
The text font of “Automatic Control Laboratory” is DIN Medium

C = 100, M = 83, Y = 35, K = 22

C = 0, M = 0, Y = 0, K = 60

Logo on dark background

K = 100

K = 60

pantone 294 C

pantone Cool Grey 9 C

Introduction to MATLAB

Signals and Systems II, Spring 2025

Professor John Lygeros
Automatic Control Laboratory
ETH Zürich

Send any typos to rzuliani@control.ee.ethz.ch.

1 What is MATLAB?
The name MATLAB stands for “MATrix LABoratory” and was originally designed as a
tool for doing numerical computations with matrices and vectors. It has since grown into
a high-performance language for technical computing. MATLAB, integrating computa-
tion, visualization, and programming in an easy-to-use environment, allows easy matrix
manipulation, plotting of functions and data, implementation of algorithms, creation of
user interfaces, and interfacing with programs in other languages. Typical uses include:

• Math and Computation

• Modeling and Simulation

• Data Analysis and Visualization

• Application Development

• Graphical User Interface development

1



Signals and Systems II Spring 2025

2 Getting Started

2.1 Window Layout

The first time you start MATLAB, the desktop appears with the default layout, as shown
in Figure 1. The following tools are managed by the MATLAB desktop:

Current variables in
the workspace

Click fx for list of
available functions

Enter Matlab functions in
the command window (press

arrow up for command history)

Directory browser Current directory Get Help

Figure 1: Matlab Window (default layout).

• Command Window: Run MATLAB statements, use the tab key to trigger auto-
completion.

• Current Directory Browser: To search for, view, open, find, and make changes to
MATLAB related directories and files, use the MATLAB Current Directory browser.

• Command History: Displays a log of the functions you entered in the Command
Window, copy them, execute them, and more.

• Workspace Browser: Shows the name of each variable and its value.

In case that the desktop does not appear with the default layout, you can change it by
pressing the Layout button and selecting Default.

2.2 Editor

MATLAB editor (Figure 2) can be used to create and debug M – files, which are programs
you write to run MATLAB functions. A M – file is a text file that contains a sequence

2



Signals and Systems II Spring 2025

of MATLAB commands; the commands contained in a script file can be run, in order, in
the MATLAB command window simply by typing the name of the file at the command
prompt or by pressing the run button. M – files are very useful when you use a sequence
of commands over and over again, in many different MATLAB sessions and you do not
want to manually type these commands at the command prompt whenever you want to
use them.

Figure 2: Matlab Editor

You can run a script or a function that does not require an input argument directly from
the Editor/Debugger either by pressing F5 or selecting Run from the Debug menu. If you
want to run a part of the script then you can highlight the part of the script you want to
evaluate and then press F9 to run it. The results are shown in Command Window.

2.3 MATLAB Help

MATLAB has an extensive help system built into it, containing detailed documentation
and help information on all of the commands and functions of MATLAB. There are two
different ways to obtain help for MATLAB:

Command Line: help fun displays a description and syntax for the function fun
(e.g. help plot); whereas doc fun displays the HTML documentation for the MATLAB
function fun (e.g. doc plot).

Help Browser: Another source of help is the MATLAB help browser. You can invoke
the MATLAB help browser by typing, helpbrowser in the MATLAB command prompt,
by clicking on the Help button.

3 Variables
The simplest way to use MATLAB is for arithmetic operations. The basic arithmetic
operators are +, −, /, ∗ and ∧ (power). These operators can be used in conjunction with
brackets (). As with all programming languages special care should be given on how a
mathematic expression is written. For example, the result of the expression 5 + 10/2 ∗ 3 is

3



Signals and Systems II Spring 2025

20 and corresponds in the expression 5 + (10/2) ∗ 3 and not in the expression 5 + 10/(2 ∗ 3).
Generally, Matlab works according to the priorities:

1. quantities in brackets

2. powers

3. ∗, / working left to right

4. +, − working left to right

For example:

3 + 5/2 ∗ 4 − 2∧3 + (5 ∗ 2) = 3 + 5/2 ∗ 4 − 2∧3 + 10
= 3 + 5/2 ∗ 4 − 8 + 10
= 3 + 2.5 ∗ 4 − 8 + 10
= 3 + 10 − 8 + 10
= 15

MATLAB always stores the result of a calculation in a varable named ans, but it is possible
to use our own names to store numbers:

1 >> x = 5 + 2^2
2

3 x =
4

5 9

and then we can use these variables in other calculations:

1 >> y = 2*x
2

3 y =
4

5 18

These are examples of assignment statements: values are assigned to variables. Each
variable must be assigned a value before it may be used on the right of an
assignment statement.
One often does not want to see the result of intermediate calculations. This can be done
by terminating the assignment statement or expression with semi–colon:

1 >> x = 5 + 2^2;
2 >> y = 2*x;
3 >> z = x^2 + y^2
4

5 z =
6

7 405

4



Signals and Systems II Spring 2025

You can also assign pieces of text to variables, not just numbers. You do this using
single quotes (not double quotes — single quotes and double quotes have different uses in
MATLAB) around the text you want to assign to a variable. For example:

1 >> w = 'Goodmorning';
2 >> w
3

4 w =
5

6 Goodmorning

3.1 Variable Names

There are some specific rules for what you can name your variables, so you have to be
careful.

• Only use primary alphabetic characters (i.e., “A-Z”), numbers, and the underscore
character in your variable names.

• You cannot have any spaces in your variable names, so, for example, using “this is a
variable” as a variable name is not allowed (in general, you can use the underscore
character wherever you would use space to string words together in your variable
name).

• MATLAB is case sensitive. What this means for variables is that the same text,
with different mixes of capital and small case letters, will not be the same variables
in MATLAB. For example, “VaRIAbLe”, “variable”, “VARIABLE” and “variablE”
would all be considered distinct variables in MATLAB.

4 Matlab Functions

4.1 Simple Built – in Functions

• Trigonometric Functions: sin, cos, tan (their arguments should be in radians).

• Inverse Trigonometric Functions: asin, acos, atan (the result is in radians).

• Square root function: sqrt.

• Exponential function: exp.

• Natural logarithm: log.

• Logarithm base 10: log10.

4.2 M – file functions

You add new functions to the MATLAB vocabulary by expressing them in terms of existing
functions. The existing commands and functions that compose the new function reside in
an M-file. A line at the top of a function M-file contains the syntax definition. The name

5



Signals and Systems II Spring 2025

of a function, as defined in the first line of the M-file, should be the same as the name of
the file without the .m extension.
The main steps to follow when defining a Matlab function are:

1. Decide on a name for the function, making sure that it does not conflict with a name
that is already used by Matlab.

2. The first line of the file must have the format:

function [list of outputs] = FunctionName(list of inputs)

3. Include the code that defines the function.

A simple example of a function m – file is shown below:

1 function [Average, Total] = avg3(A,B,C)
2

3 Total=A+B+C;
4

5 Average=Total/3;

If you write in command window:

1 >> [K,L] = avg3(3,5,7)

the result is:

1 K =
2

3 5
4

5 L =
6

7 15

5 Matrices
In MATLAB, and in linear algebra, numeric objects can be categorized simply as matrix:
Both scalars and vectors can be considered a special type of matrix. For example a scalar
is a matrix with a row and column dimension of one (1-by-1 matrix). And a vector is
a matrix with one row and n columns, or n rows and one column. Most calculations in
MATLAB are done with “matrices”. Hence the name MATrix LABoratory.

5.1 Creating Matrices in MATLAB

In MATLAB matrices are defined inside a pair of square brackets ([]). Punctuation marks
of a comma (,), and semicolon (;) are used as a row separator and column separator,
respectfully (you can also use a space as a row separator, and a carriage return (the enter
key) as a column separator as well.). Use the examples below to check how vectors and
matrices can be created in MATLAB.

6



Signals and Systems II Spring 2025

1 >> A = [1,4,7]
2

3 >> B = [1;4;7]
4

5 >> C = [1 2 3;3 2 1;4 5 6;6 5 4]

You can also combine different vectors and matrices together to define a new matrix. For
example:

1 >> D = [A A]
2

3 >> E = [B B]
4

5 >> F = [C C]
6

7 >> G = [C;C]

5.2 Colon Operator

The colon operator allows you to create an incremental vector of regularly spaced points
by specifying startvalue:increment:stopvalue. Instead of an incremental value you can
also specify a decrement as well. Check the examples:

1 >> A=[0:10:200]
2 % or
3 >> B=[100:-10:-100]

5.3 Indexing Into a Matrix

Once a vector or a matrix is created you might needed to extract only a subset of the
data, and this is done through indexing. Each element of a matrix is indexed according to
which row and column it belongs to. The entry in the ith row and jth column is denoted
mathematically by Ai,j and in Matlab by A(i, j). So for the matrix:

1 >> C = [1 2 3;4 5 6;7 8 9;10 11 12]

the element in 3rd row and the 2nd column is:

1 >> C(3,2)
2

3 ans =
4

5 8

You can also extract any continuous subset of a matrix, by referring to the row range and
column range you want. In the following examples we extract i) the 3rd column, ii) the
2nd and 3rd columns, iii) the 4th row, and iv) the central 2 × 2 matrix.

1 >> C(:,3)

7



Signals and Systems II Spring 2025

2

3 >> C(:,2:3)
4

5 >> C(4,:)
6

7 >> C(2:3,2:3)

5.4 Matrix Operations

• Addition: >> C=A+B

• Subtraction: >> C=A-B

• Multiplication: >> C=A*B

• Element-by-element Multiplication: >> C=A.*B

• Transposing: >> C=A’

Note: Matrices must have compatible dimensions.

5.5 Matrix Functions

• The lu function expresses a matrix A as the product of two essentially triangular
matrices, one of them a permutation of a lower triangular matrix and the other an
upper triangular matrix. The factorization is often called the LU, or sometimes
the LR, factorization. [L,U] = lu(A) returns an upper triangular matrix in U and
a permuted lower triangular matrix in L such that A = LU . Return value L is a
product of lower triangular and permutation matrices.

• The qr function performs the orthogonal-triangular decomposition of a matrix. This
factorization is useful for both square and rectangular matrices. It expresses the
matrix as the product of a real complex unitary matrix and an upper triangular matrix.
[Q,R] = qr(A) produces an upper triangular matrix R of the same dimension as A
and a unitary matrix Q so that A = QR. For sparse matrices, Q is often nearly full.
If [m n]= size(A), then Q is m × m and R is m × n.

• [V,D] = eig(A) produces matrices of eigenvalues (D) and eigenvectors (V ) of matrix
A, so that AV = V D. Matrix D is the canonical form of A a diagonal matrix with
A’s eigenvalues on the main diagonal. Matrix V is the modal matrix its columns are
the eigenvectors of A.

• The svd command computes the matrix singular value decomposition. s = svd(X)
returns a vector of singular values. [U,S,V] = svd(X) produces a diagonal matrix
S of the same dimension as X, with nonnegative diagonal elements in decreasing
order, and unitary matrices U and V so that X = USV ⊤.

8



Signals and Systems II Spring 2025

6 Loops
There are occasions that we want to repeat a segment of code a number of different times.
In such cases it is convenient to use loop structures. In MATLAB there are three loop
structures:

• For Loop
The general syntax is:

for variable = expression
statement
...
statement

end

The columns of the expression are stored one at a time in the variable while the
following statements, up to the end, are executed.In practice, the expression is almost
always of the form scalar:scalar , in which case its columns are simply scalars.The
scope of the for statement is always terminated with a matching end.

• While Loop
The general format is

while expression
statement
...
statement

end

while repeats statements an indefinite number of times. The statements are executed
while the real part of expression has all nonzero elements. Expression is usually of
the form
expression relation-operator expression

where relation-operator is ==, <, >, <=, >= or =.

• If. . .then. . .else
MATLAB evaluates the expression and, if the evaluation yields logical 1 (true)
or a nonzero result, executes one or more MATLAB commands denoted here as
statements.When you are nesting ifs, each if must be paired with a matching end.When
using elseif and/or else within an if statement, the general form of the statement is

if expression1
statements1

elseif expression2
statements2

else

9



Signals and Systems II Spring 2025

statements3
end

7 System Representation

7.1 State Space

The function:

sys = ss(A,B,C,D)

creates the continuous-time state-space model:

ẋ = Ax + Bu

y = Cx + Du

The output sys is an SS model that stores the model data.

7.2 Transfer Function

The function:

sys = tf(num,den)

creates a continuous-time transfer function with numerator and denominator specified by
the vectors num and den. The output sys is a TF object storing the transfer function data.

7.3 Convertions

• tf2ss converts the parameters of a transfer function representation of a given system
to those of an equivalent state-space representation.

[A,B,C,D] = tf2ss(b,a)

returns the A, B, C, and D matrices of a state space representation for the single-input
transfer function

H(s) = B(s)
A(s) = C(sI − A)−1B + D

• ss2tf converts a state-space representation of a given system to an equivalent transfer
function representation.
[b,a] = ss2tf(A,B,C,D,iu) returns the transfer function

H(s) = B(s)
A(s) = C(sI − A)−1B + D

of the system

ẋ = Ax + Bu

y = Cx + Du

from the iu-th input.

10



Signals and Systems II Spring 2025

8 Model Simulation
The function lsim simulates the (time) response of continuous or discrete time linear
systems (LTI) to arbitrary inputs. When invoked without left-hand arguments, lsim plots
the response on the screen. Thus,

lsim(sys,u,t)

produces a plot of the time response of the LTI model sys to the input time history t, u.
The vector t specifies the time samples for the simulation and consists of regularly spaced
time samples

t = 0:dt:Tfinal

The matrix u must have as many rows as time samples (length(t)) and as many columns
as system inputs. Each row u(i,:) specifies the input value(s) at the time sample t(i).
When invoked with left-hand arguments,

[y,t] = lsim(sys,u,t)

[y,t,x] = lsim(sys,u,t) → for state-space models only
[y,t,x] = lsim(sys,u,t,x0) → with initial state x0

return the output response y, the time vector t used for simulation, and the state trajectories
x (for state-space models only).
There are also Matlab functions for specific type of inputs:

• Step input: step(sys,t) or [y,t,x] = step(sys)

• Impulse input: impulse(sys,t) or [y,t,x] = impulse(sys)

8.1 Ordinary Differential Equations Solver

In some cases, a model is described by a system of differential equations instead of a State
Space or a Transfer Function. For such cases an odesolver can be used to calculate the
system response. The most common syntax is:

[T,Y] = solver(odefun,tspan,y0)

where solver is one of ode45, ode23, ode113, ode15s, ode23s, ode23t, or ode23tb and

tspan = [t0 tf].

This function integrates the system of differential equations ẏ = f(t, y) from time t0 to
tf with initial conditions y0. odefun is a function handle, meaning a function that can
be called as f = odefun(t,y), where t is a scalar representing time and y is a column
vector. The function must return a column vector f (corresponding to f(x, t)) with the
same dimension as y. Each row in the solution array Y corresponds to a time returned in
column vector T.
An odesolver can for example be used to simulate the carrier pendulum shown in Figure
3. The code for this system and the Matlab Function (odefun) for the carrier pendulum
differential equations are shown below.

11



Signals and Systems II Spring 2025

Figure 3: Carrier Pendulum

1 clear all % clear all variables from workspace
2

3 %% Setup simulation options
4 t_init = 0; % initial time
5 T_s = 0.05; % sampling time
6 t_fin = 2; % final time
7 options = []; % no custom options in odesolver
8

9 %% Setup state vector
10 n_x = 4; % state vector dimension
11 n_T = ceil((t_fin-t_init)/T_s); % number of time-steps
12 x_system = zeros(n_x,n_T); % preallocate state response matrix
13

14 %% Speficy initial conditions
15 x_ode = [0;0;50*pi/180;0];
16 x_system(:,1) = x_ode; % store in state response matrix
17

18 %% Begin simulation
19 for t = t_init:T_s:t_fin-T_s
20

21 % input equal to 0 in our case
22 F_l = 0;
23

12



Signals and Systems II Spring 2025

24 % Run odesolver
25 [t_ode,x_ode] = ode45('carrierpendulum',[t+T_s],[x_ode],options,F_l);
26

27 % State at t+T_s is stored in the last row of x_ode.
28 % Transpose to have a column vector
29 x_ode = x_ode(end,:)';
30

31 % Store in state response matrix
32 x_system(:,floor(t/T_s+1)) = x_ode;
33 end
34

35 % plot
36 figure(1)
37 t=t_init:T_s:t_fin-T_s;
38 subplot(2,2,1),plot(t,x_system(1,:)),title('carrier position')
39 subplot(2,2,2),plot(t,x_system(2,:)),title('carrier velocity')
40 subplot(2,2,3),plot(t,x_system(3,:)),title('pendulum angle')
41 subplot(2,2,4),plot(t,x_system(4,:)),title('pendulum angular velocity')

1 function xprim = carrierpendulum(t,x,options,F_l)
2

3 % fixed parameters
4 M=1;m=1;l=1;B_l=0.3;B_r=0.3;g=10;
5

6 % preallocate output
7 xprim=zeros(size(x));
8

9 % fill each entry of the output
10 xprim(1)=x(2);
11 xprim(2)=(F_l-B_l*x(2)+m*l*sin(x(3))*(x(4))^2 + ...

m*g*cos(x(3))*sin(x(3))+B_r/l*cos(x(3))*x(4))/((M+m)-m*(cos(x(3)))^2);
12 xprim(3)=x(4);
13 xprim(4)=(-m*g*l*sin(x(3))-B_r*x(4)-m*l*cos(x(3))*xprim(2))/(m*l^2);

9 Plots
The most basic plotting command in MATLAB is the plot command. The plot command,
when called with two same-sized vectors X and Y, makes a two-dimensional line plot for
each point in X and its corresponding point in Y: the numbers in X are on the abscissa
(x-axis) and the numbers in Y are on the ordinate (y-axis). In other words, it will draw
points at (X(1), Y (1)), (X(2), Y (2)), (X(3), Y (3)), etc., and then connect all these points
together with lines. For example:

1 >> X=[1 3 4 6 8 12 18];
2 >> Y=3.*X;
3 >> plot(X,Y)

13



Signals and Systems II Spring 2025

9.1 Multiple Plots and Subplots

Another thing you might want to do is superimpose multiple plots in the same figure
window, to compare the plots for example. This can be done using the hold command.
Normally, when you type a plot command, any previous figure window is simply erased,
and replaced by the results of the new plot. However, if you type hold on at the command
prompt, all line plots created after that will be superimposed in the same figure window
and axes. Likewise the command hold off will stop this behavior, and revert to the
default (i.e., new plot will replace the previous plot). For example:

1 >> X=[1 3 4 6 8 12 18];
2 >> Y1=3.*X;
3 >> Y2=4.*X+5;
4 >> Y3=2.*X-3;
5 >> plot(X,Y1);
6 >> hold on
7 >> plot(X,Y2);
8 >> plot(X,Y3);

Still another thing you might want to do is to have multiple plots in the same window,
but each in a separate part of the window (i.e., each with their own axes). You can do
this using the subplot command. If you type subplot(M,N,P) at the command prompt,
MATLAB will divide the plot window into a bunch of rectangles — there will be M rows
and N columns of rectangles — and MATLAB will place the result of the next "plot"
command in the Pth rectangle (where the first rectangle is in the upper left). For example:

1 >> subplot(3,1,1)
2 >> plot(X,Y1)
3 >> subplot(3,1,2)
4 >> plot(X,Y2)
5 >> subplot(3,1,3)
6 >> plot(X,Y3)

14


	What is MATLAB?
	Getting Started
	Window Layout
	Editor
	MATLAB Help

	Variables
	Variable Names

	Matlab Functions
	Simple Built – in Functions
	M – file functions

	Matrices
	Creating Matrices in MATLAB
	Colon Operator
	Indexing Into a Matrix
	Matrix Operations
	Matrix Functions

	Loops
	System Representation
	State Space
	Transfer Function
	Convertions

	Model Simulation
	Ordinary Differential Equations Solver

	Plots
	Multiple Plots and Subplots


