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Signal and System Theory II
This sheet is provided to you for ease of reference only.

Do not write your solutions here.

Exercise 1 1 2 3 4 5(a) 5(b) Exercise
5 4 7 3 4 2 25 Points

Consider the model of an averaged Buck converter depicted in Figure 1:
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Figure 1: Buck converter connected to the main grid.

The input voltage Vin is designed to sustain an output voltage V over a local load IL, via an RLC
circuit withR,L,C > 0. The internal current is denoted with I , while the external current flowing
from the main grid is IG.

1. Consider the case where the load and grid currents are constant, IL(t) = IL and IG(t) = IG
for all t ≥ 0. Verify that the Buck converter dynamics can be represented by

ẋ(t) = Ax(t) +Bu(t) + d , (1)

where x(t) =

[
V (t)
I(t)

]
is the state, u(t) = Vin(t) is the input, d is a constant vector, and

the matrices A =

[
0 1/C
−1/L −R/L

]
and B =

[
0

1/L

]
depend on the electrical parameters

of the converter. Moreover, derive a formula for the vector d in terms of IL, IG, and the
parameters R, L, C.

2. Consider the system (1) under a constant input voltage Vin(t) = V in for all t ≥ 0. Compute
the equilibrium point x̄ of system (1) and show that it is unique.
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3. Investigate the stability of the equilibrium point x̄ in part 2.
Hint: Consider the change of coordinates x̃ = x− x̄.

4. Given a desired reference value Vr, select a constant Vin(t) = V in for all t ≥ 0 such that
for system (1) it holds

lim
t→∞

V (t) = Vr .

5. Consider now a constant impedence load IL(t) = Y V (t), where Y > 0 represents the load
impedence, and a time-varying grid current IG(t).

(a) Verify that, under the state-feedback controller Vin(t) = −KI(t), with K > 0,

d

dt
E(V (t), I(t)) ≤ V (t)IG(t) , (2)

where E(V (t), I(t)) = 1
2CV (t)2 + 1

2LI(t)2.

(b) Engineers refer to systems that satisfy inequality (2) as dissipative systems. Can you
guess why? Make explicit reference to the electrical meaning of the terms in (2).
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Exercise 2 1 2 3 4 5 6 7 Exercise
4 4 4 3 3 4 3 25 Points

Consider the following linear time invariant system with parameters α, β ∈ R:

ẋ(t) =

A︷ ︸︸ ︷[
−5 0
α β

]
x(t) +

B︷︸︸︷[
1
1

]
u(t)

y(t) =
[
1 1

]︸ ︷︷ ︸
C

x(t).

1. Find all the values of (α, β) for which there exists a unique solution QT = Q > 0 to the

equation ATQ + QA = −R, where R =

[
2 0
0 1

]
. You are not required to compute the

solution Q. How does the stability of the system under u(t) = 0 depend on α?

2. For which values of (α, β) is the system observable?

3. For which values of (α, β) is the system controllable?

4. Is it possible to find an input u(·) : [0, 1] → R driving the system from x(0) =
[
0 0

]T
to x(1) =

[
10 10

]T for any values of (α, β)? You are not required to compute the input
u(t).

5. Consider a state feedback controller of the form

u(t) = K1x(t) =
[
−α −α

]
x(t).

For which values of (α, β) is the closed loop system (A+BK1) asymptotically stable?

6. Consider a feedback controller of the form

u(t) = K2x(t) =
[
−α 0

]
x(t).

Find the values of (α, β) for which the transfer function of the closed loop system (A +
BK2) has a pole located at −2 and the system is stable, but not asymptotically stable.

7. Consider the case where α < β. Is it possible to find a matrix L ∈ R2 such that the matrix
A− LC has eigenvalues with negative real part?
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Exercise 3 1 2(a) 2(b) 2(c) 3(a) 3(b) Exercise
6 3 3 3 5 5 25 Points

1. Consider the transfer function L(s) = G1(s)K(s), where

G1(s) =
s+ 3

(s+ 1)(s+ 2)
, K(s) =

k

s(s+ 0.1)
,

for some k ∈ R.

The right-hand side of Figure 2 shows the Nyquist plot of L(s) for k = 1 with the closures
at infinity (shown as a dotted line). The left-hand side of Figure 2 shows the contour used
to draw the Nyquist plot, with the poles and the zeros marked with crosses and circles,
respectively. Figure 3 shows the Nyquist plot of L(s) for k = 1 in the vicinity of the origin.

Using the Nyquist criterion, provide the values of k ∈ R that ensure that the closed-loop
transfer function

T (s) =
L(s)

1 + L(s)

is asymptotically stable.
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Figure 2: Nyquist plot of L(s) with closures (right), and contour used to draw it (left).
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Figure 3: Nyquist plot of L(s) near the origin. The cross shows the point (−1, 0).

2. Consider the transfer function

G2(s) =
5

s(s+ 5)(s+ 3)
.

The Bode plot of G2(s) is provided in Figure 4.

(a) Compute the gain margin of G2(s) analytically.

Hint: You can use the fact that Im(G2(jω)) = 0 for ω =
√

15 rad/s without verifying
it.

(b) Using the final value theorem, compute limt→∞ y1(t), where y1(t) is the impulse
response of G2(s).

(c) Using the final value theorem, study limt→∞ y2(t), where y2(t) is the step response of
G2(s).
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Figure 4: Bode diagram of G2(s).

3. Figure 5 shows the Bode plot of a transfer function G3(s).

(a) Sketch the Nyquist plot of G3(s).

(b) We know that the transfer function G3(s) has the form

G3(s) =
(s− 1)nz

(s+ p)np
,

with p ∈ {−1,+1}, and nz, np ∈ N.

Using the Bode plot in Figure 5, provide the values of nz, np, and determine whether
p = +1 or p = −1.
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Figure 5: Bode diagram of G3(s).
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Exercise 4 1 2 3 4 5 Exercise
3 6 7 7 2 25 Points

For x1(t), x2(t), a ∈ R and t ≥ 0 consider the system

ẋ1(t) = x2(t) ,

ẋ2(t) = −2x1(t)− 2ax2(t)− 4x31(t) .
(3)

1. Prove that for all a ∈ R the system (3) has a unique equilibrium point x̂ = (0, 0).

2. Consider the case a ∈ [−
√

2,
√

2]. Study the stability of the equilibrium point x̂ = (0, 0)
using linearization. What conclusions can be drawn when a = 0, when a ∈ (0,

√
2] and

when a ∈ [−
√

2, 0)?

3. Consider now the case a ≥ 0. Using the Lyapunov function

V (x(t)) = 4x21(t) + 2x22(t) + 4x41(t) ,

show that the equilibrium x̂ = (0, 0) is stable. Can you also determine whether x̂ is asymp-
totically stable using the same Lyapunov function?

4. Consider now the case a > 0, the same Lyapunov function as in Task 3, and the set

S =
{
x(t) ∈ R2 |V (x) ≤ ε

}
,

for an arbitrary ε > 0. Prove that M = {(0, 0)} is the largest invariant set contained in the
set

S̄ =
{
x(t) ∈ S

∣∣ V̇ (x(t)) = 0
}
.

Can we conclude that x̂ = (0, 0) is globally asymptotically stable?

Hint: You may assume that S is compact and invariant. Note that ε can be chosen arbitrarily
large and V (x)→∞ whenever ‖x‖ → ∞.

5. Figure 6 shows a phase plane plot of the trajectories for system (3) when a = 0. What can
you conclude about the stability of the equilibrium x̂ = (0, 0)?
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Figure 6: Trajectories portrait of system (3) when a = 0.
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