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Exercise 1 1 2 3 4 5 Exercise

3 5 5 4 8 25 Points

1. The dynamic equation of the capacitor is

C
duC(t)

dt
= is(t) + iC(t) .(1 p)

The equation of the resistor is

iR(t) =
uC(t)

R
.(1 p)

It follows from Kirchhoff’s law that

iC(t) + iR(t) + ip(t) = 0 .(1 p)

By combining the above equations, we have

C
duC(t)

dt
= is(t)− ip(t)−

uC(t)

R
,

which can be reformulated as the claimed result. (If the students directly give this
equation with some explanation on the circuit, can also give 2 points.)

2. The controller G(s) = KP + KI
s includes a proportional term and an integral action,

and the control law in frequency domain is

L{ip(t)} =

(
KP +

KI

s

)
L{uC(t)− uref(t)} , (1 p)

and the time-domain expression is

ip(t) = KP(uC(t)− uref(t))︸ ︷︷ ︸
(1 p)

+KI

∫ t

0
uC(τ)− uref(τ)dτ︸ ︷︷ ︸

(1 p)

.

Let z(t) =
∫ t
0 uC(τ)− uref(τ)dτ (1 p) plays the role of the controller state such that

the equation above can be reformulated as

ż(t) = uC(t)− uref(t)(1 p)

ip(t) = KP(uC(t)− uref(t)) +KIz(t) .
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3. It follows from the equations in part 1 and part 2 that

d

dt

[
uC(t)
z(t)

]
=

[
− 1

RC −
KP
C −KI

C
1 0

] [
uC(t)
z(t)

]
+

[
KP
C

1
C

−1 0

] [
uref(t)
is(t)

]
,

uC(t) =
[
1 0

] [uC(t)
z(t)

]
+
[
0 0

] [uref(t)
is(t)

]
.

Hence,

A =

[
− 1

RC −
KP
C −KI

C
1 0

]
(2 p) , B =

[
KP
C

1
C

−1 0

]
(1 p) , C =

[
1 0

]
(1 p) , D =

[
0 0

]
(1 p) .

4. The equilibrium of the system x̂ satisfies ẋ(t) = 0 (1 p). Hence, we have[
− 1

RC −
KP
C −KI

C
1 0

] [
ûC
ẑ

]
+

[
KP
C

1
C

−1 0

] [
u0
i0

]
= 0 (1 p) ,

which leads to

x̂ =

[
ûC
ẑ

]
=

[
u0

i0
KI
− u0

RKI

]
(2 p) .

5. The characteristic polynomial of the system is

det(sI2 −A) = s2︸︷︷︸
(1 p)

+

(
1

RC
+
KP

C

)
s︸ ︷︷ ︸

(1 p)

+
KI

C︸︷︷︸
(1 p)

.

The system is asymptotically stable if and only if the real parts of the roots are
negative (1 p), which requires 1

RC + KP
C > 0 (1 p) and KI

C > 0 (1 p). Since C > 0
and R > 0, the conditions for KP and KI are KI > 0 (1 p) and KP > − 1

R (1 p).
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Exercise 2 1 2 3 4 5 Exercise

4 4 4 7 6 25 Points

1. It follows from the block diagram that

d

dt

x1(t)x2(t)
x3(t)

 =

−1 0 0
2 α− 3 0
1 α α− 1

x1(t)x2(t)
x3(t)

+

2
1
0

u(t) ,

y(t) =
[
1 0 1

] x1(t)x2(t)
x3(t)

 .
Hence,

A =

−1 0 0
2 α− 3 0
1 α α− 1

 (2 p)B =

2
1
0

 (1 p)

C =
[
1 0 1

]
(1 p) , D = 0 .

2. To answer the question we have to analyse the eigenvalues of the matrix A. Notice
that A is a triangular matrix, therefore its eigenvalues correspond to the diagonal
entries. So, eig(A) = {−1, α − 3, α − 1} (2 p) . For a system to be asympotically
stable we must have λi < 0 for all i. Therefore the system is asympotically stable if
and only if α−3 < 0 (i.e. α < 3) and α−1 < 0 (i.e. α < 1) (1 p) . Combining these
two conditions, we have that the system is asympotically stable iff α < 1 (1 p) .

3. The observability matrix reads as,

O =

 C
CA
CA2


Therefore:

O =

 1 0 γ
−4 1 0
16 −5 2

 (1 p)

An easy computation shows that:

det(O) = det

 1 0 γ
−4 1 0
16 −5 2

 = 4γ + 2(1 p)

We know that if the det(O) = 0, then matrix O has not full rank and thus the system
is not observable (1 p). Therefore, the system is observable ∀γ ∈ R \ {−1

2} (1 p).
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4. The set of reachable states X is given by the image of the controllability matrix.
The controllability matrix is given by P =

[
B AB A2B

]
.

For γ = 0, we have B =
[
0 0 β

]T
and thus

P =
[
B AB A2B

]
=

0 0 2β
0 2β −2β
β 0 0

 (1 p)

Therefore, in this case :

X =


 x1
x2
x3

 s.t.

 x1
x2
x3

 ∈ Im

0 0 2
0 2 −2
1 0 0

 (1 p)

For β = 0, we have B =
[
γ 0 0

]T
and thus

P =
[
B AB A2B

]
=

γ −4γ 16γ
0 0 0
0 0 0

 (1 p)

Therefore, in this case:

X =


 x1
x2
x3

 s.t.

 x1
x2
x3

 ∈ Im

1 −4 16
0 0 0
0 0 0

 = Im


1

0
0

 (1 p)

To argue which is the better choice, we can observe that for the first case (i.e. for
γ = 0), we have det(P ) = −4β3, therefore the controllability matrix P has full rank
for β 6= 0. Therefore, if we choose γ = 0, the system is controllable for β 6= 0 and
the whole space is reachable(1 p).
Instead, for the second case (β = 0) the controllability matrix P has clearly not full
rank for any value of γ. Therefore, if we choose β = 0, then the system is never
controllable and only states on the form [a, 0, 0]T for a ∈ R can be reached (1 p).
Therefore the choice γ = 0 and β 6= 0 is a better one for controllability purposes
(1 p).
(Note: Full points when both reachability and controllability are used in the discus-
sion, -1 (i.e. maximum is 6) if only one of the two is used.

5. First, we derive the closed-loop state dynamics as ẋ = Ãx where:

Ã = A+BK =

−4 1 0
0 −1 2
0 0 0

+

1
0
0

 [k1 k2 k3
]

(1 p)

Therefore:

Ã =

k1 − 4 k2 + 1 k3
0 −1 2
0 0 0

 (1 p)
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We recognize that Ã is a triangular matrix, therefore its eigenvalues correspond to
the diagonal entries: eig(A) = {k1 − 4,−1, 0} (1 p).
In order to place the poles in the given positions, we have to enforce the eigenvalues
of Ã to be exactly equal to the wanted poles. We see that two eigenvalues already
match the required position and the only one left to be placed is k1 − 4, which is
placed at -5 iff k1 − 4 = −5, i.e. k1 = −1 (2 p). Note that, since all remaining
parameters k2 and k3 are not assigned, i.e. they are free, there exists infinitely many
matrices K satisfying the given requirement of poles placement.

As the closed-loop system will have eigenvalues placed at -5, -1 and 0, it will be
stable as λi ≤ 0 ∀ i = 1, 2, 3 (but it will be not asympotically stable due to the 0
eigenvalue) (1 p).
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Exercise 3

1 (a) 1 (b) 1 (c) 1(d) 2 (a) 2 (b) 2 (c) Exercise

8 3 4 4 2 2 2 25 Points

1. (a) Since the systems are controllable and observable, we can use their transfer
functions to infer their stability properties. In this scenario there are indeed no
cancellations happening because all modes are observable and controllable.

i. p1,2 = −10, p3,4 = −1
2 ± j

√
3
2 (1 pt). The system is asymptotically stable

because all poles have negative real part (1 pt).

ii. p1 = −10, p2 = 10, p3,4 = −1
2 ± j

√
3
2 (1 pt). The system is unstable

because it has a pole with positive real part (1 pt).

iii. p1,2 = 0, p3 = −10, p4,5 = −1
2 ± j

√
3
2 (1 pt). Because of the repeated

pole in zero and the other poles have negative real part, we can not con-
clude if the system is marginally stable or unstable just by looking at the
poles/eigenvalues but we would need to study the eigenvectors to draw such
conclusion (1 pt).

iv. p1 = 0, p2 = −10, p3,4 = −1
2±j

√
3
2 (1 pt). The system is marginally stable

because of the pole in zero and the other poles have negative real part (1
pt).

(b) We apply the Nyquist stability criterion. We know that the closed-loop system
is stable if and only if N = −P , where N is the number of times the Nyquist
plot encircles (−1/K, 0) in the clockwise direction, and P is the number of
poles of G1(s) with positive real parts. Since P = 0, N must be zero to have
closed-loop stability (1 pt). When K = 1

5 , N = 1 therefore the closed-loop is
not stable (1 pt). When K = −1

5 , then N = −P = 0, therefore the closed-loop
system is stable (1 pt).

(c) The system with G1(s) as transfer function is asymptotically stable, therefore
the steady-state response for a sinusoidal input can be computed using the
following formula:

y(t) = 2|G1(j10)| sin(10t+ ∠G1(j10)) (1 pt) . (1)

G1(j10) =
−103

(j10 + 10)2(−99 + j10)

=
−103

(2 · 102)j(−99 + j10)

=
−5

−10− j99

=
5

10 + j99
.

(2)
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|G1(j10)| =
∣∣∣ 5

10 + j99

∣∣∣
=

5√
102 + 992

≈ 5

99
(1 pt) .

(3)

∠G1(j10) = tan−1
(

0

5

)
− tan−1

(
99

10

)
= −1.47 rad

≈ −84◦ (1 pt) .

(4)

Alternatively, the phase can also be computed as follow

∠G1(j10) = π − π

2
− π − tan−1

(
10

−99

)
≈ −84◦ .

(5)

The system with G2(s) as transfer function has no steady-state response since
it is unstable (1 pt).

(d) The correct Bode plot is (a) (1 pt). The first step is to rewrite the transfer
function in standard-form:

G2(s) =
10(

s
10 + 1

) (
s
−10 + 1

)
(s2 + s+ 1)

. (6)

The Bode gain is indeed 20 dB and then there are two complex conjugate
poles at ω = 1 and two poles at ω = 10, one stable and one unstable. Each
pole contributes with a −20 dB/dec on the magnitude (1 pt). The complex
conjugate poles lead to a −180◦ contribution in terms of phase while the phase
contributions of the stable and unstable poles at ω = 10 cancel out (1 pt).
Yes, there is resonance since ζ = 0.5 (1 pt).
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Figure 1: Bode plot of G2(s).

2. (a) We compute the transfer function from the following equation

G(s) = C(sI −A)−1B +D . (7)

(sI −A)−1 =
1

s(s+ 2)

[
s+ 1 −1
−1 s+ 1

]
(1 pt) . (8)

G(s) =
[
1 0

]
(sI −A)−1

[
1
1

]
+ 0

=
s+ 1

s(s+ 2)
− 1

s(s+ 2)

=
1

s+ 2
(1 pt) .

(9)

(b) The transfer function has one pole at p1 = −2 while the system is of second
oder. In this scenario, the eigenvalues of the system are not corresponding to
the poles of the transfer function because there is a zero-pole cancellation in
zero and therefore it is not possible to conclude that the system is marginally
stable only via inspection of the poles of its transfer function (2 pt).

(c) As mentioned in the previous point, the eigenvalues of the system are not
corresponding to the poles of the transfer function. This is due to a cancellation
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which corresponds to a non-observable and/or non-controllable mode of the
system (2 pt).
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Exercise 4

1 2 3 4 Exercise

3 8 9 5 25 Points

1. Equilibrium points are obtained by setting system’s dynamics to zero (1 p.). Hence,
we have d

dtx2 = 0, yielding x̂1 = 0 (1 p.). Combining it with d
dtx1 = 0 we have

x̂2 = 0 (1 p.).

2. The derivative of Lyapunov function is given by

V̇ (x) =
d

dt
V (x) =

∂

∂x1
V (x)

d

dt
x1(t) +

∂

∂x2
V (x)

d

dt
x2(t), (1 p.)

= 2x1
d

dt
x1(t) + 2x2

d

dt
x2(t)

= −8x21(1− x21) (1 p.)

On the given open set S we have

(a) V (x̂) = 0 (1 p.)

(b) V (x) > 0 for all x ∈ S \ x̂ because V (x) is quadratic (1 p.)

(c) V̇ (x) ≤ 0 when x ∈ S, since x21 < 1 (1 p.).

Hence, according to the Lyapunov direct method, equilibrium x̂ is stable (1 p.).

No, the asymptotic stability cannot be concluded via the direct Lyapunov method
(1 p.) because V̇ (x) = 0 for x1 = 0, x22 < 1, and x2 6= 0 (1 p.). Hence d

dtV (x) < 0
for all x ∈ S \ {x̂} does not hold.

3. We recall that d
dtV (x) = −8x21(1 − x21). When x ∈ Ω, d

dtV (x) ≤ 0 always holds. In
addition, Ω is compact, hence it is invariant (1 p.).

The set Ω̄ = {x ∈ Ω | ∇V (x)f(x) = 0} = {x ∈ Ω | (0, x2), (±1, x2)} (1 p.).
Essentially, the set Ω is consist of three vertical lines cutting the x1 axis at {−1, 0, 1}.
If x1 = 0 and x2 6= 0, d

dtx1 6= 0, which implies we leave the vertical line at 0, either to
the left x2 > 0 or to the right x2 < 0 (1 p.). If x1 = 1 and x2 6= 0, we instantaneously
leave the vertical line cutting the x1 axis at 1 (1 p.). However, if x1 = 1 and x2 = 0,
ẋ1 = 0, so the previous argument does not hold. Here we notice that d

dtx2 6= 0, so
soon x2 6= 0, and we are back to the previous case (1 p.). Similar argument for
x1 = −1 (1 p.). Finally we can conclude that the maximal invariant set inside Ω̄
is M = {x̂} ( when x = x̂ the system stays at that point); according to the LaSalle
theorem x̂ locally asymptotically stable (1 p.).

The whole level set L(1) = Ω is a region of attraction (1 p.). Since d
dtV (x) =

−8x21(1−x21), we cannot find a constant ` > 1 for which d
dtV (x) ≤ 0 for all x ∈ L(`);

e.g., the point (l, 0) violates this condition (1 p.). Hence, the set Ω is maximal
region of attraction that we can estimate with the level sets of V (x).
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4. The set Ω is not the maximal region of attraction, because the solution x(t) with
initial state x(0) ∈ {(1.02, 1.75), (−0.5, 1.75), (−1, 2), (−0.95, 0.5)} converges to the
equilibrium, but these initial states are not in Ω, since V (x(0)) > 1. ((2 p.) for
identifying states that are outside Ω, (3 p.) for complete explanation why Ω is not
the maximal region of attraction)
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