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Do not write your solutions here.

Exercise 1

1 2 3 4 5 6 7 Exercise

4 4 4 5 2 2 4 25 Points

Schwizerdütsch businessman Elön Müsk wants to hire a control theorist who knows how
to land rockets, so that he can compete with the SBB–CFF–FFS on a new public transit
initiative.
Your task is to model the rocket in Figure 1 with an engine at the bottom of the rocket,
and two thrusters at the top of the rocket. The white–and–black circle denotes the center
of gravity of the rocket.
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Figure 1: Elön Müsk’s rocket. Only forces from the engine and thrusters are shown.

Quantities:

• m: Mass of the rocket

• J : Moment of inertia about the center of gravity of the rocket
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• FS : Net force from the two thrusters (FS > 0 means that the left thruster is firing,
FS < 0 means that the right thruster is firing).

• FE : Force from engine

• θ: Angle of rocket to z-axis

• l1: Distance from the bottom of the rocket (top of the engine) to the center of mass
of the rocket

• l2: Distance from the center of mass of the rocket to the thrusters

• ln: Length of the engine nozzle

1. Using the free-body diagram in Figure 1, write a differential equation for ẍ.
Hint: Use Newton’s Third Law.

2. Using the free-body diagram in Figure 1, write a differential equation for z̈.
Hint: Don’t forget gravity.

3. Using the free-body diagram in Figure 1, write a differential equation for θ̈. Assume
that the force from the engine is applied to the base of the nozzle.
Hint: Use the other Newton’s Third Law, the one for rotational motion.

4. Notice that since rockets tend to point upwards, the angle θ is small. Convert
the above equations for ẍ, z̈, θ̈ into a much simpler form using the small angle
approximation:

cos(α) ≈ 1, sin(α) ≈ α for small angles α

5. The inputs to the system are the thruster forces (FE , FS). Let u = [FE , FS ]T . Solve
the approximate system in part 4 for the equilibrium input, i.e. the u such that
ẍ = z̈ = θ̈ = 0 – solve this for the arbitrary equilibrium point xe, ze, θe. Does your
solution actually allow θe to be arbitrary? What is the physical interpretation of
this input? When is this interpretation valid?

6. Finally, by substituting ẋ = vx, ż = vz, θ̇ = vθ, write everything neatly into a
(possibly non-linear) state-space model of the form

ẋ
v̇x
ż
v̇z
θ̇
v̇θ

 = f(x, ẋ, z, ż, θ, θ̇, FE , FS)

7. Assume that the rocket is in deep space, far away from the influence of any heavenly
bodies. Elön Müsk has linearized the system about the origin, but forgot to compute
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the B matrix. The A matrix is:

A =



0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 .

(a) Compute the B matrix. Is the resulting system controllable?

(b) Suppose you have two sensors. Sensor 1 measures vx, z, and θ. Sensor 2 mea-
sures x, z, and θ. Write down the correct C matrices for each sensor. Is the
system observable using Sensor 1? Is the system observable using Sensor 2?

Exercise 2

1 2 3 4 5 Exercise

4 3 3 6 9 25 Points

Consider the LTI system

ẋ(t) =

[
a1 a2
a3 a4

]
︸ ︷︷ ︸

A

x(t) +

[
1
1

]
u(t)

y(t) =
[
0 1

]
x(t)

(1)

where x(t) ∈ R2, u(t) ∈ R and a1, a2, a3, a4 ∈ R.

1. For which values of a1, a2, a3, a4 is system (1) controllable? For which values of
a1, a2, a3, a4 is system (1) observable?

Assume now that a1 = 1, a2 = 1, a3 = 0, a4 = 2.

2. Find the set of points [x1, x2]
> ∈ R2 that are observable.

3. Find the set of points [x1, x2]
> ∈ R2 that can be reached at time t = 1 from initial

condition x(0) = [0, 0]> using a controller u : [0, 1]→ R, i.e., find the set

X =

{[
x1
x2

]
∈ R2

∣∣∣∣ ∃ u : [0, 1]→ R s.t. x(0) =

[
0
0

]
and x(1) =

[
x1
x2

]}
.

4. Find the matrix exponential eAt for t ∈ R.

5. Is it possible to find a controller u : [0, 1] → R that steers system (1) from x(0) =
[0, 0]> to x(1) = [1, 1]>? If so, find a controller that does this. If not, justify your
reason.
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Exercise 3

1 2 3 4 5 6 Exercise

4 5 4 4 5 3 25 Points

Consider the following dynamical system

ẋ(t) = rx(t)− x3(t), (2)

where x(t) ∈ R is the state variable and r ∈ R is a scalar parameter.

1. Determine all the equilibria of system (2) for r < 0, r = 0 and r > 0.

2. Analyse the stability of all found equilibria with the linearization method (Lya-
punov’s indirect method).

3. Analyse the stability of the equilibrium associated to r = 0 with Lyapunov’s direct
method.
Hint: Use a quadratic candidate Lyapunov function.

4. Show that the stable equilibrium associated to r < 0 is globally asymptotically
stable. Can you make the same conclusion for the stable equilibrium associated to
r = 0? And for r > 0?

5. Depict, in the r − x plane, all found equilibria as a function of the parameter r.
Draw the stable equilibria with solid lines, and the unstable equilibria with dashed
lines. Finally, sketch some sample trajectories to show qualitatively the behaviour
of system (2) in each sector r < 0, r = 0 and r > 0.

6. The plot you obtained in the previous task is called bifurcation diagram. Now link
the following three dynamical systems to the corresponding bifurcation diagram in
Fig. 2, by ticking the correct boxes below.

• ẋ(t) = rx(t) + x3(t) a b c d none

• ẋ(t) = −rx(t) + x3(t) a b c d none

• ẋ(t) = −rx(t)− x3(t) a b c d none
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Figure 2: Bifurcation diagrams. The solid lines are stable equilibria and the dashed lines
are unstable equilibria.

Exercise 4

1 2 3 4 5 Exercise

3 6 6 4 6 25 Points

Consider the linear system

Σ1 :
ẋ1(t) = Ax1(t) +B u1(t)

y1(t) = C x1(t) +Du1(t)

given by the matrices

A =

[
−2 −5
1 a

]
, B =

[
1
0

]
, C =

[
0 1

]
, D = 0

where a ∈ R is a system parameter.

1. Compute the transfer function G1(s) of the system Σ1.
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2. Based only on your answer in Part 1:

(a) Determine the values of the parameter a for which the system Σ1 is critically
damped.
Hint: A second order system is critically damped when its poles are real and
equal.

(b) Find the natural frequency of the linear system Σ1 in terms of the parameter
a.

(c) Determine the value of a for which y1(t) is unbounded for u1(t) = 3 sin(t).

Next, consider the system Σ1 connected to a controller Σ2 as shown in Figure 3.

Σ2 Σ1

r(t) +

e(t) = r(t) − y1(t)

= u2(t)

y2(t) = u1(t)

y1(t)

−

Figure 3: Feedback system

3. Consider the controller Σ2 : y2(t) = Ke(t) and let a = −10.

(a) Compute the closed loop transfer function.

(b) For which values of K can one guarantee stability of the closed loop shown in
Figure 3?

Now, consider an LTI system with the transfer function F (s) with input signal u(t) and
output signal y(t), i.e. Y (s) = F (s)U(s). Corresponding to

u(t) =

{
0 t < 0

1 t ≥ 0

the zero-state response y0(t) is a ramp signal,

y0(t) =

{
0 t < 0

t t ≥ 0

4. Find the Laplace transform of y0(t) and the transfer function F (s).

5. Find the Laplace transform of

yb(t) =


0 t < 0

t 0 ≤ t ≤ 1

2− t 1 < t ≤ 2

0 t > 2

Hint: You can express yb(t) as a sum of time-shifted ramp signals y0(t). Also,
L{y0(t− c)} = e−csY0(s) for c > 0, where L denotes the Laplace transform.
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