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Signals and Systems II, BSc, Spring Term 2023 Solutions

Exercise 1 1 2 3 4 5(a) 5(b) Exercise

5 4 7 3 4 2 25 Points

1. First note that the current flowing in the converter branch is CV̇ , while the voltage
across the inductance is Lİ. By applying Kirchhoff’s current law to the node right
to the inductance, we obtain I − CV̇ + IG − IL = 0 (2pt). Moreover, by applying
Kirchhoff’s voltage law to the converter’s most outer mesh, one obtains Vin −RI −
Lİ − V = 0 (2pt). Putting together the two previous equations leads to[

V̇ (t)

İ(t)

]
=

[
0 1/C

−1/L −R/L

] [
V (t)
I(t)

]
+

[
0

1/L

]
Vin(t) +

[
(IG − IL)/C

0

]
(1pt) .

2. The set of equilibria are defined as the solutions in x to the set of linear equations
Ax+Bu+ d = 0 (1pt). We can write the two equations explicitly as

CV̇ = I + (IG − IL) = 0

Lİ = −V −RI + Vin = 0 .

The first equation has a unique solution I = IL − IG (1pt), and by substituting in
the second we also obtain a unique solution V = Vin+R(IG− IL) (1pt). Hence the

equilibrium x̄ =

[
Vin +R(IG − IL)

IL − IG

]
is unique (1pt).

3. Using the hint, we substitute x = x̃+ x̄ into the ODE, obtaining the following linear
system in perturbed coordinates x̃,

˙̃x(t) = Ax̃(t) +Ax̄+Bu+ d︸ ︷︷ ︸
=0

= Ax̃(t) (2pt) .

To check for stability, let us first compute the characteristic polynomial of A,

χA(λ) = Det

[
λ −1/C

1/L λ+R/L

]
= λ2 +

R

L
λ+

1

LC
(2pt) .

Since R
L ,

1
LC > 0, we can directly infer that the two roots of χA(λ) have negative

real part, hence the system is asymptotically stable (2pt).

Alternative: One can also explicitly compute the two roots of χA(λ) as

λ1,2 =
R/L±

√
(R/L)2 − 4/LC

2
,

and note that they have negative real part.

Consequently, lim
t→∞

x̃(t) = 0, hence lim
t→∞

x(t) = x̄ and the equilibrium x̄ is asymptot-

ically stable (1pt).

4. Since the equilibrium is asymptotically stable, one has that lim
t→∞

V (t) = V in+R(IG−
IL) (1pt). Therefore, it suffices to impose V in+R(IG− IL) = Vr, that is, designing
the open-loop controller V in = Vr −R(IG − IL) (2pt).
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5. (a) To verify the inequality we compute

Ė(V, I) = CV V̇ + LIİ

= V (I + IG − IL) + I(−V −RI + Vin)

= −Y V 2 −RI2 + VinI + V IG (2pt) .

Therefore, under the controller Vin = −KI, we obtain

Ė(V, I) = −Y V 2 − (R+K)I2 + V IG

≤ V IG (2pt) .

(b) Systems satisfying such inequalities are called dissipative systems because they
withhold less energy than they receive. We note that the term E(V (t), I(t)) =
1
2CV (t)2 + 1

2LI(t)
2 represents the total energy stored in the converter, hence

d
dtE(V (t), I(t)) is its rate of change. Then, V (t)IG(t) represents the power
supplied from the grid. Under this interpretation, inequality (2) shows that the
Buck converter accumulates less energy than provided (2pt).
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Exercise 2 1 2 3 4 5 6 7 Exercise

4 4 4 3 3 4 3 25 Points

1. The equation ATQ + QA = −R has a unique positive definite solution if and only
if A has eigenvalues with a negative real part (1p). A is lower triangular so the
eigenvalues are λ1 = −5 and λ2 = β (1p). All eigenvalues are real; they are negative
when β < 0 (1p). The stability of the system depends on the eigenvalues of A. As α
does not appear in the eigenvalues expressions, α does not affect the system stability
(1p).

2. The observability matrix is

(1p) Q =

[
C
CA

]
=

[
1 1

α− 5 β

]
,

which should be full rank for observability (1p). The matrix is full rank when
α− 5 ̸= β (1p). Therefore the system is observable for α ̸= β + 5 (1p).

3. The controllability matrix is

(1p) P =
[
B AB

]
=

[
1 −5
1 α+ β

]
,

which should be full rank for controllability (1p). The matrix is full rank when
α+ β ̸= −5 (1p). Therefore the system is controllable for α ̸= −β − 5 (1p).

4. If the system is controllable (i.e. for α ̸= −β − 5), it is possible to find an input
driving the system from x(0) to x(t) in any given finite time t (1p). If the system
is uncontrollable (i.e. for α = −β − 5), the reachable subspace is the Range(P) =

Span{
[
1 1

]T } (1p). Therefore it is possible to find an input to steer the system from

x(0) =
[
0 0

]T
to any x(t) of the form

[
a a

]T
, and in particular to x(1) =

[
10 10

]T
(1p).

5. We compute the closed loop matrix as

A+BK1 =

[
−5− α −α

0 β − α

]
,

which is asymptotically stable if its eigenvalues are negative (1p.). The matrix is
lower triangular so the eigenvalues are λ1 = −5 − α and λ2 = β − α (1p.). The
condition is verified when α > −5 and α > β (1p.).

6. We compute the closed loop system matrix as

A+BK2 =

[
−5− α 0

0 β

]
.

It is a diagonal matrix, which is stable but not asymptotically stable if one of its
eigenvalues is zero (1p.). The other eigenvalue must be equal to −2 (1p.). The
eigenvalues are λ1 = −5 − α and λ2 = β (1p.). The required condition is verified
when α = −5 and β = −2 or when α = −3 and β = 0 (1p.).
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7. With α < β, the system is observable (it is unobservable only when α = β+5) (1p.).
Thus, there exists an L for which (A− LC) has eigenvalues with negative real part
(2p.).
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Exercise 3 1 2(a) 2(b) 2(c) 3(a) 3(b) Exercise

6 3 3 3 5 5 25 Points

1. Since we need to determine the interval of values of k for which the closed-loop is
stable, we re-scale the x-axis of the plot in Figure 2 dividing it by k. By doing so,
we can treat the point marked with a cross + as (−1/k, 0).

First, observe that the L(s) does not have unstable poles, and the pole at the origin
need not be counted (as in the plot on the left-hand side of Figure 2, the contour
used to construct the Nyquist diagram has an indentation to the right and therefore
does not encircle the pole in the origin) (1pt.). As a result, the closed-loop T (s)
will be stable as long as the Nyquist diagram does not encircle the point (−1/k, 0).

We distinguish three cases:

k = 0 In this case L(s) = 0 and T (s) = 0, so the closed-loop is asymptotically
stable. (1p.)

k > 0 In this case we have two clockwise encirclements of (−1/k, 0) if −1/k > −15.8,
and no encirclements if −1/k < −15.8 (1p.). To have asymptotic stability we
therefore require

−1

k
< −15.8 ⇐⇒ k <

1

15.8
. (1p.) (1)

Full points are awarded to students who analyze the case k ≥ 0 without dealing
separately with the case k = 0 as long as eq. (1) is derived correctly.

k < 0 In this case the point (−1/k, 0) belongs to the positive half of the real line, and
it is therefore encircled by the Nyquist diagram once in the clockwise direction
because of the closure arc (compare Figure 1). We conclude that if k < 0 the
closed-loop is unstable. (1p.)

We conclude that to have asymptotic stability we require 0 ≤ k < 15.8. (1p.)

2. (a) For completeness, we verify that for ω =
√
15 rad/s, we have Im(G2(jω)) = 0.

We have:

G2(jω) =
5

jω(jω + 5)(jω + 3)

=
5

(−ω2 + j5ω)(jω + 3)

=
5

−jω3 − 3ω2 − 5ω2 + j15ω

=
5

−8ω2 + j(−ω3 + 15ω)

−8ω2 − j(−ω3 + 15ω)

−8ω2 − j(−ω3 + 15ω)

=
−40ω2

ω6 + 34ω4 + 225ω2
+ j

5ω3 − 75ω

w6 + 34ω4 + 225ω2

=
−40

ω4 + 34ω2 + 225
+ j

5ω2 − 75

w5 + 34ω3 + 225ω
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The imaginary part of G2(jω) is therefore

Im(G2(jω)) =
5ω2 − 75

w5 + 34ω3 + 225ω

!
= 0 ⇐⇒ ω2 =

75

5
= 15 ⇐⇒ ω =

√
15.

The magnitude of G2(jω) at ω =
√
15 rad/s is

|G2(jω)|ω=√
15 =

40

152 + 34 · 15 + 225
=

4

96
=

1

24
, (2)

and therefore the gain margin is

GM =
1

|G2(jω)|ω=√
15

= 24. (3)

The points are awarded as follows: (1p.) for each correct symbolic computation
among (2) and (3), (1p.) if the numerical value of GM is correct.

(b) The Laplace transform Y1 of y1 is given by

Y1(s) = G2(s) =
5

s(s+ 5)(s+ 3)
.

Since Y1 has only one pole in the origin and the remaining poles are stable, we
have that sY1(s) has no unstable or marginally stable poles and the final value
theorem can be applied (1p.). We conclude that

lim
t→∞

y1(t) = lim
s→0

sY1(s) = lim
s→0

5

(s+ 5)(s+ 3)
=

1

3
. (2p.)

Full points are awarded to students that do not make any statement about the
applicability of the final value theorem, as long as the answer states that the
limit exists and the value of the limit is correct.

(c) Since the Laplace transform of a step input is 1/s, the Laplace transform Y2 of
y2 is given by

Y2(s) =
G2(s)

s
=

5

s2(s+ 5)(s+ 3)
, (2p.)

and has two poles in the origin. As a result, the function sY2(s) has one
marginally stable pole and the final value theorem cannot be applied (1p.).

3. (a) The Nyquist plot is shown in Figure 1. Points are assigned as follows:

i. Correct intersections with real axis (2p. in total, 1p. removed for each
mistake);

ii. (Approximately) correct intersections with imaginary axis (1p. in total);

iii. Correct phase for ω ≈ 0 rad/s and for ω → ∞ (1p. each).

(b) From the structure of G3(s), we see that all the poles and the zeros are located
at ω = 1 rad/s. In the Bode plot, around the frequency ω = 1 rad/s, we observe
a −20 db/dec decrease in the slope of the magnitude, and a −270◦ decrease in
phase (1p.). We proceed with the following observations.
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Figure 1: Nyquist plot of G3(s).

Magnitude First, we observe that the decrease of the slope of the magnitude
means that there is an aboundance of poles at ω = 1 rad/s (1p.); specif-
ically, since the decrease is of −20 db/dec, it means that the number of
poles at ω = 1 rad/s exceeds the number of zeros by 1. We conclude that
np = nz + 1 (1p.).

Phase Around ω = 1 rad/s the phase decreases by a factor of 3 · 90◦. Recall
that a phase decrease of −90◦ is associated to either a stable pole, or to an
unstable zero; whereas an increase in phase of 90◦ is associated to either
an unstable pole or to a stable zero. We consider the following two cases
separately.
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1. p = −1. In this case we require nz − np = 3 ⇐⇒ −1 = 3, which is
not possible. (1p.)

2. p = +1. In this case we require nz + np = 3 ⇐⇒ 2nz + 1 = 3 ⇐⇒
nz = 1. (1p.)

We conclude that the only possibility is to have p = +1 and np = 2, nz = 1.

9



Signals and Systems II, BSc, Spring Term 2023 Solutions

Exercise 4

1 2 3 4 5 Exercise

3 6 7 7 2 25 Points

1. Equilibrium points are obtained by setting system’s dynamics to zero. Hence, we
have ẋ1 = 0, yielding x̂2 = 0. Combining it with ẋ2 = 0 we obtain the following
equation

−2x1 − 4x31 = −2x1(1 + 2x21) = 0 , (1 p.) (4)

which is verified for x̂1 = 0 or x̂1 = ±j 1√
2
(1 p.). We can therefore conclude that

the system has a unique equilibrium point at (0, 0) (1 p.).

2. We compute the Jacobian of the dynamics and we then evaluate it at the equilibrium
point

A(x̂) =

[
∂f1
∂x1

(x̂) ∂f1
∂x2

(x̂)
∂f2
∂x1

(x̂) ∂f2
∂x2

(x̂)

]

=

[
0 1

−2− 12x̂21 −2a

]
.

(5)

We plug x̂ = (0, 0), which leads to

A((0, 0)) = =

[
0 1
−2 −2a

]
(1 p.) . (6)

We compute the eigenvalues of A((0, 0)) as follow

det(λI −A((0, 0))) = det

[
λ −1
2 λ+ 2a

]
= λ2 + 2aλ+ 2

!
= 0 ⇐⇒ λ1,2 = −a±

√
a2 − 2 (1 p.) .

(7)

Since a ∈ [−
√
2,
√
2], 2 − a2 ≥ 0 and we have λ1,2 = −a ± j

√
2− a2 (1 p.). When

a = 0, the Lyapunov’s linearization method is inconclusive since Re {λi} = 0 for i =
1, 2 (1 p.). When a ∈ (0,

√
2], we can conclude that (0, 0) is locally asymptotically

stable since Re {λi} < 0 for i = 1, 2 (1 p.), and when [−
√
2, 0) we can conclude that

(0, 0) is unstable since Re {λi} > 0 for i = 1, 2 (1 p.).

3. The derivative of Lyapunov function V (x) = 4x21 + 2x22 + 4x41 is

V̇ (x) = ∇V (x)f(x)

=
[
8x1 + 16x31 4x2

] [ x2
−2x1 − 2ax2 − 4x31

]
(1 p.)

= 8x1x2 + 16x31x2 − 8x1x2 − 8ax22 − 16x31x2

= −8ax22 (1 p.) .

On the given open set S = R2 we have
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(a) V (x̂) = 0 (1 p.)

(b) V (x) > 0 for all x ∈ S \ {x̂} (1 p.)

(c) V̇ (x) ≤ 0 for all x ∈ S since a ≥ 0 and x42 ≥ 0 for all x2 ∈ R (1 p.).

Hence, according to the Lyapunov direct method, the equilibrium x̂ is stable.

No, the asymptotic stability cannot be concluded via the direct Lyapunov method
because V̇ (x) = 0 for all x1, x2 ∈ R when a = 0 (1 p.), and for all (x1, 0) with
x1 ∈ R when a > 0 (1 p.). Hence d

dtV (x) < 0 for all x ∈ S \ {x̂} does not hold.

4. When a > 0, then V̇ (x(t)) = 0 for (x1, 0) with x1 ∈ R. Therefore

S̄ = {x ∈ S, x2 = 0} ⊆ R2 (1 p.).

To derive the largest invariant set in S̄ we must have a look at the system equations
(1 p.). Indeed, from the system equations we see that in order for the trajectories
to be confined to the line where x2 = 0 we need x1 = 0 or x1 = ±j 1√

2
, or the system

would diverge from the x2 = 0 line (1 p.). Therefore, the equilibrium x̂ = (0, 0) is
the largest invariant set in S̄ (1 p.) since S̄ ⊆ R2, which excludes the other two
values (1 p.).

Since S is compact and invariant and V̇ (x(t)) ≤ 0 for all x ∈ S, we can invoke
LaSalle’s theorem. According to LaSalle’s theorem, all trajectories starting in S
tend to M = {(0, 0)} for t → ∞. We can therefore conclude that x̂ is locally
asymptotically stable (1 p.). In addition, since ϵ > 0 can be chosen to be arbitrarily
large, we can conclude that x̂ is globally asymptotically stable (1 p.).

5. By looking at the trajectories in Fig. 6 we can conclude that when a = 0 the
equilibrium x̂ is stable but not asymptotically stable (1 p.) since the trajectories
will not converge to it but remain close (1 p.).
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