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Signals and Systems II, BSc, Spring Term 2021 Solutions

Exercise 1 1 2 3(a) 3(b) 3(c) 4 Exercise

3 4 3 3 6 6 25 Points

1.

(1p) ẋ = v̄ (1)

(1p) ẏ = v̄θ (2)

(1p) θ̇ =
v̄

ℓ
u, u = tan(ϕ) (3)

Accept the answers if given with v instead of v̄.

2. xk+1

yk+1

θk+1

 =

1 0 0
0 1 δv̄
0 0 1

xkyk
θk

+

 0
0

δv̄/ℓ

uk +

δv̄0
0

 (4)

The LTI part (A matrix:2p, B matrix:1p), the constant term at the end (1p). OK,
to only give matrices and the constant offset of the affine term.

3. (a) The tracking error states are derived as follows.

x̃k+1 = xk+1 − xrk+1 = xk + δv̄ − (xrk + δv̄) = xk − xrk = x̃k (5)

ỹk+1 = yk+1 − yrk+1 = yk + δv̄θk − ȳ = ỹk + δvθ̃k (6)

θ̃k+1 = θk+1 − θrk+1 = θk + δv̄/ℓuk − 0 = θ̃k + δv̄/ℓuk (7)

The resulting error dynamics is then given byx̃k+1

ỹk+1

θ̃k+1

 =

1 0 0
0 1 δv̄
0 0 1

x̃kỹk
θ̃k

+

 0
0

δv̄/ℓ

uk.

The A matrix with the error states (1p), B matrix (1p). Plugging the values
in to show the result (1p).

If the values with the equations are directly derived instead of giving the state
space, and values are plugged in along the way showing clear progression, (1p)
per each equation above.

(b) The A matrix has all its eigenvalues at 1 (i.e., ρ(A) = 1) (1p), therefore the
system is not asymptotically stable (stating that it is unstable by inspecting
the (ỹk, θ̃k) subspace is also correct) (2p).

(c)

C = [B AB A2B](1p) =

0 0 0
0 4 8
2 2 2

 (1p) (8)
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The matrix is rank deficient, the system is not controllable (1p).

Reachable space spanned by (0, 1, 0) and (0, 0, 1), uncontrollable mode 1 (1p).
The system is not stabilisable. (1p with justification).

This is caused by the small angle approximation (OK to mention as linearization
approximation) and the constant velocity assumption for the input (1p for
listing at least one reason).

4. Substituting the controller into the system leads tox̃k+1

ỹk+1

θ̃k+1

 =

1 0 0
0 1 2
0 p 1− 1 = 0

x̃kỹk
θ̃k

 (9)

The controllable subspace spans the ỹ, θ̃ states, thus we ignore the pole at 1, which
is uncontrollable. The controllable subspace is then[

ỹk+1

θ̃k+1

]
=

[
1 2
p 0

] [
ỹk
θ̃k

]
. (10)

There should be an explanation of what the closed-loop dynamics is and how we can
get the desired poles, e.g., writing the A matrix etc., similar to the description above.
Explanation until this point is (3p) (1p for describing the closed loop dynamics, 2p
for describing how to get the poles using the gain p). We want both poles of the
characteristic polynomial at 0.5.

(2p) det(sI −A) = s(s− 1)− 2p = (s− 0.5)2 =⇒ p = −0.125

Solving the characteristic polynomial for the 3x3 A matrix is also fine.

The error states ỹ and θ̃ in this discrete-time model are asymptotically stable. The
uncontrollable state x̃k, on the other hand is stable, but not asymptotically stable.
(1p)
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Exercise 2 1(a) 1(b) 1(c) 1(d) 2(a) 2(b) 2(c) Exercise

3 3 4 3 4 4 4 25 Points

1. (a) The observability matrix is:

O =

[
C
CA

]
=

[
1 0
a b

]
(1 p)

For O to have full rank, we need b ̸= 0, all other parameters a, c, d are irrelevant
for observability and therefore can be chosen arbitrarily (2 p).

(b) The controllability matrix is:

P =
[
B AB

]
=

[
1 a
0 c

]
(1 p)

For P to have full rank, we need c ̸= 0, all other parameters a, b, d are irrelevant
for controllability and therefore can be chosen arbitrarily (2 p).

(c) The closed loop system is:

Â = A+BK =

[
1 0
−2 −1

]
+

[
k 0

] [1
0

]
=

[
k + 1 0
−2 −1

]
(1 p)

For the closed loop system to be asymptotically stable we need that all eigen-
values are strictly smaller then 0 (1 p). As Â is a triangular matrix, the eigen-
values are the elements along the diagonal. Therefore, we require the following
condition: k + 1 < 0, i.e. k < −1 (1 p).
As for the fastest convergence rate, since the eigenvalue -1 is fixed, it will deter-
mine the fastest possible rate of convergence. This is achieved when the second
eigenvalue is at least as fast, that is when k + 1 ≤ −1, i.e. k ≤ −2 (1 p).

(d) From the system dynamics we directly obtain that Kx(t) = ky(t) (1 p), so the
controller can be directly implemented using a output feedback (2 p).
Note that the fact that for b = 0 the system is unobservable and therefore the
observer will not converge (Part (a)) is irrelevant in this case.

2. (a) From the characteristic polynomial det (λI −A), one can easilly derive that the
eigenvalues of the system are -4, 2 and -8 (2 p). As one of the eigenvalues (i.e.
λ = 2) is strictly positive (1 p), we can conclude that the system is not stable
(1 p).

(b) To determine whether the system is detectable, we have to perform the de-
tectability test on the unstable eigenvalues and verify whether we achieve full
rank. The detectability test is:

rank

([
λI −A

C

])
For λ = 2: [

2I −A
C

]
=


0 −6 0
0 10 0
−6 4 6
2 0 0

 (1 p)
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This matrix has clearly full rank (rank = 3) (1 p).

As the detectability test has full rank with λ = 2, the system is detectable
(2 p).
Note that however the system is not observable as its observability matrix O
defined as:

O =

 C
CA
CA2

 =

2 0 0
4 12 0
8 −72 0


has clearly rank(O) = 2 (not full rank).

(c) To determine whether the system is stabilisable, we have to perform the sta-
bilisability test on the unstable eigenvalues and verify whether we achieve full
rank. The stabilisability test is:

rank
([
λI −A B

])
For λ = 2: [

2I −A B
]
=

 0 −6 0 4
0 10 0 0
−6 4 6 0

 (1 p)

This matrix has clearly full rank (rank = 3) (1 p).

As the stabilisability test has full rank with λ = 2, the system is stabilisable
(2 p).
Note that however the system is not controllable as its controllability matrix P
defined as:

P =
[
B AB A2B

]
=

4 8 16
0 0 0
0 24 144


has clearly rank(P ) = 2 (not full rank).
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Exercise 3 1(a) 1(b) 1(c) 1(d) 2(a) 2(b) Exercise

4 4 4 8 3 2 25 Points

1. (a) From the differential equation, we identify system states as x1(t) = z(t) and
x2(t) = ż(t). Then we have

ẋ1(t) = ż(t) = x2(t),

ẋ2(t) = z̈(t) = −aż(t)− bz(t) + u(t) = −ax2(t)− bx1(t) + u(t)

Using that ż(t) is the measured system output, finally we can write the state-
space form of the system as

ẋ(t) =

[
0 1
−b −a

]
︸ ︷︷ ︸

A

x(t) +

[
0
1

]
︸︷︷︸
B

u(t),

y(t) =
[
0 1

]︸ ︷︷ ︸
C

x(t) + 0︸︷︷︸
D

u(t)

(give (1 p.) for each matrix correctly written; (4 p.) in total)

(b) Since z(0) = ż(0) = 0, x(0) = 0 as well, i.e., the system has a zero initial
condition ((1 p.)).

i. Solution 1:
From the state space form we can obtain the transfer function from input
u(t) to output y(t) by using G(s) = C(sI −A)−1B ((1 p.)). Hence,

G(s) =
[
0 1

] [s −1
b s+ a

]−1 [
0
1

]
︸ ︷︷ ︸

(1 p.)

=
s

s2 + as+ b︸ ︷︷ ︸
(1 p.)

.

ii. Solution 2
The transfer function from input u(t) to output y(t) can be obtained by us-
ing y(t) = ż(t), the differential equation describing the system and solving
the system of equations in the Laplace domain ((1 p.)). Hence,

s2z(s)− sż(0)− z(0) + a(sz(s)− z(0)) + bz(s) = u(s),

y(s) = sz(s)− z(0).

((1 p.) for the correct Laplace domain expressions.) Then G(s) = y(s)
u(s) =

sz(s)
u(s) = s

(s2+as+b)
((1 p.) for the correct expression).

(c) For (a, b) = (4, 0) we have G(s) = 1
s+4 . We can use a final value theorem

to obtain the impulse response limt→∞ y(t) = lims→0 sG(s) = 0. ((1 p.) for
Laplace transform of an impulse being 1, and (1 p.) for the correct steady-state
response)

For (a, b) = (0, 4) we have G(s) = s
s2+4

. The final value theorem cannot be
used in this case. However, the inverse Laplace transform can be used. Using
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that the Laplace transform of the step is 1
s we have L−1{ 1

s2+4
} = 1

2 sin(2t). ((1
p.) for Laplace transform of an step, and (1 p.) for the correct steady-state
response)

(d) For a = 2, b = −3, we have s
s2+2s−3

= s
(s+3)(s−1) . Hence the system has a

stable (s = −3) and unstable (s = 1) pole and a zero at s = 0. Hence, for ω ∈
[0, 1)rad/s the magnitude characteristic rises with 20dB/dec, for ω ∈ [1, 3)rad/s
it is constant, and finally, for ω ∈ [3,∞)rad/s it drops with 20 dB/dec. The
phase characteristic rises at ω = 1 rad/s because of the unstable pole and then
drops because of the stable pole at ω = 3 rad/s (1 p.). Hence, the transfer
function corresponds to the bode plot G2. (1 p.)

For a = 4, b = 3, we have s
s2+4s+3

= s
(s+3)(s+1) . Hence the system has two stable

poles (s = −3 and s = −1) and a zero at s = 0. The magnitude characteristic
is the same as for the previous case. However, the phase characteristic drops
twice for π

2 (1 p.). Hence the correct pairing is with the transfer function G1

(1 p.).

For a = 3, b = 0 we have s
s2+3s

= 1
(s+3) . Hence the magnitude characteristic

is flat until ω = 3 rad/s when it drops with 20 dB/dec and where the phase
characteristic drops for π

2 (1 p.). Hence, the correct pairing is with the transfer
function G4 (1 p.).

For a = 0.1 and b = 9 we have s
s2+0.1s+9

. Hence, the system has a pair of

stable conjugate-complex poles (ω1,2 = −0.1±i
√
35.99

2 ) that exhibit resonance in
the magnitude characteristic and drop the phase characteristic for π at ω ≈ 3
rad/s (1 p.). Hence, the correct pairing is with the transfer function G3 (1
p.).

2. (a) The zero of the system is −1 and the poles are −3±3
√
3

2 . Hence, the system
has neither zeros nor poles with non-negative real part. Consequently P = 0
( 1 p.). Since P = 0, according to the Nyquist criterion, for stability we need
N = Z = 0 encirclements of the point −1/K ( 1 p.). When K = −2, then
− 1

K = 0.5. Since there are no encirclements of that point, the system is stable
( 1 p.).

(b) If the K keeps decreasing, it will enter the area in which the point − 1
K is

encircled twice (N = 2, thus Z = 2) ( 1 p.), hence the system becomes unstable
( 1 p.).
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Exercise 4 1 2 3 4(a) 4(b) 4(c) 4(d) Exercise

3 4 4 4 2 4 4 25 Points

1. � Nonlinear: Due to x1x2 terms [1pt]

� Time-invariant as dynamics do not explicitly depend on time [1pt]

� Autonomous as there is no input and it is time invariant [1pt]

Grading: 1 pt for each question if answer correct and at least one correct justifica-
tion.

2. For equilibria we require the state space equations f(x) =

[
−x1 + bx1x2

−2x2 − bx1x2 + a

]
=[

0
0

]
. [1pt]

� One equilibrium at x =

[
0
a
2

]
[1pt]

� A second equilibrium at: x̃ =

[
a− 2

b
1
b

]
[2pts]

3. The Jacobian of the system is [1pt] :

A =
∂f

∂x
(x) =

[
−1 + bx2 bx1
−bx2 −bx1 − 2

]
For x =

[
0
a
2

]
the Jacobian is:

A =

[
−1 + a

2b 0
−a

2b −2

]
The eigenvalues are λ1 = −2 and λ2 =

1
2ab−1. Asymptotically stable if ab < 2 [1pt]

and unstable if ab > 2. Note that the case ab = 2 is excluded by the assumption
a ̸= 2

b .

Equilibrium at x̃ =

[
a− 2

b
1
b

]
:

A =

[
0 ab− 2
−1 −ab

]
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The characteristic polynomial is: λ2 + λab + ab − 2 = 0 [1pt]. The equilibrium is
asymptotically stable if and only if all coefficients have the same sign, hence asymp-
totically stable if ab > 2 [1pt] and unstable if ab < 2.

4. The equilibrium is

[
0
a
2

]
and the Lyapunov function is:

V (x) = x2 + x1 −
a

2
ln(x2)

(a) We check that the set S = {x | x1 ≥ 0, x2 ≥ 0} is invariant by analyzing the
vector fields at the set boundary:

� For x1 = 0: ẋ1 = 0, ẋ2 = −2x2 + α [1pt], so x1 cannot become negative
[1pt].

� If x2 = 0: ẋ1 = −x1, ẋ2 = a > 0 [1pt], thus the system always remains in
the positive quadrant and S is an invariant set [1pt].

(b) From the Jacobian we get directly, λ1 = −2 and λ2 = 0 [1pt]. The stability
analysis is inconclusive due to the zero eigenvalue [1pt].

(c) Analyze d
dtV (x(t)):

d

dt
V (x(t)) =

[
∂V
∂x1

∂V
∂x2

] [f1
f2

]
=

[
1 1− a

2x2

] [ −x1 + bx1x2
−2x2 − bx1x2 + a

]
[1pt]

= −(2x2 − a)2

2x2
[1pt]for analysing signs.

Thus, ∀x(t) ∈ Sc we have that
d
dtV (x(t)) ≤ 0 [1pt]. Consequently, V (x(t)) will

remain smaller than c and the set Sc is invariant [1pt].

(d) LaSalle’s theorem states that all trajectories initialized in Sc converge to the
largest invariant set in M = {x ∈ Sc|∇V (x)f(x) = 0} = {x ∈ Sc|x2 = a

2}
[2pts]. To stay on M , x2 must remain equal to a

2 which is only the case if
ẋ2 = 0. And since on M we have that ẋ2 = x1, it follows that we must have
x1 = 0, hence, we must be at the equilibrium x. As x is the only invariant set
in Sc, all trajectories starting in Sc will converge to x [2pts].
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