101 (1 pt.). But we only want
the positive branch of the solutions (1 pt.).

5. For K = 2 ∗ 104, we have at −1K = −5 ∗ 10−5 (1 pt.) two clockwise encirclements in
the nyquist plot, so N = 2 (1 pt.). So we will have Z = N + P = 2 unstable poles
in the closed loop system (1 pt.).
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Exercise 4

1 2 3 4 5 Exercise

3 4 8 7 3 25 Points

1. In order to show that S0 is invariant, it is sufficient to analyse the vector field
at the boundaries of the positive octant. The vector field evaluated at x2 = 0 is
ẋ1 = α − µx1, ẋ2 = 0, so the trajectories cannot escape the positive quadrant
from that side [1.5pts]. Moreover, when x1 = 0, we have that ẋ1 = α > 0 and
ẋ2 = −(γ + µ)x2 [1.5pts]. Hence, S0 is an invariant set.

2. As usual, the equilibria are found by imposing [1pt]

α− µx1 − βx1x2 = 0,

(βx1 − (γ + µ))x2 = 0.

We have two isolated equilibrium points. In fact, the second equation is true for
either

• x2 = 0; in this case, from the first equation, x1 = α/µ [1pt]; or,

• βx1 − (γ + µ) = 0; so we have x1 = (γ + µ)/β and, substituting in the first

equation, x2 = αβ−µ(γ+µ)
β(γ+µ) = µ

β (R0 − 1) [2pts].

The two equilibrium points are then

xDFE =

[
α
µ

0

]
and xEE =

[
γ+µ
β

µ
β (R0 − 1)

]
,

and are usually called the disease-free equilibrium (DFE) and the endemic equilib-
rium (EE), respectively.

3. First, we compute the Jacobian matrix [1pt] as

J =

[
−βx2 − µ −βx1
βx2 βx1 − γ − µ

]
.

• DFE [3pts]: the Jacobian evaluated at the DFE is

JDFE =

[
−µ −αβ

µ

0 αβ
µ − γ − µ

]
,

and, since it is an upper triangular matrix, its eigenvalues are λ1 = −µ and
λ2 = αβ

µ − (γ + µ). Hence, the EE is locally asymptotically stable for R0 < 1
and unstable for R0 > 1. If R0 = 1, one eigenvalue is zero and nothing can be
concluded.
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• EE [3pts]: the Jacobian in this case is

JEE =

[
−µR0 −(γ + µ)

µ(R0 − 1) 0

]
,

and, after some algebra, its characteristic polynomial is

χ(λ) = λ2 + µR0λ+ αβ − µ(γ + µ).

Thanks to the Hurwitz criterion for the coefficients of a polynomial, we can
conclude that the EE is unstable for R0 < 1 and locally asymptotically stable
for R0 > 1 (i.e. the opposite of the DFE). Again, if R0 = 1, one eigenvalue is
zero and nothing can be concluded.

The basic reproduction number determines whether the virus will go extinct or will
remain permanently endemic in the population [1pt].

4. When R0 = 1 the EE coincides with the DFE, so the only equilibrium point is
x∗ = (αµ , 0).

(a) Let’s compute the Lie derivative of V along system’s trajectories [2pts]:

d

dt
V (x(t)) = ∇V f =

[
∂V
∂x1

∂V
∂x2

] [f1
f2

]
=
[
x1−x∗1
x1

1
] [ α− µx1 − βx1x2
βx1x2 − (γ + µ)x2

]
= −

1
µ(µx1 − α)2

x1
.

(1)

In particular, when x(t) ∈ S0 it holds ∇V f ≤ 0. Hence ∇V f ≤ 0 in SK as
well because SK ⊆ S0. As a consequence, SK is an invariant set for our system
[2pts].

(b) By virtue of LaSalle’s theorem, all the trajectories starting in SK will converge
to the largest invariant set in M = {x ∈ SK |∇V f = 0} = {x ∈ SK |x1 = α/µ}
[1pts]. Since the vector field evaluated in M is ẋ1 = −β(α/µ)x2, ẋ2 = 0 (i.e.
ẋ = 0 in SK iff x2 = 0), we can conclude that x∗ is the largest invariant set in
M and hence all the trajectories starting in SK converge to x∗ [2pts].

5. In this case, we have that the DFE is asymptotically stable when R0(1 − p) < 1
[2pts]. In the case of COVID-19, the minimum vaccination rate to eradicate the
virus is [1pt]

p > 1− 1

R0
=

2

3
.
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Figure 2: The Lyapunov function V (x) is depicted together with its level curves in the
positive octant. In this specific plot we fixed α/µ = 2.
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