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Exercise

_
[\V]
w
N
[S)}
(=]
-

414145 |2|3|3]| 25 Points

1.
mi = Fgsin(f) + Fs cos(0) (1)
5= Fpgsin(0) 4+ Fs cos(0) 2
m
2.
Z = (Fgcos(f) — Fssin() — mg)/m (3)
3.
6 =JsF, (4)
4.
Frl + F;
F= 2T (5)
m
Fp— F0 —
5=2 9 (6)
m
. IoF,
0= 7
. 7)
5. The physical interpretation is that the rocket is hovering. The solution forces 6, = 0.

Fg=0, Fg =mg, 68.=0 (8)

The sign of Fg should be consistent with what the student used for the sign of mg.
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A is nilpotent, in particular A * A = 0. Therefore, A”B = 0 for n > 2. Therefore,
there is no way that the controllability matrix

C=[B AB A’B ... A°B] (11)

can be full-rank. Therefore, the system is not controllable.

The correct C' matrices are

010000
Ci=10 01000 (12)
0000710
100000
C;=10 010 0 0. (13)
0000710

rankCo (A, Cy) = 5, so it is not observable. rankCp (A, C2) = 6, so it is observable.
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1. The controllability matrix is given as

p_ [1 al—l-ag].
1 as+ay

The system is controllable when P has full rank. P has full rank when ay + ao #
as + a4. Hence, the system is controllable for all values of a1, as,as,aq such that
a1 + ag # az + ag. The observability matrix is given as

0 1
=l
The system is observable when @ has full rank. @ has full rank when a3 # 0. Hence,
the system is observable for all values of a1, as, as, aq such that ag # 0.

2. Case 1: Since the system is unobservable there exists no state [z1,z2] " € R? that is
completely observable as x1 can never be reconstructed from output measurements.
Hence the set is empty.

Case 2: The state xo is observable since it is measured. However, the state x is
unobservable since it can never be reconstructed from output measurements.

Case 3: The set of unobservable points coincides with the null space of the observ-
ability matrix. Substituting the values for aj, as, as, a4 yields

0 1
=5 )
Thus, the set of unobservable points are given as [331,0]—r € R?. Hence, the set of

observable states are given as [r1,x2]" € R? such that x5 # 0.

3. The set of reachable states is given by the image of the controllability matrix P.
Substituting the values for a1, as, as, as yields

[t

Hence, X = { {xl] T = mg}.
Z2

4. The matrix A is diagonalizable. Hence, it can be written as

e [

A ot —et 4 2
e — 0 ezt .
4

Thus,
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5. Since the point [1, 1]T is in the set X from the previous problem, then it is possible
to design a controller to steer the system from x(0) = [0,0]" to (1) = [1,1]T. Note
that the solution to the system #(t) = Ax(t) + Bu(t) at time ¢t = 1 is given by

1
z(1) = eAt:U(O) +/ eA(lfT)Bu(T)dT.
0

Substituting in the values for A, B, x(0) and the matrix exponential from the pre-
vious problem yields

s = [ 77 7 amT [ = [ [ wear

Setting u(t) = e~2+2¢ for ¢ € [0, 1] yields x(1) = [1,1]T.
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1. To find the equilibria, we need to impose
re —a® = 0,
that results in two solutions: x = 0 and z? = r.
7 < 0: In this case, the only possible equilibrium is x = 0, because all equilibria
must be real valued.

r = 0: Also in this case the only equilibrium is = = 0.

r > 0: There are three equilibrium points, that is z = 0 and = = +/r

2. The linearized dynamics around the point z is

'—g =(r—3%z
x—[aw]mx—(r 3 ) .

x

r < 0: The linearized dynamics around x = 0 is £ = rz. Therefore, we can
conclude that = 0 is an asymptotically stable equilibrium.

r = 0: The linearized dynamics around x = 0 is £ = 0. Nothing can be
concluded by means of the linearization method.

r > 0: The linearized dynamics around x = 0 is ¢ = rz, so in this case
x = 0 is an unstable equilibrium. On the other hand, the linearized dynamics
around x = \/r is £ = —2rx, and therefore = /7 is an asymptotically stable
equilibrium. The same conclusion holds for z = —/r.

3. Consider the following quadratic candidate Lyapunov function
1
V(z) = §x2 >0 Vz#0. (14)

The Lie derivative of (14) along system trajectories is

V(z) = i = ra® — a?,
that, for » = 0, becomes V(x) = —z*, which is negative definite in & = 0. Therefore,
we conclude that x = 0 is an asymptotically stable equilibrium.

4. r < 0: We can use again the positive definite Lyapunov function (14). Since
l|z]| = o0 = V(x) — oo, function (14) is radially unbounded. Moreover,
V(m) = r2? — 2% < 0Vz # 0, that allows us to conclude that z = 0 is a globally
asymptotically stable equilibrium.

r = 0: With a similar discussion, it is easy to show that x = 0 is a globally
asymptotically stable equilibrium.

6
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r > 0: In this case, the asymptotically stable equilibria = 4+/r cannot be
globally asymptotically stable. In fact, the presence of multiple attractors (or
repulsors) clearly does not permit the existence of a globally stable equilibrium.

5. Pitchfork bifurcation. Solid lines represent stable equilibria, while dashed lines un-
stable equilibria. Arrows shows system trajectories for some fixed r < 0, r = 0 and
r > 0.

15 -10 -5 0 5 10 15

6. o i(t) =rz(t) +23(t) ’ a ‘ b ‘ c ‘}{‘ none ‘

o i(t)=—rz(t)+23(t) [a]|X]c][d]none|

o i(t)=—ra(t)—2%(t) [%][Db]c][d]none]




Signals and Systems II, BSc, Spring Term 2019 Solutions

Exercise 4

—
X
w
N
o

Exercise
3|66 |4 6| 25 Points

1. The transfer function is given by G(s) = C(sI — A)~'B (1 pt.), for the system ¥4

this results in
s+ 2 5 1
s =P 1[50 0

= [0 1] (s+2)($1— a)+5 [8 1 ’ 8;52} H 7
_ L . (2 pts.)
(s +2)(s —a) +5
1

824+ (2—-a)s+5—2a’

2. The natural frequency w, = v/5 —2a (1 pt.) and the damping factor ¢ = 2%

(1 pt.). The range of a for critically damped
2—a
=——==1 1 pt.
=S (1 pt.)
=a’—4a+4=20-8a
=a=-2+v20. (1 pt.)

For a = 2, G(s) has a pole at s = +jw which means that for y;(¢) is unbounded for
ui(t) = 3sin(t) (2 pts.).

3. The closed loop transfer function is given by

KGl(S) o K
1+ KGi(s) s2+125+25+ K

The poles of this transfer function are given by —6 + /11 — K. The poles have
negative real part when K > —25.

4. The Laplace transform of yo(t) is Yp(s) = S%(l pt.), hence, F(s) = 1 (1 pt.) (if
they actually show how to compute Yy(s) they get (2 pts.)).

5. The signal y,(t) can be written as
yo(t) = yo(t) —2yo(t —1) +50(t—2) (3 pts.).

Using the time-shift property of the Laplace transform we can write Y;(s) as

1 —2e7% + e~ 28

Yi(s) 5 (3 pts.).

Using: L{yo(t — c)uo(t — c)} = e~ Yo (s)
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