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1. Based on Newton’s law, the equations of motions are the following:

mE(t) + d () = F(t).

The circuit equation is the following:

di(t)

L
dt

Combining the equations gives:

mE(t) +di(t) = i(t)

= 3(t) = _%z(t) +—i(t)  [1pt]
and
di(t) oy
LEE 4+ Ri(t) = va(t) = £2()
dii(tt) _ _% 2(t) — = i(t) + va(t). [1pt]

+ Ri(t) = va(t) — ve(t).

Input and output and state are u(t) = v,(t) and y(t) = z(t), =(t)

The state-space dynamics are the following

0 1 0
z(t) =10 —% %
o 4

A

[1pt] for each = [4pts]
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2. The observability matrix is

C 1 0 0
Q=1|cAa|l=10 1 0. [1pt]
C A2 0o -4 £

Yes, the system is observable [1pt]. Check full rank condition with d, m,¢ > 0, two
ways [1pt] :

(1) Argue for linear independence of rows: Clearly none of the vectors are a linear
combination of the other ones.

(2) Show that det(Q) = 1(1 %) = % # 0. (lower triangular matrix, can read off
determinant).

The controllability matrix is

0 0 L
P=|B AB A’B|=|0 L —db ). [ipt]
R 22 R?
LT —mtiz

Yes, it is controllable [1pt]. Check full rank condition [1pt], two ways:

(1) Argue for linear independence of rows: Clearly none of the vectors are a linear
combination of the other ones.

(2) Show that det(P) = £(0(-8) —1L)y= £ =y

m

3. Setting the dynamics to zero under the constant input vy gives the following

Hx S O
2
_l_

_= O O
“O

which directly gives

for any constant 2 € R [1pt].

>
Il
o O W

4. The state matrix is

e |
M= s O
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The characteristic polynomial is: A3 4+ A2 (%) + A <%) = 0 [2pts]. Thus,

mL

A1 = 0 [1pts] and the second order polynomial A% + A (%) + (M) = 0.

The system is stable if dL > Rm and (2 > dR [1pt].

For no set of parameter values the system is asymptotically stable as one of the

eigenvalues is zero, i.e., A\ =0 [2pts].

5. The closed-loop system matrix is the following

0 1 0
(A+BK)=|0 -4 £
kq 0 % + k3
The determinant can be computed as:
A -1 0
det(\ - (A+BK))=| 0 A+4Z £ [1pt]
—k1 0 A—T — ks
d R 14
=ANA+—) A== —k3)| — k1 —
(At ) A= 7 = ka)] = bt
d R d, R ¢
=== 2 D A
+(m 7 k‘g)/\ +m( 7 kg))\ k1
N—— N— ~—~——
az ay ag

[1pt] (for the correct polynomial). The following conditions need to hold:

1. as,a1,a9 >0

(i)GQZ(%—%—k3)>O :>*—f>/€3
(ii) a1:%(—%—k3)>0 :>_f>k3
(iii) CLOZ—]{I1%>O :>k21<0

(ii) and (iii) need to hold [2pts]
2. asa1 > ag: (i — % — k‘g)(*% — kg) > *klé [2pts].

m

(accept any rearranged form).
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Exercise 2

1. The equation AT P + PA = —I has a unique positive definite solution if and only if
A has negative eigenvalues. (1p) We need the eigenvalues of A:

—1-A 4
A=Al = a —2—A

=(—1=X)(-2-)) —4a
=\ +3\+2—4a (1p)

No point if the last equation is found through wrong derivation. We need all coeffi-
cients with the same sign for negative eigenvalues (Finding the eigenvalues directly
is also fine). The condition holds for

1
-
a<g (1p)

Negative eigenvalues means A is asymptotically stable, therefore ZIR of the system
tends to 0 as t — oco. (1p)

2. The controllability matrix is

(lp) P=[B AB|= [2 —435] :

which should be full rank for controllability (1p). The determinant is
Det(P) = —4b> (1p).
Therefore the system is controllable for all a and ¢ as long as b # 0 (1p).

3. For (a,b,c) = (3,1,1) we have the closed loop system matrix

A= A+BK = [_31 _42} + m 0 K

-1 4
_[3 —2+k:]' (1p)
We compute the eigenvalues of the closed-loop matrix as

A== 4 24 k—A\
= (=1 -XN)(-24+Ek—-))—12
=X —kA+3\+2—k—12

=N+ B-kA-10—Fk (1p)

’—1—>\ 4 '

5
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We would like to have Ay = a)\;
0=A=A)A—ar) =X —(1+a)\A+aX? (1p)
Therefore we need
3—k=—(14+a)\
—10 — k = a)i,
which, by substituting to eliminate k, results in
0=aX +(1+a)\ +13 (1p).

Noting that we need k to be a real number, we need the above equation to have
a real solution with A\; < 0. This is possible only if the discriminant of the above
equation is positive (1p).

A=(1+a)?—4(13a) = a® - 50a + 1.

The roots of A are

roots(A)

50 + /502 — 4 2496
_ \/27 V2496 ~ 25+ 24.98 (1p),

=20+
2

where we used the approximation given in the hint. Therefore A, and consequently
k, has real solutions for a € (0,0.02] U [49.98, 00) (1p).

4. Given a = 0.02, from the previous solution we have that
0=aX + (1 +a)\ +13
= 0.02)\% + (1.02)\; + 13 (1p)
= A2 4+ 51\ + 650
= (s1+25)(s2 +26) (1p),

where s1, so denote the roots of the polynomial. For faster response we choose the

root A} = —26 (1p, accept also if stated that more negative roots lead to faster
response without explicit calculation) and using the equation in previous solution to
get

52
3—k=—(1+a)\1 (1p) = k=3+M(14+a)=3—-26— 100 = —23.52 (1p).

5. We need to check the observability of the system. The observability matrix is

(p) @= [CCA} - [aic 4c1—2}’

which should be full rank for observability (1p). The determinant is
Det(Q) = 4¢® — ¢ — a.

Using (a,b,c¢) = (3,1,1), we have Det(Q) = 0 (1p), thus the system is not ob-
servable (1p). Therefore, we cannot build an observer to estimate the state from
measurements (1p).
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Exercise 3

1. (a)

(b)

1(a) | 1(b) | 2 | Exercise
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For the system in Figure 2 it holds that (R(s) — Y (s)F(s))H(s) =Y (s) (2p.).

Hence, G(s) = 28 = %S)F(S) (1p.). Substituting values for H(s) and F'(s)
we obtain G(s) = % (2p., 1 for numerator and 1 for denominator).

Plot 1 corresponds to a = 2 (1p.). For a = 2, the system has two real poles in
the left-half plane (1p.).

Plot 2 corresponds to a = 0 (1p.). For a = 0, the system has conjugate-complex
poles with zero real part (1p.), its step-response is the sinusoidal signal (1p.).

Plot 3 corresponds to a = 0.5 (1p.). For a = 0.5, the system has a pair of
conjugate-complex poles with real parts in the left-half plane (1p.). Hence, its
step-response corresponds to the dumped oscillator (1p.).

Plot 4 corresponds to a = —2 (1p.). For a = —2, the system has two real poles
in the right-half plane (1p.).

For a = —2, the system is unstable (1p.) and its poles are given by si12 =
%\/ﬂ (1p.). Hence, there are two poles at 1(1p.). The number of poles P
with positive real part is P = 2 (2p.), and the number of zeros Z with positive
real part is Z = 0 (1p.). Finally, from Nyquist criterion we have that the
system (with Z = 0) is stable if and only if N = —P (1p.), where N is the
number of encirclement of (—1/K,0) (1p.). The number of counter clockwise
encirclements is N = —2 when —0.5 < —1/K < 0 (1p.). Hence the system is

stable for K > 2 (1p.).
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Exercise 4

1. For the equilibrium points it holds that #1(¢) = 0 and #2(¢) = 0 (1 p.). Hence
from @1(t) = z1(t)x2(t) = 0 we have either 27 = 0 or 2 = 0 (1 p.). For z; = 0,
3 = ¢ (1 p.), and when & = 0, #; = +y/a (1 p.). Consequently, for a > 0 the
equilibrium points are & = (21, 22) € {(0, %), (£4/a,0)}. Hence, the system has three
equilibrium points (1 p.). If a < 0, the system has only one real equilibrium point
T = (i'hi?) = (0, %) (1 p')'

2. From 1 = 0 we have 1 = 0 or 2o = 0. When 21 = 0 if #9 = 0 then Z9 = 0.
Additionally, when 3 = 0 from &9 = 0 we have ; = 0. (Give a point only
if it is explicitly shown that (0,0) is the only equilibrium. Plugging in
values in #; and z2 and showing that they are zero does not show that
the equilibrium is unique.).

3. Indirect Lyapunov method requires linearizaton around the equilibrium point & =
(0,0). By linearizing the system we have @5(t) = Axs(t) where

0, 0

Ao lom ol _[e =] _[0 0 (1)
o Ok —211 —k], 0 —k
1 T2 ]| ,—s =%

(1 p.) (1p.)

The eigenvalues of the characteristic polynomial p(s) = det(slo — A) = s(s + k) are
s=0and s = —k (1 p.). For k < 0 the system is unstable (1 p.) while for & > 0
the indirect Lyapunov method is inconclusive (1 p.).

4. For the open set S = R? and the Lyapunov function V = 3 (2} 4+ 23) we have

e V(&) = 0 trivially holds for z = (0,0) (1 p.),
e V(x) >0 for x € R%\ (0,0) trivially holds since V() is quadratic (1 p.),
° %V = T1d9 + X2y = 33%1'2 — ka:% - .%'233% = —km% <0fork>0,z€8(1p.).
——
(1p.)
Consequently, according to the Lyapunov direct method, the system is stable (1 p.).

Next, we note that %V = 0 for = (x1,0) where z; € R (1 p.). Hence the condition
4V <0forall z € S\ (0,0) is not satisfied (1 p.) and we cannot show asymptotic
stability using the direct Lyapunov method (1 p.).

5. Using Part 3, we recall that V(¢) < 0 for all z € Sk. Hence, Sy is invariant and
S={zeS|dv=0t={zeS |21 €R, 22=0} (1 p.).
Next, the largest invariant set M, contained in S needs to be quantified. The set S
is a horizontal line at 9 = 0. From the system’s trajectories, if zo = 0 and x1 # 0,
the system diverges from the horizontal line zo = 0 (1 p). Consequently, the system
stays on the line 2o = 0 only when 21 = 29 = 0 and M = {(0,0)} is the largest

8
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invariant set contained in S (1 p). Hence, by LaSalle’s theorem all trajectories that
start in Sk converge to the equilibrium & = (0, 0).

Since the level-set K > 0 can be chosen arbitrarily, when ||z(t)|| = c0 = V(x) —

oo (1 p). Finally, according to the La’Salle’s theorem the origin is globally asymp-
totically stable equilibrium (1 p).



