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1 Exercise 1

‘2‘ 3 ‘4“ Aufgabe

1. Controllability matrix:

c = [B AB]—[O O‘}
detC = —a

If system is controllable, we need to have
det(C) #0 — a#0
The system is controllable for all a € R\0.

2. Observability matrix:

o= Jeal=[1a]

det®O = a-—-1

If system is observable, we need to have
det(O) #0 —a #1
The system is observable for all o € R\1.
3. Compute characteristic polynomial for poles at -1 and -7:
A+DA+T) =N +8\+7

With the feedback controller the resulting closed loop system is

(A+BK):[(1) ZFH][M kﬂ:{k
det(A*) = (1—A)(2+ kg — A) — Bk
= N+ (=3—k)A+2+ky— 5k

A*

Comparison of coefficients:

—3—ky =8
AN +24+ky—bk1 =17
16
=k :—g, ko = —11
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4. The closed loop system is stable since we designed it to have the poles in the left
half-plane.
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2 Exercise 2

1|2 |3]|4]| Exercise
5/5|9| 6| 25 Points

1. In state space form, the discrete time system can be expressed:

i L 3 ]
Tl = | vyl d | T+ | b | Uk

m m m

2. The dimension of the system is 2. The system is not autonomous since it has an
input. The system is linear.

3. For v = —1, the state matrix is

0 1
A‘[o —0.5]'

The eigenvalues are A = 0, —0.5 and therefore the system is stable.

0 1
A‘[0.5 —0.5]'

The eigenvalues are A = 0.5, —1 and therefore the system is marginally stable.

0 1
A‘[m —0.5]'

The eigenvalues are A =1, —1.5 and therefore the system is unstable.

For v = 0, the state matrix is

For v = 2, the state matrix is

4. Setting up, = [ —1 % ]z, the system becomes:
) 3

ka_([(1).5 1—0.5}+[(1).5][_1 é]m_[g (1)]“7’“

The system matrix is nilpotent and thus x; = [ 0 0 ]T for all k& > 2.
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3 Exercise 3

1 | 2| 3| Exercise
10 | 7 | 8 | 25 Points

1. Based on Kirchhoff’s laws, we have that

Vi= VL1 + VL2 (1)
dis, , , dit,

.y .
Yt dt

We also have that
iR, +1iL, =Ry +1L,.

Hence L di Lo di
1ary, . 2 Al .
—— i, = = —2 4,
Ry dt Ry dt
From the above two equations we conclude that the state space representation of the
system is
d . o Ri1Ro Ri1Ro . Ry
@t | Li(R1+R2) Li(R1+Rz2) Ly + Li(R1+R2) Vi
dt | ¢ - 1Ry ___RiR i Ro i
Ly La(Ri+R2) La(Ri+Ra2) Ly La(Ri+Ra)
From the output of the system we have that Vo =V, = Lgdil#, which is

[ RiR RiR ir Ry :
R e

2. Consider the controllability matrix P = [B AB]. For Ry = Re = 1Q, and L1 = Ly =
0.5H we have that
11 1
=3 A=l

Then the controllability matrix is
10
po[10].

We obtain that rank(P) = 1, since the rows of P are linearly dependent, and hence
the system is uncontrollable.

C

CA ], we have that

Similarly, by checking the observability matrix Q) = [

We obtain that rank(Q) = 1, and hence the system is unobservable.

5
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3. For the case where V; = 0 the system is reduced to

d g, | _ [ -1 1 i,

dt | irL, - 1 -1 i, |
The response of the system is given by x(t) = ®(t)z(0), where ®(t) = e is the
state transition matrix. From det(AI — A) = 0, the eigenvalues of A are calculated

as A1 = 0,A2 = —2. Denote as wi,wy the eigenvectors that correspond to the
eigenvalues A1 and Ay respectively. Since Aw; = A\w; for ¢ = 1,2, the eigenvectors

are Calculal ed as
w w
1= s 9 = .

1 1

Hence the eigenvectors matrix is W = [ 1 —1

]. The response of the system is

given by z(t) = ®(t)x(0), where ®(t) = At = WeMW =1 and A = { 0 0 ]

0 -2
Then,
i, | _[1 1 1 0 |1 [-1 -1 1
i, | |1 —=1]]0 e | —2]-1 1 ~1
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4 Exercise 4

1|2 | 3| Exercise
8|9 | 8| 25 Points

1. Since both systems are controllable, the controllability matrices C; = [B A;B] and

Co = [B AyB] are both full rank. This, though, cannot indicate anything for C3 =
[B (A1+ A2)B]. One can see that easily by considering the two cases where Ao = A;
and Ay = —A;. In the former, we have C3 = [B 2A1B] = detC3 = 2detC; # 0, i.e.
system (3) is controllable and in the latter, C3 = [B OB] = detC3 = 0, i.e. system
(3) is uncontrollable.

[\

11 2 2
. Let A1 = @ a2 , Ao = a2 , B= b . We know that detCo = 0, i.e.:
ai aj a3 a3 by

' by a%bl + a%bg

_ 2 2 . 2 2 —
b2 agbl + aibQ = b]_ (a3b1 + a4b2) b2(a1b]_ + a2b2) 0.

Now, calculating det C3, we get:

det Cq ‘ by (CL% + a%)bl + (a% + a%)bQ

by (a3 +a3)by + (af + af)by
= bil(ag +a3)bi + (af + af)bo] — b2[(a1 + ai)b1 + (az + a3)bo]
= by(aiby + ajbe) — b2(aiby + ajbo) + by (a3by + atbs) — b2(a2by + a3bo)
= det(Cy +detCy = detCy # 0.

Thus, system (3) in this case is controllable.

. Nothing can be said for system (4). Take for instance any invertible matrix A;
such that system (1) is controllable. Then, taking As = A;l, one always gets an
uncontrollable system (4). On the contrary, one can easily find a matrix Ay that
makes system (2) controllable, as well as system (4).



