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Exercise 1

1 2 3 4 Exercise

4 5 8 8 25 Points

Consider the system

ẋ1 = f1 = −x2e
x1x2 ,

ẋ2 = f2 = x1 + kex2 . (1)

1. The dimension of the system is 2, since it comprises of two states. It is nonlinear
because of the exponential terms, autonomous since there is no input, and time
invariant since it does not depend explicitly on time.

2. To compute the equilibrium points consider ẋ1 = 0 and ẋ2 = 0. The former leads
to x2 = 0, whereas the latter to x1 = −k. Hence, the only equilibrium point of the
system is (x̂1, x̂2) = (−k, 0).

3. The linearized matrix of the system is

A =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]

=

[
−x22e

x1x2 −ex1x2(1 + x1x2)
1 kex2

]

.

Evaluating A at the equilibrium point (x̂1, x̂2), we get A(x̂1,x̂2) =

[
0 −1
1 k

]

. To

comment on the stability of (x̂1, x̂2), the eigenvalues of A(x̂1,x̂2) need to be computed.

Hence, det |λI −A(x̂1,x̂2)| = det |
[
λ 1
−1 λ− k

]

| = λ2 − kλ+ 1 = 0 leads to

λ1,2 =
k ±

√
k2 − 4

2
.

If k > 0, both eigenvalues are positive or have positive real parts, and hence (x̂1, x̂2)
is unstable. If k < 0, both eigenvalues are negative or have negative real parts,
and hence (x̂1, x̂2) is stable. Finally, if k = 0, the linearized system has imaginary
eigenvalues (λ1,2 = ±j), and so the linearization is inconclusive.

4. If k = 0, the origin (0, 0) is the only equilibrium of the system. As shown in (3),
linearization is inconclusive in the case where k = 0. To comment on the stability of
(0, 0) consider the candidate Lyapunov function V (x1, x2) = x21 + x22. We have that
V (0, 0) = 0, and V (x1, x2) > 0 for all (x1, x2) 6= (0, 0). Moreover,

dV (x1, x2)

dt
= 2x1ẋ1 + 2x2ẋ2

= −2x1x2e
x1x2 + 2x1x2 = 2x1x2(1− ex1x2) ≤ 0.

The last inequality holds since, based on the hint, α(1 − eα) ≤ 0 for all α ∈ R.
Hence, (0, 0) is stable but not asymptotically stable, since the last inequality is not
strict.
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Exercise 2

1 2 3 4 Exercise

5 6 8 6 25 Points

1. The system is nonlinear due to the square term on θ(k) and has dimension 2. The
general state space form of the system can be written as

[
x1(k + 1)
x2(k + 1)

]

=

[
x2(k)

−1.5x2(k)− 3x1(k) + x1(k)
2 + u(k) + v(k)

]

y(k) = x2(k)

2. The nonlinear system has two equilibrium points. The system is in equilibrium when
x(k + 1) = x(k), hence we solve the system of equations

[
x1(k)
x2(k)

]

=

[
x2(k)

−1.5x2(k)− 3x1(k) + x1(k)
2

]

.

From the first equation we obtain the relation x1(k) = x2(k). Plugging this into the
second equation we obtain the quadratic equation

x2(k) = −4.5x2(k) + x2(k)
2.

Solving the quadratic equation we obtain solutions x2(k) = 0 and x2(k) = 5.5.
Hence, the two equilibrium points are x(k) = [0, 0]T and x(k) = [5.5, 5.5]T .

3. For the system to have a unique equilibrium at the origin, the constant a = 0.
For the system to be linear, the nonlinearity must be canceled completely, thus the
constant c = −1. Applying the resulting feedback law v(k) = bx1(k)− x1(k)

2 to the
nominal system we obtain a linear system of the form x(k + 1) = Ax(k) with state
matrix

A =

[
0 1

−3 + b −1.5

]

.

The characteristic equation of A is

s2 + 1.5x+ 3− b = 0.

Considering that a system with eigenvalues at −0.5 and −1 must satisfy the char-
acteristic equation

s2 + 1.5s+ 0.5 = 0,

we conclude that the constant b = 2.5. Hence, the feedback control law is

v(k) = 2.5x1(k) + x1(k)
2.

The system is stable but not asymptotically stable since the absolute value of one
eigenvalue (s = −1) is not strictly less than 1.
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4. With the input v(k) defined as above, the resulting discrete time linear system takes
the form

x(k + 1) =

[
0 1

−0.5 −1.5

]

x(k) +

[
0
1

]

u(k)

y(k) =
[
0 1

]
x(k)

The observability matrix

Q =

[
0 1

−0.5 −1.5

]

has full rank, thus the system is observable. The controllability matrix

P =

[
0 1
1 −1.5

]

has full rank, thus the system is controllable.
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Exercise 3

1 2 3 Exercise

9 7 9 25 Points

1. To directly compute Φ(t), decompose A as

A =





−1 1 0
0 −1 1
0 0 −1



 =





−1 0 0
0 −1 0
0 0 −1





︸ ︷︷ ︸

A1

+





0 1 0
0 0 1
0 0 0





︸ ︷︷ ︸

A2

.

Since A1 is diagonal it commutes with any other square matrix, i.e., A1M = MA1

for any M ∈ R
3×3. Therefore, eAt = eA1teA2t, cf. Examples Set 3, Exercise 3.

For the diagonal matrix A1 the matrix exponential is easy to compute:

eA1t =





e−t 0 0
0 e−t 0
0 0 e−t





Since A2 is nilpotent, the power series expansion of its matrix exponential is in fact
finite with

A2
2 =





0 0 1
0 0 0
0 0 0





and A3
2 = 0. Accordingly,

eA2t = I +A2t+
1

2
A2

2t
2 =





1 t t2

2
0 1 t

0 0 1





and

Φ(t) = eAt = eA1teA2t = e−t





1 t t2

2
0 1 t

0 0 1



 .

Alternatively, by differentiating Φ(t) to

d

dt
Φ(t) = Φ̇(t) = e−t





−1 1− t t− t2

2
0 −1 1− t

0 0 −1



 ,

it can be shown that
Φ̇(t) = AΦ(t) .

Accordingly, Φ(t) is indeed the state transition matrix corresponding to A.

Since A is in Jordan-Normal-Form, the eigenvalues can be read off the diagonal and
λ = −1 with algebraic multiplicity 3 and geometric multiplicity 1. Therefore, A is
not diagonalizable.
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Since Re{λ} < 0, from Theorem 3.2 the system is asymptotically stable and therefore
also stable.

The system is asymptotically stable, see previous solution.

2. Since A is the zero-matrix, the power series expansion of the matrix exponential only
contains the constant element. Accordingly,

Φ(t) = eAt =





1 0 0
0 1 0
0 0 1



 .

Since A is diagonal (and therefore diagonalizable), the eigenvalues can be read off
the diagonal and λ = 0 with algebraic multiplicity 3 and geometric multiplicity 3.

Since Re{λ} ≤ 0 and A is diagonalizable, the system is stable by Theorem 3.1.

Because the only eigenvalue λ = 0 (and not strictly smaller than 0), the system is
not asymptotically stable (Theorem 3.1).

3. Note that A here is equal to A2 from the solution of 1.1. Therefore,

Φ(t) = eAt = I +At+
1

2
A2t2 =





1 t t2

2
0 1 t

0 0 1





From the fact that A is in Jordan-Normal-Form, λ = 0 with algebraic multiplicity 3
and geometric multiplicity 1.

Since A is not diagonalizable, Theorem 3.1 does not apply. Therefore, establishing
stability is a little more involved. From Φ(t) it can be seen that the solution of x(t)
will include terms such as t and t2 which grow to infinity over time, cf. Notes 3.31f.
Accordingly, the system is generally not stable.

From Theorem 3.2 it can be seen that the system is not asymptotically stable.
Negative real parts of all eigenvalues are a necessary and sufficient condition for
asymptotic stability.
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Exercise 4

1 2 3 4 5 Exercise

7 4 4 4 6 25 Points

1. We define the states of the system as the voltages over the capacitors, i.e.,

x(t) =
[
uC1

(t) uC1
(t)

]T
.

Because of the two energy storages (capacitors) this is clearly a system of second
order.

From Kirchhoff’s voltage law for the first loop, we get the expressions

u(t) = uR1
(t) + uC1

+ uC2
(2)

and from the current law

iR1
(t) = iC1

(t) ⇔ 1

R1
(u(t)− uC1

− uC2
) = C1

duC1
(t)

dt
(3)

which gives the differential equation for x1(t)

duC1
(t)

dt
=

u(t)− uC1
− uC2

R1C1
(4)

Similar, by substituting the currents of the second loop

iR1
(t) = iR2

(t) + iC1
(t) ⇔ 1

R1
(u(t)− uC1

− uC2
) =

uR2
(t)

R2
+ C2

duC2
(t)

dt
(5)

we obtain for x2(t)

duC2
(t)

dt
=

u(t)− uC1
− uC2

R1C2
− uR2

(t)

C2R2
(6)

Thus, the state space representation with the input u(t) and output y(t)

ẋ =

[
−1

R1C1

−1
R1C1

−1
R1C2

− R1+R2

R1R2C2

]

x(t) +

[ 1
R1C1

1
R1C2

]

u(t)

y =
[
0 1

]
x(t) + 0u(t) (7)

2. Using the given values for Ci and Ri we compute the contrallability matrix

P =
[
B AB

]
=

[
1 −2
1 −3

]

, (8)

and see that the system is controllable, since the matrix has full rank.
The observability matrix shows that the system is observable.

O =

[
C

CA]

]

=

[
0 1
−1 −2

]

(9)
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Stability can be shown by looking at the eigenvalues of the system.

det(λI −A) = det

[
λ+ 1 1
1 λ+ 2

]

= (λ+ 1)(λ+ 2)− 1 = λ2 + 3λ+ 1

⇒ λ1/2 = −3

2
±

√
5

2
(10)

Both eigenvalues are negative, hence the system is stable and asymptotically stable
as well.

3. With the matrices from part 1, the controllability matrix is given by

P =

[
1

R1C1
− 1

(R1C1)2
− 1

R2

1
C1C2

1
R1C2

− 1
R2

1
C1C2

− R1+R2

R2

1
R2C2

2

]

. (11)

Under the assumption C1 = C2 = C we loose controllability if the last terms of the
second column are equal, i.e.,

1

R2
1C

2
=

R1 +R2

R2
1R2C2

⇔1 =
R1 +R2

R2
, (12)

which holds approximately for large R2 ≫ R1.

4. The transfer function can be computed directly form the system matrices.

G(s) = C(sI−A)−1B

=
[
0 1

]
[
s+ 1 1
1 s+ 2

]
−1 [

1
1

]

=
1

s2 + 3s+ 1

[
0 1

]
[
s+ 2 −1
−1 s+ 1

] [
1
1

]

=
s

s2 + 3s+ 1
.

5. Given the controller u(t) =
[
k1 k2

]
x(t) we can rewrite the system dynamics as an

autonomous system

ẋ = A+BKx(t) =

[
k1 − 1 k2 − 1
k1 − 1 k2 − 2

]

x(t). (13)

Computing the characteristical polynomial of the closed loop system, we solve

det(Iλ−A−BK) = det

[
λ− k1 + 1 −k2 + 1
−k1 + 1 λ− k2 + 2

]

(14)

= λ2 − λ(k1 + k2 − 3) + 1− k1 (15)
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To place the poles, we need to match the coefficients of the characteristic polyno-
mial of the system with the desired one. For both poles at −1 we get the desired
polynomial λ2 + 2λ+ 1 and thus the conditional equations

2 = 3− k1 − k2

1 = 1− k1.

From the second we get k1 = 0 and therefore obtain k2 = 1.
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