
Automatic Control Laboratory D-ITET
ETH Zurich Winter 2017/2018
Prof. J. Lygeros 27.01.2018

Signal and System Theory II
4. Semester, BSc

Solutions



Signal and System Theory II, BSc, Spring Term 2017 Solution

Exercise 1

1 2 3 4 5 Exercise

8 5 4 4 4 25 Points

1. We first note that the current through R1 is equal to that through C2, and given as
follows:

iR1 = iC2 =
Vin − vC1 − vC2

R1
.

The current through C1, on the other hand, is the above with the current through
the other two resistors subtracted. We first replace R2 and R3 with their parallel
equivalent circuit to simplify things:

R̄ := R2 ‖ R3 =
R2R3

R2 +R3

We can then write:
iC1 = iR1 −

vC1

R̄
.

Using the relationship of current and voltage for capacitors C,

d

dt
vC =

1

C
iC ,

we can now get the above equations into standard form:

d

dt
vC1 =

1

C1
iC1 =

1

C1

(
Vin

R1
− vC1

R1
− vC2

R1
− vC1

R̄

)
d

dt
vC2 =

1

C2

(
Vin

R1
− vC1

R1
− vC2

R1

) (1)

we can now write the system in state-space form:

ẋ(t) =

[
− 1

R1C1
− 1

R̄C1
− 1

R1C1

− 1
R1C2

− 1
R1C2

]
x(t) +

[
1

R1C1

1
R1C2

]
u(t)

y(t) =
[
1 0

]
x(t) + 0u(t).

(2)

The first entry of A can also be written as follows:

− 1

R1C1
− 1

R̄C1
= − 1

R1C1
− R2 +R3

R2R3C1
= −R2R3 +R1R2 +R1R3

R1R2R3C1
(3)

2. The system is asymptotically stable since it is passive and has dissipative components
in it (the resistors). If the system were started at any state and left as it is with no
input (Vin = 0), the states would decay to zero. Entering the given values, we get
R̄ = 1 and the equations become:

ẋ(t) =

[
−2 −1

−1 −1

]
x(t) +

[
1

1

]
u(t)

y(t) =
[
1 0

]
x(t) + 0u(t).

(4)

2



Signal and System Theory II, BSc, Spring Term 2017 Solution

We can now write down the characteristic polynomial as

det(λI −A) = (λ+ 2)(λ+ 1)− 1 = λ2 + 3λ+ 1
!

= 0

which means the eigenvalues are

λ1,2 =
−3±

√
9− 4

2

and hence both have strictly negative real parts. This means the system is stable as
well as asymptotically stable.

3. Since the system is stable, we can for example use the energy in the capacitors as a
Lyapunov function:

V (x) =
1

2
v2
C1

+
1

2
v2
C2

=
1

2
xT IxT

It now follows that:
ATQ+QA = AT I + IA = A+AT

From this we get that R = −(A+AT ) = −2A, which is positive definite since A has
negative eigenvalues and is symmetric. Since Q is positive definite and unique for
this R, all conditions for asymptotic stability are satisfied.

4. We set f(x) = Ax and check the properties:

• V (0) = 0 holds trivially

• V (x 6= 0) ≥ 0 holds because we sum up squares of real numbers

• The time derivative property is verified as follows:

d

dt
V (t) =

1

2
xT Iẋ+

1

2
ẋT Ix =

1

2
(xT IAx+ xTAT Ix) =

1

2
xT (2A)x

Since we know A has negative eigenvalues, 2A will also have negative eigenvalues
and hence the derivative is ≤ 0.

5. If R2 became zero, that would mean also R̄ would become zero and the equations
from part 1 would no longer hold. However, since there is still dissipative action in
the system it would still be asymptotically stable. The output voltage would be 0
for all times, but vC2(t) would follow the input in a low-pass fashion. We would not
be able to distinguish different states of vC2 by looking at the output, hence it would
become unobservable.
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Exercise 2

1 2 3 4 5 Exercise

6 4 4 8 3 25 Points

1. The controllability matrix is given by

P =
[
B AB A2B

]
=

 0 2 2
100 − 2

1 −1 1
−1 2 −3


In order to determine whether the system is controllable, one has to determine
whether it is full rank. This can either be done by computing all eigenvalues of P
to see whether they are all nonzero or by computing the determinant and checking
whether it is nonzero. Full rank means controllability, rank deficiency means an
uncontrollable system.

The determinant of the matrix here is

det(P ) = −2(−3 + 1) + (
2

100
− 2)(2− 1) = 2 +

2

100
6= 0

and hence the system is controllable.

2. Since the second state does not depend on the other states, we would lose con-
trollability. This can also be seen mathematically by writing down the modified
controllability matrix:

P̃ =

 0 0 0
0 0 0
−1 1 −1


which has only rank 1.

3. The eigenvalues of the original system are computed as follows:

det(λI −A) =
(
λ− 1

100

)
(λ+ 1)(λ+ 1)

which means the eigenvalues are 1
100 ,−1,−1 and the system is unstable. It is neither

stable, nor asymptotically stable.

4. The first simplified system only has the eigenvalues −1,−1 and is hence stable. For
modeling purposes, these systems hence are greatly different and cannot be simplified
like that.

The second system retains the positive eigenvalue and even becomes diagonal, but
upon closer inspection, it is neither controllable nor observable while the original
system is. It is hence also a bad model.

5. No, this could not have happened, since invertible transforms conserve all the infor-
mation in the state and hence do not change any of the stability, observability or
controllability properties.
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Exercise 3

1 2 3 4 5 Exercise

3 4 5 5 8 25 Points

1. No, the system is not linear. Yes, the system is autonomous. Yes, the system is
time-invariant.

2. The unique equilibrium is (0, 0). Linearization at the equilibrium gives[
ẋ1

ẋ2

]
=

[
−1 0
0 −1

] [
x1

x2

]
.

The eigenvalues of the linearized system are −1 with multiplicity 2. Hence, the
system is locally asymptotically stable.

3. The Lie derivative is given by

∇V1(x1, x2)>f(x1, x2) = −2x2
1 + 2x2

1x2 − 2x2
2

Let ε > 0 and ||(x1, x2)|| < ε. Then |x2| ≤ ε. Using this fact in the above expression,
we get

∇V1(x1, x2)>f(x1, x2) ≤ −2x2
1 + 2εx2

1 − 2x2
2.

Now pick ε ∈ (0, 1). Then, ∇V1(x1, x2)>f(x1, x2) ≤ −2(1− ε)x2
1− 2x2

2 < 0 whenever
(x1, y) 6= (0, 0). This leads again to the conclusion using Lyapunov’s second method
that the system is locally asymptotically stable.

4. Note that the Lie derivative is

∇V1(x1, x2)>f(x1, x2) = −2x2
1 + 2x2

1x2 − 2x2
2.

Pick (x1, x2) = (3, 3). The Lie derivative at this point positive (the value is 18). No,
this does not mean that the system is not globally asymptotically stable.

5. The function is V2(x1, x2) = ln(1 + x2
1) + x2

2.

(a) Note that 1 + x2
1 ≥ 1. Using the fact that ln(·) is a non-decreasing function we

get ln(1 + x2
1) ≥ ln(1) = 0. Further x2

2 ≥ 0. Hence V2(x1, x2) ≥ 0. Using these
facts, V2(x1, x2) = 0 implies that (x1, x2) = (0, 0) which is the equilibrium.

(b) Computing the Lie derivative

∇V2(x1, x2)>f(x1, x2) =
2x1

1 + x2
1

(−x1 + x1x2) + 2x2(−x2)

=
−2x2

1 + 2x2
1x2 − 2x2

2 − 2x2
1x

2
2

1 + x2
1

=
−x2

1 − x2
1x

2
2 − 2x2

2 − (x1 − x1x2)2

1 + x2
1

< 0.

From the above expression, we see that the Lie derivative is zero at the equili-
birum (0, 0).

(c) We conclude that the system is globally asymptotically stable.
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Exercise 4

1 2 3 4 Exercise

4 7 7 7 25 Points

1. The transfer function can be computed from the state space representation as follows

G(s) = C(sI −A)−1B

=
[
0 1

] [s+ d k
−1 s

]−1 [
1
0

]
=

1

(s+ d)s+ k

[
0 1

] [s −k
1 s+ d

]−1 [
1
0

]
=

1

s2 + ds+ k

According to the Hurwitz criterion, all roots of a second-degree polynomial P (s) =
s2 + a1s + a0 have negative real part if and only if a1 > 0 and a0 > 0. Therefore,
G(s) is stable if and only if k > 0 and d > 0.

2. Based on the content of the course, there are two possible solutions.

Solution 1:

Because the numerator is constant we can minimize the square of the magnitude of
the denominator D(ω) := k − ω2 + djω instead of maximizing the magnitude of the
transfer function:

d

dω
|D(ω)|2 =

d

dω

√
(k − ω2)2 + (dω)2

2

=
d

dω
(k − ω2)2 + (dω)2.

Next, using the chain rule one obtains

d

dω
(k − ω2)2 + (dω)2 = −4ω(k − ω2) + 2d2ω

= −4

(
ω(k − ω2 − 1

2d
2)

)
= 4ω

(
ω2 − (k − 1

2d
2)

)
.

Solving 4ω
(
ω2 − (k − 1

2d
2)
)

= 0 one obtains the two critical points ω1 = 0 and

ω2 =
√
k − 1

2d
2. Taking the second derivative of the squared magnitude of the

denominator results in

d2

d2ω
|D(ω)|2 =

d

dω
4ω

(
ω2 − (k − 1

2d
2)

)
= 12ω2 − 4(k − 1

2d
2)
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and it follows that d2|D(ω)|2
d2ω

∣∣
ω=ω1

< 0 and d2|D(ω)|2
d2ω

∣∣
ω=ω2

> 0. In other words, ω2

minimizes |D(ω)|2 and it follows that the maximum of |G(jω)| is at ω =
√
k − 1

2d
2.

Solution 2:
Comparing coefficients we obtain

1

s2 + ds+ k
=

K ′ωn

s2 + 2ζωns+ ω2
n

(5)

where K ′ = k−1, ζ = 1
2d

1√
k
, and ωn =

√
k. Considering d2 < 2k it follows that ζ <

1
2

√
2k 1√

k
= 1√

2
. Therefore, the maximum magnitude occurs at ω = ωn

√
1− ζ2 =

√
k
√

1− 1
2
d2

k =
√
k − 1

2d
2.

3. We compute the magnitude of the transfer functions Gi(jω) at ω = 2:

|G1(2j)| = | − 12j|
| − 4 + 12j + 4|

= 1, (6)

|G2(2j)| = |0|
|(2j + 1)2|

= 0, (7)

|G3(2j)| = |1|
| − 1 + 1/2j + 1|

= 2. (8)

Comparing these magnitudes to the amplitude of the zero-state responses depicted
in Figure 1 it can be seen that the zero-state response (d) is consistent with G1(s),
the zero-state response (b) is consistent with G2(s), and the zero-state response (c)
is consistent with G3(s).

4. The transfer function GΣ1(s) has an unstable pole at s = 1. Therefore, the variable
P in the lecture notes of the Nyquist stability criterion is one. This implies that for
stability of the closed loop system we need to satisfy the equation N = −P = −1,
where N denotes the number of clockwise encirclements of the Nyquist curve around
the critical point − 1

K . Therefore we require one counter-clockwise encirclement of
the point − 1

K to ensure stability of the closed loop. By considering the Nyquist
diagram shown in Figure 2 this is ensured when − 1

K < <{p}, i.e, − 1
K < − 1

108 , and
− 1

K > −1/20 hold. In other words, the closed-loop is stable for 20 < K < 108.

7



Signal and System Theory II, BSc, Spring Term 2017 Solution

0 5 10

t (s)

-2

-1

0

1

2

y
(t

)

Zero-state response (a)

0 5 10

t (s)

-2

-1

0

1

2

y
(t

)

Zero-state response (b)

0 5 10

t (s)

-2

-1

0

1

2

y
(t

)

Zero-state response (c)

0 5 10

t (s)

-2

-1

0

1

2

y
(t

)

Zero-state response (d)

Figure 1: Input signal u(t) and zero-state-response.
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Figure 2: Nyquist diagram of the open-loop transfer function of Σ1.
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