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3 4 3 3 6 6 25 Points

Your task is to design a lane keeping state feedback controller for the bicycle model shown
below.
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Figure 1: Bicycle model with corresponding model parameters. (x, y) position of rear
wheel axle in the global coordinate frame, v: speed of rear wheel in the direction it is
pointing (forward velocity), φ: steering angle, `: bicycle length, θ: angle of the bicycle
with respect to the x axis.

The rear axle kinematics model of the bicycle in Figure 1 is given by

ẋ = v cos(θ) (1)

ẏ = v sin(θ) (2)

θ̇ =
v

`
tan(φ) (3)

Throughout the exercise, we assume that we are operating at constant forward velocity
v = v̄ and are interested in controlling the steering angle, θ, so that the bicycle tracks the
lane.

1



Signals and Systems II, BSc, Spring Term 2021

1. Linearize the dynamics (1)-(3) around θ = 0, using u = tan(φ) as the input. Write
down the resulting dynamics.

Hint: cos(α) ' 1, sin(α) ' α for small α.

2. Use the forward Euler approximation with the discretization time δ to derive the
discrete-time dynamics in the state zk = [xk yk θk]T and input uk. Write out the
resulting system of equations.

3. For lane keeping, we would like the bicycle to move forward in the x direction with
a constant offset ȳ in the y direction. This means that we would like to track a
reference trajectory zrk = [xrk y

r
k θ

r
k]T given by

xrk+1 = xrk + δv̄, (4)

yrk = ȳ. (5)

θrk = 0, (6)

For the rest of the exercise, set δ = 0.2, v̄ = 10, and ` = 1.

(a) Using the model in Part 2., show that the dynamics of the tracking error z̃k =

zk − zrk =
[
x̃k ỹk θ̃k

]T
are given by

x̃k+1

ỹk+1

θ̃k+1

 =

1 0 0
0 1 2
0 0 1

x̃kỹk
θ̃k

+

0
0
2

uk. (7)

(b) Is the system with zero input asymptotically stable?

Hint: Remember that this is a discrete time system!

(c) Show that the resulting system is uncontrollable. Determine the reachable
space and the uncontrollable modes. Is the system stabilisable? Which of
the modelling approximations introduced above could have caused this loss of
controllability?

Hint: Eigenvalues with negative real part in continuous time correspond to
eigenvalues with magnitude less than one in discrete time.

4. Finally, we want to design a state feedback controller of the form

uk =
[
0 p

2 −1
2

] x̃kỹk
θ̃k

 . (8)

To stabilise the states (ỹk, θ̃k) in the error dynamics (8). p is a controller gain, to be
determined. Determine the value of p so the closed-loop system has two poles at 0.5
and one pole at 1. Comment on the stability of the resulting discrete-time system.

2



Signals and Systems II, BSc, Spring Term 2021

Exercise 2 1(a) 1(b) 1(c) 1(d) 2(a) 2(b) 2(c) Exercise

3 3 4 3 4 4 4 25 Points

1. Consider the following dynamical system:

ẋ1(t) = ax1(t) + bx2(t) + u(t)

ẋ2(t) = cx1(t) + dx2(t)

y(t) = x1(t).

(a) For which values of a, b, c, d is the system observable?

(b) For which values of a, b, c, d is the system controllable?

(c) Consider the case a = 1, b = 0, c = −2, d = −1 and a feedback law u(t) = Kx(t)
with K =

[
k 0

]
. For which values of k is the closed-loop system asymptotically

stable? Which values of k lead to the fastest convergence rate?

(d) Thinking back to your answer in Part (a), can the controller that achieves the
fastest convergence rate in Part (c) be implemented using output feedback and
an observer?

2. Consider the state-space system ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t) defined
by:

A =

2 6 0
0 −8 0
6 −4 −4

 B =
[
4 0 0

]>
C =

[
2 0 0

]
D = 0.

(a) Is the system stable?
Hint: Start the determinant calculation with the last column of the matrix.

(b) Is the system detectable?

(c) Is the system stabilisable?
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Exercise 3 1(a) 1(b) 1(c) 1(d) 2(a) 2(b) Exercise

4 4 4 8 3 2 25 Points

1. Consider the dynamical system defined with the following differential equation

z̈(t) + aż(t) + bz(t) = u(t), (9)

where u(t) is the control input and the measured output of the system is y(t) = ż(t).

(a) By defining an appropriate state x(t), write the system in the state-space form

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t).

(b) Show that the transfer function of the system is

G(s) =
s

s2 + as+ b
.

(c) Use G(s) to compute the impulse response of the system for (a, b) = (4, 0) and
the step response for (a, b) = (0, 4)?

Hint: Recall that the step and impulse responses are zero state responses of
the system to a step and an impulse input respectively.

(d) Figure 2 shows the Bode plots of four transfer functions G1(s), G2(s), G3(s) and
G4(s). Determine which transfer function corresponds to which of the following
values of a and b:

i. (a, b) = (2,−3),

ii. (a, b) = (3, 0),

iii. (a, b) = (4, 3),

iv. (a, b) = (0.1, 9).
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Figure 2: Bode plots of the transfer function G(s) for different values of the parameters a
and b.

2. The transfer function Gl(s) = s+1
s2+3s+9

is put in a feedback loop with a proportional
controller with gain K. The Nyquist plot of Gl(s) is given in Figure 3.
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Figure 3: Nyquist plot of Gl(s).

(a) Is the closed loop system stable for the control gain K = −2?

(b) How will the decrease of the gain K affect the stability of the system?
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Exercise 4 1 2 3 4(a) 4(b) 4(c) 4(d) Exercise

3 4 4 4 2 4 4 25 Points

Consider the following system with parameters a > 0, and b > 0

ẋ1(t) = −x1(t) + bx1(t)x2(t)

ẋ2(t) = −2x2(t)− bx1(t)x2(t) + a.

1. Is the system linear? Is it time-invariant? Is the system autonomous? Provide a
short justification for each of these points.

2. Show that if a 6= 2
b the system has two equilibria at x =

[
0
a
2

]
and x̃ =

[
a− 2

b
1
b

]
.

3. For a 6= 2
b analyze the stability of the two equilibria using linearization.

Hint: Stability may depend on the relation between a and b.

4. Note that if a = 2
b there is a unique equilibrium at x =

[
0
a
2

]
. Consider this case and

assume that initially x1(0) ≥ 0 and x2(0) ≥ 0.

(a) Show that the set S = {x | x1 ≥ 0, x2 ≥ 0} is invariant.

Hint: Consider what happens on the boundary of the set, where either x1 = 0
or x2 = 0.

(b) Can you determine the stability of the equilibrium x using linearization?

(c) Consider the Lyapunov function

V (x) = x1 + x2 −
a

2
ln(x2)

and some number c > 0. Show that the set Sc = {x ∈ S | V (x) ≤ c} is invariant.

Hint: Analyze the derivative of V (x).

(d) Show that all trajectories starting in Sc converge to the equilibrium point x
using LaSalle’s theorem. You may assume that the set Sc is compact.
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