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Signals and Systems II, BSc, Spring Term 2022 Solutions

Exercise 1 1 2 3 4 5 Exercise

5 5 3 9 3 25 Points

1. With uc1(t) we denote the the voltage of the high-pass filter capacitor C1. Then,
the dynamics are given by vin(t) = uc1(t) + R1C1

d
dtuc1(t) (1p.) and vout(t) =

R1C1
d
dtuc1(t) (1p.). After Applying Laplace transform, we have vin(s) = uc1(s) +

R1C1(suc1(s) − uC1(0)) (1p.) and vout(s) = R1C1(suc1(s) − uC1(0)) (1p.) yielding
to transfer function GHP(s) = sR1C1

sR1C1+1 (1p.).

2. By defining the low-pass filter capacitor voltage as vc2(t), we have that vin(t) =
R2C2

d
dtuc2(t)+uc2(t) and vout(t) = uc2(t) (1p. for both equations). The state of the

system is the capacitor voltage uc2(t), the input of the system is vin(t) and output
vout(t) (1p. for the state and input and output). Hence A = −1/(R2C2), B =
1/(R2C2), C = 1 and D = 0 (1p. for all matrices correct). The transfer function
can be obtained using G(s) = C(sI − A)−1B (1p.), yielding GLP(s) = 1

sR2C2+1
(1p.).

3. The band-pass filter is obtained by connecting the output of low-pass filter to the
input of the high-pass filter (1p. give a point for connecting high-pass filter output to
low-pass filter input). The block diagram is given in Figure 1 (1p.). The equivalent
transfer function is obtained by Geq = GHPGLP (1p.)

vin(t)
GHP(s) GLP(s)

vout(t)

Figure 1: Block diagram

4. First we calculate R1C1 = 1
5π10−3 and R2C2 = 1

10π10−3 (1p. for both expressions).
Next, from the equivalent transfer function Geq(s) we have that the magnitude
characteristic is rising with 20dB/dec till ω = 5π103rad/s (1p.), after which is
constant till ω = 10π103rad/s (1p.) with the amplitude of 20 log 1 = 0dB (1p.),
after which is decreasing with 20dB/dec (1p.). Since the transfer function has a zero
at ω = 0 the phase plot starts from π/2 (1p.). The two poles drop the characteristic
for π ending up at −π/2 (1p.). Sketch of the magnitude characteristic is illustrated
in Figure 2 a) (1p.) and in Figure 2 b) is the sketch of the phase characteristic
(1p.).
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Figure 2: Bode plot sketch: a) magnitude characteristic, b) phase characteristic
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5. It can be easily seen that the frequency range that gets passed through the filter
is ω ∈ [R1C1, R2C2] = [5, 10]π103rad/s. Hence f ∈ [2.5, 5]kHz (1p.). Since 1kHz<
2.5kHz and 6kHz> 5kHz, those values are not passed through the filter (1p.), while
2.5kHz< 3kHz< 5kHz, hence it is passed through the filter (1p.).
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Exercise 2

1(a) 1(b) 1(c) 2(a) 2(b) 2(c) 2(d) 3(a) 3(b) 3(c) Exercise

3 3 3 2 4 1 3 2 2 2 25 Points

1. (a) The controllability matrix is C = [B AB]

(1p) C =

[
1 −1 + ab
b a− b

]
,

which should be full rank for controllability (1p). The characteristic polynom-
inal is

p(C) = (a− b)− (−b+ ab2) = a− ab2 = a(1− b2).

therefore the system is controllable for a 6= 0, b 6= ±1 (1p).

(b) The observability matrix is

O =

[
C
CA

]
.

We compute

(1p) O =

[
c 1

a− c ac− 1

]
,

which should be full rank for observability (1p). The characteristic polynominal
is

p(C) = (ac2 − c)− (a− c) = ac2 − a = a(c2 − 1).

therefore the system is controllable for a 6= 0, c 6= ±1 (1p).

(c) For the given values we have

A+ LC =

[
−1 1
1 −1

]
+

[
`1
`2

] [
0 1

]
=

[
−1 1 + `1
1 −1 + `2.

]
The eigenvalues are given by the characteristic polynomial of (A + LC − λI).
Resulting in

p(A+ LC − λI) = (−1− λ)(−1− λ+ `2)− (1 + `1) = λ2 + 2λ− `2λ− `1 − `2.

Writing the characteristic polynomial is (1p). The desired poles are at λ1 =
λ2 = −2 so that we want

p(A+ LC − λI) = (λ+ 2)2 = λ2 + 4λ+ 4 = λ2 + (2− `2)λ− (`1 + `2).

Taking `1 = −2, `2 = −2 gives the desired result. (2p, one each gain)
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2. Consider the assignment a = −0.5 , b = 0, c = 0 with zero input (u(t) = 0).

(a) We need the eigenvalues of A.

A− λI =

[
−1− λ −0.5
−0.5 −1− λ

]
p(A− λI) = (−1− λ)2 − 0.25 = λ2 + 2λ+ 0.75.

The eigenvalues are {−0.5,−1.5} (1p), therefore the system with zero input is
stable (1p).

(b) The eigenvalues are distinct, so the matrix is diagonalizable (1p).

The columns of W are the eigenvectors of A. The eigenvector for λ1 = −0.5 is[
−1
1

]
(1p), the one for λ2 = −1.5 is

[
1
1

]
(1p).

Therefore W =

[
−1 1
1 1

]
(1p).

(c) The A matrix is asymptotically stable, therefore such P always exists (1p).

(d)

ATP + PA = −I
WDW TP + PWDW T = −I (A = WDW T )

DW TP +W TPWDW T = −W T left multiply W T (1p)

DW TPW + +W TPWD = −I right multiply W (1p)

DP̃ + P̃D = −I definition of P̃ (1p)

The last equality shows that P̃ forms the desired Lyapunov function.

3. Consider the assignment a = 1, b = 0, c = 0.

(a) We need the eigenvalues of A.

A− λI =

[
−1− λ 1

1 −1− λ

]
p(A− λI) = (−1− λ)2 − 1 = λ2 + 2λ.

The eigenvalues are {0,−2} (1p). Therefore the system with zero input is not
asymptotically stable due to the pole at zero (1p).

(b) Plugging in the state feedback controller, we have

A+BK =

[
−1 1
1 −1

]
+

[
1
0

] [
k1 k2

]
=

[
−1 + k1 1 + k2

1 −1

]
.

With k1 = −1, k2 = −1 we get

A+BK =

[
−2 0
1 −1

]
,

p(A+BK) = (−2− λ)(−1− λ)− 0 = λ2 + 3λ+ 2 = (λ+ 1)(λ+ 2),
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therefore the poles are at {−1,−2} (1p). Since the real part of the poles are
negative, the closed-loop system is asymptotically stable (1p).

(c) Following the closed loop form in the previous part, with k1 = 2, k2 = −2 we
get

A+BK =

[
1 −1
1 −1

]
,

p(A+BK) = (1− λ)(−1− λ)− (−1) = λ2 − 1 + 1 = λ2

therefore, we have the poles at {0, 0}.
Since the real part of the poles are zero, the closed-loop system is not asymp-
totically stable (1p).

Since the closed-loop matrix is non-diagonalizable, the stability in the case of
zero real parts cannot be determined from the eigenvalues alone (1p).
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Exercise 3 1(a) 1(b) 1(c) 1(d) 2(a) 2(b) 2(c) Exercise

4 3 3 3 3 4 5 25 Points

1. The transfer function of an LTI system is given by:

G(s) = C(sI −A)−1B +D,

sI −A =

[
s+ 100 −1

0 s+ 2

]
(sI −A)−1 =

1

(s+ 100)(s+ 2)

[
s+ 2 1

0 s+ 100

]
G(s) = [(sI −A)−1]12 + 0 =

1

(s+ 100)(s+ 2)

� System (a)

G(s) = C(sI −A)−1B +D

sI −A =

[
s+ 100 −1

0 s− 2

]
(sI −A)−1 =

1

(s+ 100)(s− 2)

[
s− 2 1

0 s+ 100

]
G(s) = [(sI −A)−1]12 =

1

(s+ 100)(s− 2)
(1 pt.)

– G(0) = −1
200 ⇒ options (ii) and (iv) are valid solutions. (1 pt.)

– G(jω) = 1
−(200+ω2)+98jω

⇒ there is no value of ω for which 200 + ω2 = 0

(1 pt.). Therefore, it cannot be option (iv) and the right answer is option
(ii) (1 pt.).

� System (b)

G(s) = C(sI −A)−1B +D

sI −A =

[
s+ 100 −1

0 s+ 2

]
(sI −A)−1 =

1

(s+ 100)(s+ 2)

[
s+ 2 1

0 s+ 100

]
G(s) = 2[(sI −A)−1]12 + 0 =

2

(s+ 100)(s+ 2)
(1 pt.)

The transfer function has twice the magnitude but the same phase as system
(1) (1 pt.). So option (v) is the only valid solution. (1 pt.)

7



Signals and Systems II, BSc, Spring Term 2022 Solutions

� System (c)

G(s) = C(sI −A)−1B +D

sI −A =

[
s− 100 −1

0 s− 2

]
(sI −A)−1 =

1

(s− 100)(s− 2)

[
s− 2 1

0 s− 100

]
G(s) = 2[(sI −A)−1]12 + 0 =

1

(s− 100)(s− 2)
(1 pt.)

– The transfer function has the same magnitude as system (1) but ∠G(c)(jω) =
−∠G(jω), where ∠G(jω) is the phase as that of system (1). (1 pt.)

– So the correct answer is option (iii). (1 pt.)

� System (d)

G(s) = C(sI −A)−1B +D

sI −A =

[
s+ 100 −1

0 s+ 2

]
(sI −A)−1 =

1

(s+ 100)(s+ 2)

[
s+ 2 1

0 s+ 100

]
G(s) = −[(sI −A)−1]12 + 0 =

−1

(s+ 100)(s+ 2)
(1 pt.)

– The transfer function has the same magnitude as system (1) but ∠G(d)(jω) =
π + ∠G(jω), where ∠G(jω) is the phase as that of system (1). (1 pt.)

– So the correct answer is option (iv). (1 pt.)

2. (a) Let the Laplace transform of y(t) be given by Y (s).

L{y(t)} = Y (s) =

∫ ∞
0

y(t)e−stdt.

Now, let us perform a variable change t̂ = t− 1⇒ t = t̂+ 1 and dt̂ = dt.

L{y(t− 1)} =

∫ ∞
0

y(t− 1)e−stdt, (t = t̂+ 1)

=

∫ ∞
−1

y(t̂)e−s(t̂+1)dt̂, (t = 0⇒ t̂ = −1) (1 pt.)

= e−s
∫ ∞
−1

y(t̂)e−st̂dt̂, (y(t) = 0, ∀t < 0)

= e−s
∫ ∞
0

y(t̂)e−st̂dt̂,

= e−sY (s). (1 pt.)

Therefore, the expression of the transfer function of the system is,

G2(s) =
L{y(t− 1)}
L{y(t)} =

e−sY (s)

Y (s)
= e−s. (1 pt.)
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(b) To plot the Bode plot, we first substitute s = jω,

G2(jω) = e−jω

|G2(jω)| = 1 = 0 dB

∠G2(jω) = −ω (rad) = −57.3ω◦ (1 pt.)

The bode plot of e−s is shown in Fig. 3. (1 pt.) for the correct magnitude
plot, (1 pt.) for the correct values and (1 pt.) for the correct shape.
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Figure 3: Bode plot of e−s.
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(c) To find the phase margin we need to find the ω at which |G3(jω)| = 1,

|G3(jω)| = |e−0.1jω|
|0.5 + jω|

=
1√

0.25 + ω2
(1 pt.)

1√
0.25 + ω2

= 1

0.25 + ω2 = 1

ω = 0.5
√

3 (1 pt.)

Next, we compute the phase of G3(jω),

∠G3(jω) = −0.1jω − tan−1
( ω

0.5

)
(1 pt.)

∠G3(j0.5
√

3) = 57.3× (−0.1× 0.5
√

3)◦ − tan−1

(
0.5
√

3

0.5

)◦
= 57.3× (

−0.1732

2
)◦ − tan−1(

√
3)◦

= 57.3× (−0.0866)◦ − 60◦

≈ −65◦ (1 pt.)

Phase Margin = 180◦ − 65◦

= 115◦ (1 pt.)
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Exercise 4

1 2 3 4 5 Exercise

3 6 8 6 2 25 Points

1. The standard state space form is

ẋ1 = x2

ẋ2 = −kx1 − dx32 (1 p.) .

Equilibrium points are obtained by setting system’s dynamics to zero. Hence, we
have ẋ1 = 0, yielding x̂2 = 0 (1 p.). Combining it with ẋ2 = 0 we have x̂1 = 0 (1
p.).

2. We compute the Jacobian of the dynamics and we evaluate it at the equilibrium x̂

A =

[
∂f1
∂x1

(x̂) ∂f1
∂x2

(x̂)
∂f2
∂x1

(x̂) ∂f2
∂x2

(x̂)

]

=

[
0 1
−k −3dx̂22

]
=

[
0 1
−k 0

]
(2 p.) .

(1)

We compute the eigenvalues of the A as follow

det(λI −A) = det

[
λ −1
k λ

]
= λ2 + k

!
= 0 ⇐⇒ λ1,2 = ±i

√
k (2 p.) .

(2)

The Lyapunov’s linearization method is inconclusive since there are imaginary eigen-
values (2 p.).

3. The derivative of Lyapunov function V (x) = 1
2

(
kx21 + x22

)
is

V̇ (x) = ∇V (x)f(x)

=
[
kx1 x2

] [ x2
−kx1 − dx32

]
(1 p.)

= kx1x2 − kx1x2 − dx42
= −dx42 (1 p.) .

On the given open set S = R2 we have

(a) V (x̂) = 0 (1 p.)

(b) V (x) > 0 for all x ∈ S \ {x̂} (1 p.)
11
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(c) V̇ (x) ≤ 0 for all x ∈ S since d > 0 and x42 ≥ 0 for all x2 ∈ R (1 p.).

Hence, according to the Lyapunov direct method, the equilibrium x̂ is stable (1 p.).

No, the asymptotic stability cannot be concluded via the direct Lyapunov method
because V̇ (x) = 0 for (x1, 0) with x1 ∈ R (1 p.). Hence d

dtV (x) < 0 for all x ∈ S\{x̂}
does not hold (1 p.).

4. V̇ (x(t)) = 0 for (x1, 0) with x1 ∈ R. Therefore

S̄ =
{
x ∈ R2

∣∣x1 ∈ [−`1, `1], x2 = 0
}
.

To derive the largest invariant set in S̄ we must have a look at the system equations.
Indeed, from the system equations we see that in order for the trajectories to be
confined to the line where x2 = 0 we need x1 = 0, or the system would diverge from
the x2 = 0 line (2 p.). Therefore, the equilibrium x̂ = (0, 0) is the largest invariant
set in S̄ (1 p.).

Since S is bounded and closed and V̇ (x(t)) ≤ 0 for all x ∈ S, we can invoke LaSalle’s
theorem (1 p.). According to LaSalle’s theorem, all trajectories starting in S tend
to x̂ for t → ∞. We can therefore conclude that x̂ is locally asymptotically stable
(1 p.). In addition, since ‖x(t)‖ → ∞ =⇒ V (x(t)) → ∞, following the hint we
can conclude that x̂ is globally asymptotically stable (1 p.).

5. By looking at the phase plane plot in Fig. 6 we can conclude that the equilibrium x̂
is unstable (1 p.). From the phase portrait we also see that from any initial state,
the system will enter a limit cycle, which is marked in red in the figure (1 p.).
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