Automatic Control Laboratory ETH Zurich Prof. J. Lygeros D-ITET Winter 2023-2024 16.02.2024

Signal and System Theory II

This sheet is provided to you for ease of reference only. *Do not* write your solutions here.

Exercise 1					ſ	1	2	3	4	5	Exercise
LACICISC 1						5	3	5	6	6	25 Points
								I		m	
								l I			T
								l I		/	/
						_		$ \theta $	$\overset{(t)}{\checkmark}$	/	l
		_				╞			$- I_{\tau}$. /	
			_^	$ \land \land $	/				$ _{l}$	/	
			k	• • •				1	$\left \right \frac{l}{2}$	/	
									[]		
				/ / /				7		/	

Figure 1: Inverted pendulum connected to a wall by a spring and a damper.

The inverted pendulum depicted in Figure 1 consists of a point mass m attached to the top of a weightless rod of length l. The middle of the rod is connected to a wall through a spring-damper system with spring constant k and damping coefficient d, and to the ground by a pivot. The spring is at a rest position when $\theta(t) = 0$, where $\theta(t)$ is the angular displacement of the rod. For simplicity, vertical movements are neglected.

The system dynamics are described by the following equation:

$$ml^2\ddot{\theta}(t) = mgl\sin(\theta(t)) - \frac{l}{2}\cos(\theta(t))F(t)$$
(1)

where F(t) is the force resulting from the spring-damper system.

1. Verify that the force F(t) exerted by the spring-damper system as a function of $\theta(t)$ and $\dot{\theta}(t)$ is given by:

$$F(t) = \frac{kl}{2}\sin(\theta(t)) + \frac{dl}{2}\cos(\theta(t))\dot{\theta}(t).$$
(2)

- 2. Is the system linear or nonlinear? Is it a first or a second order system? Is it autonomous? Justify your answers.
- 3. Assume that $\frac{4mg}{kl} < 1$ and calculate all equilibria of system (1).
- 4. Choose $x(t) = \begin{bmatrix} \theta(t) & \dot{\theta}(t) \end{bmatrix}^{\top}$ and show that the system can be described by the following linear time-invariant dynamics when linearizing it around the origin.

$$\dot{x}(t) = A x(t) = \begin{bmatrix} 0 & 1\\ \frac{g}{l} - \frac{k}{4m} & \frac{-d}{4m} \end{bmatrix} x(t)$$
(3)

5. Assume now that m = 0.25 and l = g. For which values of k and d is the linearised system in (3) asymptotically stable? What can you deduce about the stability of the origin for the nonlinear system (1)-(2)?

Exercise 2

1	2	3	4	5	6	7	Exercise
3	4	4	4	3	3	4	25 Points

Consider the following linear time invariant system with parameter $\alpha \in \mathbb{R}$:

$$\dot{x}(t) = \underbrace{\begin{bmatrix} 1 & 1 \\ 0 & \alpha \end{bmatrix}}_{C} x(t) + \underbrace{\begin{bmatrix} 1 \\ 1 \end{bmatrix}}_{C} u(t)$$
$$y(t) = \underbrace{\begin{bmatrix} \alpha & -1 \end{bmatrix}}_{C} x(t).$$
(4)

- 1. Consider the input u(t) = 0. For which values of α is system (4) asymptotically stable, stable, and unstable?
- 2. For which values of α is system (4) observable?
- 3. For which values of α is system (4) controllable?
- 4. For which values of α is it possible to find an input $u(\cdot) : [0,1] \to \mathbb{R}$ driving system (4) from $x(0) = \begin{bmatrix} 3 & 3 \end{bmatrix}^T$ to $x(1) = \begin{bmatrix} 4 & 4 \end{bmatrix}^T$?
- 5. Consider a state feedback controller of the form

$$u(t) = Kx(t) = \begin{bmatrix} -\alpha & -1 \end{bmatrix} x(t),$$
(5)

and a second linear time invariant system

$$\dot{x}(t) = \underbrace{\begin{bmatrix} 1 & 1 \\ 0 & \alpha + 1 \end{bmatrix}}_{C} x(t) + \underbrace{\begin{bmatrix} 1 \\ 1 \end{bmatrix}}_{C} u(t)$$
$$y(t) = \underbrace{\begin{bmatrix} \alpha & -1 \end{bmatrix}}_{C} x(t).$$
(6)

Are there values of α for which both closed loop systems $(A_1 + BK)$ and $(A_2 + BK)$ are asymptotically stable? If yes, which ones?

- 6. For the remainder of this exercise, consider the case where $\alpha = 1$. Find all points at which the closed loop system $(A_1 + BK)$ is at equilibrium. Find all points at which the closed loop system $(A_2 + BK)$ is at equilibrium. Are there points $\hat{x} = \begin{bmatrix} \hat{x}_1 & \hat{x}_2 \end{bmatrix}^T$ at which both closed loop systems $(A_1 + BK)$ and $(A_2 + BK)$ are at equilibrium? If yes, state the values of \hat{x} .
- 7. For the \hat{x} determined in Part 6, both closed loop systems $(A_1 + BK)$ and $(A_2 + BK)$ are initialized at $x_{\epsilon}(0) = \begin{bmatrix} \hat{x}_1 + \epsilon & \hat{x}_2 \end{bmatrix}^T$, with $\epsilon \neq 0$. Will the two systems return to \hat{x} or diverge? Based on this observation, comment on the stability of the two systems.

Exercise 3

1	2(a)	2(b)	2(c)	3 (a)	3(b)	Exercise
4	4	3	3	5	6	25 Points

1. Consider the linear time-invariant system given by

$$\dot{x}(t) = \begin{bmatrix} -3 & -2\\ 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 2\\ 0 \end{bmatrix} u(t),$$

$$y(t) = \begin{bmatrix} \frac{1}{2} & -1 \end{bmatrix} x(t).$$
(7)

Show that the transfer function G(s) of system (7) from the input u(t) to the output y(t) is given by

$$G(s) = \frac{s-2}{(s+1)(s+2)}$$

2. The system with transfer function G(s) in Part 1 is controlled by a proportional feedback controller K(s) = k, with $k \in \mathbb{R}$. The closed-loop system is shown in Figure 2.

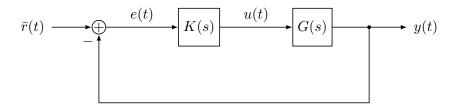


Figure 2: Proposed control architecture.

(a) Show that the transfer function $T_1(s)$ from the input $\bar{r}(t)$ to the output y(t) is given by

$$T_1(s) = \frac{k(s-2)}{s^2 + s(3+k) + 2 - 2k}$$

- (b) For what values of $k \in \mathbb{R}$ is the closed loop system asymptotically stable?
- (c) Assuming the closed loop system is asymptotically stable, compute the steady-state value of its step response as a function of k.
- 3. Your colleague from EPFL proposes a modification of the control architecture. His idea is to use a second controller $K_{\rm ff}(s)$ in combination with K(s) as shown in Figure 3.

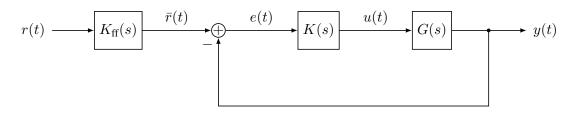


Figure 3: The architecture proposed by your colleague from EPFL.

You colleague suggests using k = 1 and

therefore bounded in practice.

$$K_{\rm ff}(s) = \frac{s}{s-2}.$$

However, you have doubts about his proposal and would like to verify it.

- (a) Compute the transfer functions $T_2(s)$ from r(t) to y(t) and $T_3(s)$ from r(t) to u(t).
- (b) Compute the step response of $T_3(s)$. Do you think the solution proposed by your colleague should be deployed on the real system? *Hint*: remember that u is the physical input to a real system (e.g., voltage, torque) and

Exercise 4

1	2	3	4(a)	4(b)	Exercise
3	7	6	6	3	25 Points

Consider the system

$$\dot{x}_1(t) = x_2(t) ,$$

$$\dot{x}_2(t) = -x_2(t) \left(x_1(t) - 2 \right)^2 - x_1(t) \left(x_1^2(t) - 4 \right) .$$
(8)

- 1. Determine all equilibria of the system.
- 2. Consider the function $V(x(t)) = \frac{1}{4}x_1(t)^2 (x_1^2(t) 8) + \frac{1}{2}x_2^2(t)$. Can you use it to show that all state trajectories of the system converge to an equilibrium point?

Hint: You may assume that $S = \{x(t) \in \mathbb{R}^2 \mid V(x) \leq K\}$ with arbitrary $K \geq 0$ is a compact invariant set and that $V \to \infty$ as $|x| \to \infty$.

- 3. What can we conclude about the stability of $\hat{x} = (0,0)$ by using linearization?
- 4. Consider the function U(x(t)) = V(x(t)) + 4 where V(x(t)) is as in Part 2. The function U(x(t)) is plotted in Figures 4 and 5.

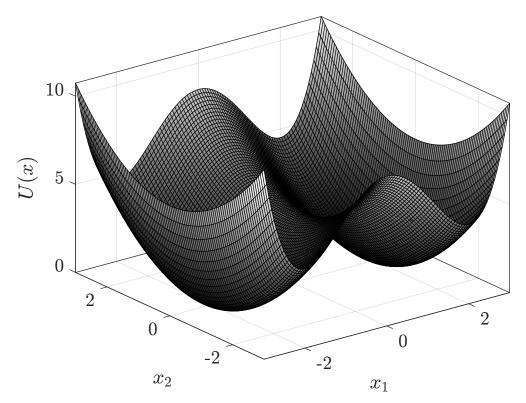


Figure 4: 3D representation of U(x).

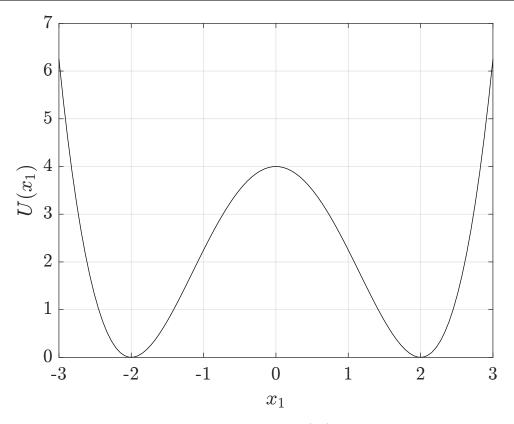


Figure 5: 2D representation of $U(x_1)$ for $x_2 = 0$.

(a) Using U(x) or otherwise, show that the points $\hat{x} = (\pm 2, 0)$ are locally asymptotically stable equilibria.

Hint: Given the shape of U(x) in Figure 4, you may assume that there exist open sets S_1 and S_2 each containing one of the equilibria in question and no other equilibrium.

(b) Estimate the domains of attraction of each of the two equilibria $\hat{x} = (\pm 2, 0)$.