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Signal and System Theory II, BSc, Fall Term 2017 Solution

Exercise 1

1 2 3 4 Exercise

6 6 8 5 25 Points

1. We first apply Newton’s law F = mẍ on both masses to get

m1z̈1 = −k1z1 − d1ż1 + d2(ż2 − ż1)
m2z̈2 = −d2(ż2 − ż1) + k2(u− z2)

Sorting terms and using the x representation, we get:

ẋ1 = x2

ẋ2 =
1

m1
(−k1x1 − (d1 + d2)x2 + d2x4)

ẋ3 = x4

ẋ4 =
1

m2
(d2x2 − k2x3 − d2x4 + k2u)

which leads finally to

A =


0 1 0 0

− k1
m1

−d1+d2
m1

0 d2
m1

0 0 0 1

0 d2
m2

− k2
m2

− d2
m2


B =

[
0 0 0 k2

m2

]T
C =

[
0 0 1 0

]
D = 0

2. First, we need d2 > 0, otherwise the system decouples into two separate subsystems,
of which one will not be observable. We can write down the observability matrix:

O =


C
CA
CA2

CA3

 =


0 0 1 0
0 0 0 1

0 d2
m2

− k2
m2

− d2
m2

d2
m2

(− k1
m1

) −d2(m2(d1+d2)+d2m1)
m1m2

2

k2d2
m2

2

d22
m1m2

− k2
m2

+
d22
m2

2


Due to the structure of the matrix, we can write the determinant as

det(O) =
k1d

2
2

m1m2
2

Since the matrix is full rank whenever this is non-zero, this means that k1 > 0 and
d2 > 0 are required for the system to be observable.
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3. With d2 = 0, the system dynamics matrix becomes

A =


0 1 0 0

− k1
m1

− d1
m1

0 0

0 0 0 1

0 0 − k2
m2

0

 (1)

and hence we have two independent systems, the first two states make one and the
second two states make one. The eigenvalues of the two systems can be found using

λ

(
λ+

d1
m1

)
+
k1
m1

= 0 =⇒ λ1,2 =
− d1
m1
±
√(

d1
m1

)2
− 4 k1

m1

2
(2)

and

λ2 +
k2
m2

= 0 =⇒ λ3,4 = ±
√
k2
m2

j (3)

The input will be able to control states x3(t) and x4(t), but not the other two. Since
the real part of λ1,2 is smaller than 0, the uncontrollable modes are stable, which
means the system is stabilizable. At the same time, we can measure x3(t). Since the
real part of λ3,4 is zero, these two states will just oscillate. Since we can measure
them via x3(t), the system is also detectable.

4. We first write down the system in the new coordinates:

˙̂x(t) = TAT−1x̂(t) + TBu(t),

y(t) = CT−1x̂(t) +Du(t).

Using the new matrices, we can derive that for Ô the observability matrix in the
new coordinates and O the observability matrix in the old coordinates, it holds that

Ô =


CT−1

CAT−1

CA2T−1

CA3T−1

 = OT−1

which due to the invertability of T means that Ô has full rank iff O does.
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Exercise 2

1 2 3 4 Exercise

5 8 4 8 25 Points

1. The transfer function can be computed from the state space representation as

G(s) = C(sI−A)−1B +D

=
[
1 0

] [s− σ −ω0

ω0 s− σ

]−1 [
0
1

]
=

1

(s− σ)2 + ω2
0

[
1 0

] [s− σ ω0

−ω0 s− σ

] [
0
1

]
=

ω0

(s− σ)2 + ω2
0

.

The poles are s1,2 = σ ± jω0.

2. Instead of maximizing the magnitude of the transfer function directly, we can mini-
mize the magnitude of the square of the denominator, as the numerator is constant.

d

dω
|(jω − σ)2 + ω2

0|2 =
d

dω
|(−ω2 + ω2

0 + σ2)− 2jωσ|2

=
d

dω
(−ω2 + ω2

0 + σ2)2 + 4ω2σ2

= −4ω(−ω2 + ω2
0 + σ2) + 8ωσ2

!
= 0

⇒ ω · (ω2 − (ω2
0 − σ2)) = 0

⇒ ω1 = 0 ∨ ω2 =
√
ω2
0 − σ2

We thus have two candidates (ω1 and ω2) for maximizing the magnitude (i.e., min-
imizing the denominator). To find the maximum we evaluate the denominator
D(ω) := (−ω2 +ω2

0 +σ2)2 + 4ω2σ2 for both candidates and see which one is smaller.

• D(ω1) = D(0) = (ω2
0 + σ2)2

• D(ω2) = D(
√
ω2
0 − σ2) = 4σ2(ω2

0 − σ2)

Since ω0 > σ we have D(0) > 4σ2 ≥ D(
√
ω2
0 − σ2). Hence, ω2 =

√
ω2
0 − σ2 is

maximizing the magnitude.
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3.

|G(jωc)| =

∣∣∣∣∣ ω0

(j
√
ω2
0 − σ2 − σ)2 + ω2

0

∣∣∣∣∣
=

ω0

| − ω2
0 + σ2 − 2j

√
ω2
0 − σ2σ + σ2 + ω2

0|

=
ω0

|2σ2 − 2j
√
ω2
0 − σ2σ|

=
ω0√

4σ4 + 4ω2
0σ

2 − 4σ4

=
ω0

2ω0σ
=

1

2σ

4. Based on ωc and |G(jωc)| we find the following pairings as the solution: 1c(i), 2a(iii),
3b(ii).
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Exercise 3

1 2 3 4 5 Exercise

2 4 6 6 7 25 Points

1. The system is linear (linear ODE) but time-varying, since there is explicit depen-
dence on time, see (e−t)-term.

2. The state space form is given by

d

dt
x(t) =

 x2(t)
−θx2(t)− x1(t)(1 + x23(t))

−1
2x3(t)

 ,

which is nonlinear, see for example the x23-term. We need the initial condition
x3(0) = 1.

3. There is only one equilibrium which is x̂ = (0, 0, 0)T . We compute the Jacobi matrix

J =

 0 1 0
−x23 − 1 −θ −2x1x3

0 0 −1
2

 ,

that evaluated at the origin is  0 1 0
−1 −θ 0
0 0 −1

2

 ,

whose eigenvalues are {−1
2 ,
−θ+

√
θ2−4

2 , −θ−
√
θ2−4

2 }. Hence, the origin is locally asymp-
totically stable if θ > 0 and it is unstable if θ < 0.

4.

d

dt
V (x(t)) =

2x22
x23 + 1

(
−θ +

x23
x23 + 1

)
− αx23

Hence for all x ∈ S :=
{
x ∈ R3 :

x23
x23+1

≤ θ
}

the Lie-deriative is less than or equal

to zero.

5. When considering the open set int(S) 6= {}, since θ > 0, by using Theorem 7.2 from
the lecture notes we get that the origin is stable, as

• V (0) = 0

• V (x) > 0 for all x ∈ int(S) and x 6= 0

• d
dtV (x(t)) ≤ 0 for all x ∈ int(S) by the previous subtask.
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Exercise 4

1 2 3 4 5 Exercise

3 6 4 6 6 25 Points

1. The poles of the open loop system are the eigenvalues of the system matrix, which
can immediately be determined as λ1 = 2 and λ2 = 1, because the system matrix
is triangular. Since the magnitude of one eigenvalue is larger than 1, the system is
open loop unstable.

2. The closed loop system is given as

x[k + 1] = Ax[k]−BKx[k] = (A−BK)x[k]

For the given system and controller, the poles can be computed as

det(λI− (A−BK)) =det

([
λ− 2 −1

9
4 λ+ 1

])
!

= 0,

⇔ λ2 − λ+
1

4
= 0

which implies p1 = p2 = 1
2 . Therefore, the closed loop system is asymptotically

stable.

3. To check observability, we determine the observer matrices C1 =
[
1 0

]
and C2 =[

1 1
]

which correspond to the output choices and compute the observability ma-
trices

O1 =

[
C2

C2A

]
=

[
1 0
2 1

]
and

O2 =

[
C1

C1A

]
=

[
1 1
2 2

]
It can be seen that the pair (C2, A) is not observable since rank(O2) = 1 < 2, but
the pair (C1, A) is observable, since rank(O1) = 2. Therefore, the output that only
has x1[k] has to be chosen.

4. The estimation error is given as

e[k + 1] = x[k + 1]− x̂[k + 1] = Ae[k]− LCe[k] = (A− LC)e[k]

5. For the given system, the poles of the estimation error dynamics can be computed
as

det(λI− (A− LC)) = det

([
λ− 2 + l1 −1

l2 λ− 1

])
!

=

(
λ− 1

4

)2

⇔ λ2 + (−3 + l1)λ+ (2− l1 + l2) = λ2 − 1

2
λ+

1

16

⇒ l1 =
5

2
, l2 =

9

16
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