Automatic Control Laboratory ETH Zurich Prof. J. Lygeros D-ITET Spring Semester 2023 19.08.2023

Signal and System Theory II

This sheet is provided to you for ease of reference only. *Do not* write your solutions here.

Exercise 1	1	2	3	4	5 (a)	5(b)	Exercise
	5	4	7	3	4	2	25 Points

Consider the model of an averaged Buck converter depicted in Figure 1:

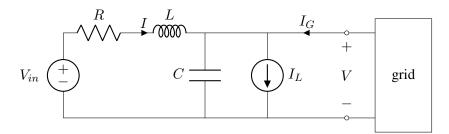


Figure 1: Buck converter connected to the main grid.

The input voltage V_{in} is designed to sustain an output voltage V over a local load I_L , via an RLC circuit with R, L, C > 0. The internal current is denoted with I, while the external current flowing from the main grid is I_G .

1. Consider the case where the load and grid currents are constant, $I_L(t) = \overline{I}_L$ and $I_G(t) = \overline{I}_G$ for all $t \ge 0$. Verify that the Buck converter dynamics can be represented by

$$\dot{x}(t) = Ax(t) + Bu(t) + d, \qquad (1)$$

where $x(t) = \begin{bmatrix} V(t) \\ I(t) \end{bmatrix}$ is the state, $u(t) = V_{in}(t)$ is the input, d is a constant vector, and the matrices $A = \begin{bmatrix} 0 & 1/C \\ -1/L & -R/L \end{bmatrix}$ and $B = \begin{bmatrix} 0 \\ 1/L \end{bmatrix}$ depend on the electrical parameters of the converter. Moreover, derive a formula for the vector d in terms of \overline{I}_L , \overline{I}_G , and the parameters R, L, C.

2. Consider the system (1) under a constant input voltage $V_{in}(t) = \overline{V}_{in}$ for all $t \ge 0$. Compute the equilibrium point \overline{x} of system (1) and show that it is unique.

- 3. Investigate the stability of the equilibrium point \bar{x} in part 2. Hint: Consider the change of coordinates $\tilde{x} = x - \bar{x}$.
- 4. Given a desired reference value V_r , select a constant $V_{in}(t) = \overline{V}_{in}$ for all $t \ge 0$ such that for system (1) it holds

$$\lim_{t \to \infty} V(t) = V_r \, .$$

- 5. Consider now a constant impedence load $I_L(t) = YV(t)$, where Y > 0 represents the load impedence, and a time-varying grid current $I_G(t)$.
 - (a) Verify that, under the state-feedback controller $V_{in}(t) = -KI(t)$, with K > 0,

$$\frac{d}{dt}E(V(t), I(t)) \le V(t)I_G(t), \qquad (2)$$

where $E(V(t), I(t)) = \frac{1}{2}CV(t)^2 + \frac{1}{2}LI(t)^2$.

(b) Engineers refer to systems that satisfy inequality (2) as *dissipative systems*. Can you guess why? Make explicit reference to the electrical meaning of the terms in (2).

Exercise 2

1	2	3	4	5	6	7	Exercise
4	4	4	3	3	4	3	25 Points

Consider the following linear time invariant system with parameters $\alpha, \beta \in \mathbb{R}$:

$$\dot{x}(t) = \overbrace{\begin{bmatrix} -5 & 0 \\ \alpha & \beta \end{bmatrix}}^{A} x(t) + \overbrace{\begin{bmatrix} 1 \\ 1 \end{bmatrix}}^{B} u(t)$$
$$y(t) = \underbrace{\begin{bmatrix} 1 & 1 \end{bmatrix}}_{C} x(t).$$

- 1. Find all the values of (α, β) for which there exists a unique solution $Q^T = Q > 0$ to the equation $A^TQ + QA = -R$, where $R = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$. You are not required to compute the solution Q. How does the stability of the system under u(t) = 0 depend on α ?
- 2. For which values of (α, β) is the system observable?
- 3. For which values of (α, β) is the system controllable?
- 4. Is it possible to find an input $u(\cdot) : [0,1] \to \mathbb{R}$ driving the system from $x(0) = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ to $x(1) = \begin{bmatrix} 10 & 10 \end{bmatrix}^T$ for any values of (α, β) ? You are not required to compute the input u(t).
- 5. Consider a state feedback controller of the form

$$u(t) = K_1 x(t) = \begin{bmatrix} -\alpha & -\alpha \end{bmatrix} x(t).$$

For which values of (α, β) is the closed loop system $(A + BK_1)$ asymptotically stable?

6. Consider a feedback controller of the form

$$u(t) = K_2 x(t) = \begin{vmatrix} -\alpha & 0 \end{vmatrix} x(t)$$

Find the values of (α, β) for which the transfer function of the closed loop system $(A + BK_2)$ has a pole located at -2 and the system is stable, but not asymptotically stable.

7. Consider the case where $\alpha < \beta$. Is it possible to find a matrix $L \in \mathbb{R}^2$ such that the matrix A - LC has eigenvalues with negative real part?

Exercise 3

1	2(a)	2(b)	2(c)	3 (a)	3(b)	Exercise
6	3	3	3	5	5	25 Points

1. Consider the transfer function $L(s) = G_1(s)K(s)$, where

$$G_1(s) = \frac{s+3}{(s+1)(s+2)}, \quad K(s) = \frac{k}{s(s+0.1)},$$

for some $k \in \mathbb{R}$.

The right-hand side of Figure 2 shows the Nyquist plot of L(s) for k = 1 with the closures at infinity (shown as a dotted line). The left-hand side of Figure 2 shows the contour used to draw the Nyquist plot, with the poles and the zeros marked with crosses and circles, respectively. Figure 3 shows the Nyquist plot of L(s) for k = 1 in the vicinity of the origin.

Using the Nyquist criterion, provide the values of $k \in \mathbb{R}$ that ensure that the closed-loop transfer function

$$T(s) = \frac{L(s)}{1 + L(s)}$$

is asymptotically stable.

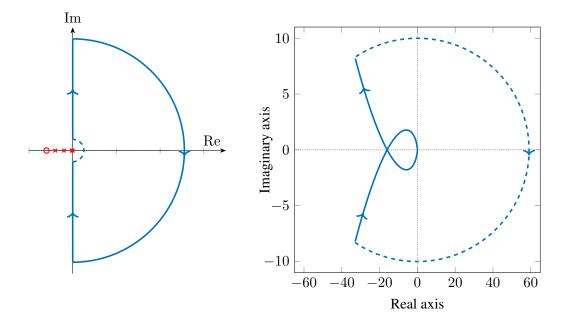


Figure 2: Nyquist plot of L(s) with closures (right), and contour used to draw it (left).

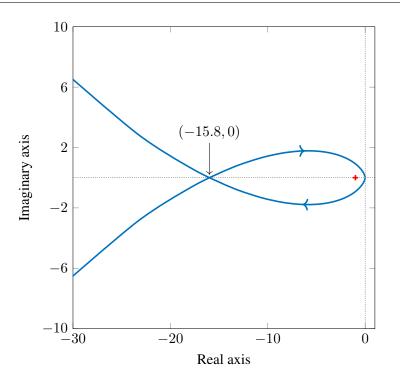


Figure 3: Nyquist plot of L(s) near the origin. The cross shows the point (-1, 0).

2. Consider the transfer function

$$G_2(s) = \frac{5}{s(s+5)(s+3)}$$

The Bode plot of $G_2(s)$ is provided in Figure 4.

(a) Compute the gain margin of $G_2(s)$ analytically.

Hint: You can use the fact that $\text{Im}(G_2(j\omega)) = 0$ for $\omega = \sqrt{15}$ rad/s without verifying it.

- (b) Using the final value theorem, compute $\lim_{t\to\infty} y_1(t)$, where $y_1(t)$ is the impulse response of $G_2(s)$.
- (c) Using the final value theorem, study $\lim_{t\to\infty} y_2(t)$, where $y_2(t)$ is the step response of $G_2(s)$.

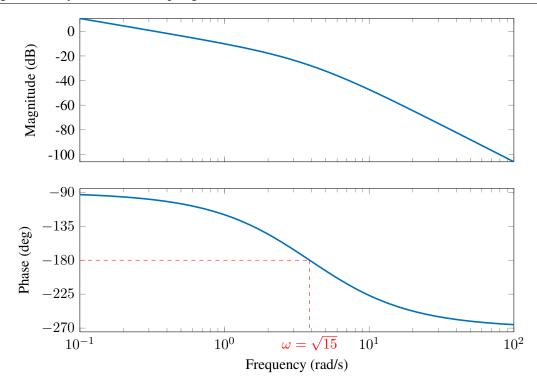


Figure 4: Bode diagram of $G_2(s)$.

- 3. Figure 5 shows the Bode plot of a transfer function $G_3(s)$.
 - (a) Sketch the Nyquist plot of $G_3(s)$.
 - (b) We know that the transfer function $G_3(s)$ has the form

$$G_3(s) = \frac{(s-1)^{n_z}}{(s+p)^{n_p}},$$

with $p \in \{-1, +1\}$, and $n_z, n_p \in \mathbb{N}$.

Using the Bode plot in Figure 5, provide the values of n_z, n_p , and determine whether p = +1 or p = -1.

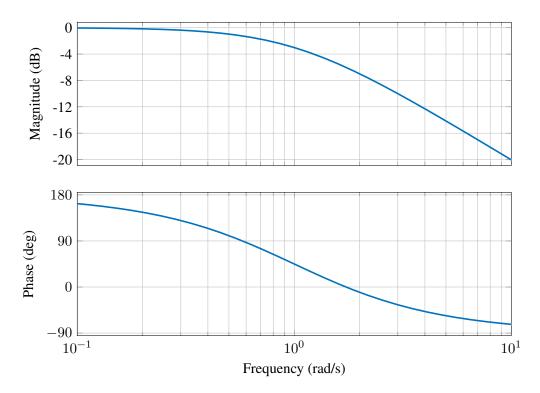


Figure 5: Bode diagram of $G_3(s)$.

Exercise 4

1	2	3	4	5	Exercise
3	6	7	7	2	25 Points

For $x_1(t)$, $x_2(t)$, $a \in \mathbb{R}$ and $t \ge 0$ consider the system

$$\dot{x}_1(t) = x_2(t), \dot{x}_2(t) = -2x_1(t) - 2ax_2(t) - 4x_1^3(t).$$
(3)

- 1. Prove that for all $a \in \mathbb{R}$ the system (3) has a unique equilibrium point $\hat{x} = (0, 0)$.
- 2. Consider the case $a \in [-\sqrt{2}, \sqrt{2}]$. Study the stability of the equilibrium point $\hat{x} = (0, 0)$ using linearization. What conclusions can be drawn when a = 0, when $a \in (0, \sqrt{2}]$ and when $a \in [-\sqrt{2}, 0)$?
- 3. Consider now the case $a \ge 0$. Using the Lyapunov function

$$V(x(t)) = 4x_1^2(t) + 2x_2^2(t) + 4x_1^4(t)$$

show that the equilibrium $\hat{x} = (0,0)$ is stable. Can you also determine whether \hat{x} is asymptotically stable using the same Lyapunov function?

4. Consider now the case a > 0, the same Lyapunov function as in Task 3, and the set

$$S = \left\{ x(t) \in \mathbb{R}^2 \,|\, V(x) \le \epsilon \right\} \,,$$

for an arbitrary $\epsilon > 0$. Prove that $M = \{(0,0)\}$ is the largest invariant set contained in the set

$$\bar{S} = \left\{ x(t) \in S \, \big| \, \dot{V}(x(t)) = 0 \right\} \, .$$

Can we conclude that $\hat{x} = (0, 0)$ is globally asymptotically stable?

Hint: You may assume that S is compact and invariant. Note that ϵ can be chosen arbitrarily large and $V(x) \to \infty$ whenever $||x|| \to \infty$.

5. Figure 6 shows a phase plane plot of the trajectories for system (3) when a = 0. What can you conclude about the stability of the equilibrium $\hat{x} = (0, 0)$?

